You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
108 lines
3.9 KiB
108 lines
3.9 KiB
1 year ago
|
import numpy as np
|
||
|
|
||
|
from pandas._typing import npt
|
||
|
|
||
|
from pandas import MultiIndex
|
||
|
from pandas.core.arrays import ExtensionArray
|
||
|
|
||
|
multiindex_nulls_shift: int
|
||
|
|
||
|
class IndexEngine:
|
||
|
over_size_threshold: bool
|
||
|
def __init__(self, values: np.ndarray) -> None: ...
|
||
|
def __contains__(self, val: object) -> bool: ...
|
||
|
|
||
|
# -> int | slice | np.ndarray[bool]
|
||
|
def get_loc(self, val: object) -> int | slice | np.ndarray: ...
|
||
|
def sizeof(self, deep: bool = ...) -> int: ...
|
||
|
def __sizeof__(self) -> int: ...
|
||
|
@property
|
||
|
def is_unique(self) -> bool: ...
|
||
|
@property
|
||
|
def is_monotonic_increasing(self) -> bool: ...
|
||
|
@property
|
||
|
def is_monotonic_decreasing(self) -> bool: ...
|
||
|
@property
|
||
|
def is_mapping_populated(self) -> bool: ...
|
||
|
def clear_mapping(self): ...
|
||
|
def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
|
||
|
def get_indexer_non_unique(
|
||
|
self,
|
||
|
targets: np.ndarray,
|
||
|
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
||
|
|
||
|
class MaskedIndexEngine(IndexEngine):
|
||
|
def __init__(self, values: object) -> None: ...
|
||
|
def get_indexer_non_unique(
|
||
|
self, targets: object
|
||
|
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
||
|
|
||
|
class Float64Engine(IndexEngine): ...
|
||
|
class Float32Engine(IndexEngine): ...
|
||
|
class Complex128Engine(IndexEngine): ...
|
||
|
class Complex64Engine(IndexEngine): ...
|
||
|
class Int64Engine(IndexEngine): ...
|
||
|
class Int32Engine(IndexEngine): ...
|
||
|
class Int16Engine(IndexEngine): ...
|
||
|
class Int8Engine(IndexEngine): ...
|
||
|
class UInt64Engine(IndexEngine): ...
|
||
|
class UInt32Engine(IndexEngine): ...
|
||
|
class UInt16Engine(IndexEngine): ...
|
||
|
class UInt8Engine(IndexEngine): ...
|
||
|
class ObjectEngine(IndexEngine): ...
|
||
|
class DatetimeEngine(Int64Engine): ...
|
||
|
class TimedeltaEngine(DatetimeEngine): ...
|
||
|
class PeriodEngine(Int64Engine): ...
|
||
|
class BoolEngine(UInt8Engine): ...
|
||
|
class MaskedFloat64Engine(MaskedIndexEngine): ...
|
||
|
class MaskedFloat32Engine(MaskedIndexEngine): ...
|
||
|
class MaskedComplex128Engine(MaskedIndexEngine): ...
|
||
|
class MaskedComplex64Engine(MaskedIndexEngine): ...
|
||
|
class MaskedInt64Engine(MaskedIndexEngine): ...
|
||
|
class MaskedInt32Engine(MaskedIndexEngine): ...
|
||
|
class MaskedInt16Engine(MaskedIndexEngine): ...
|
||
|
class MaskedInt8Engine(MaskedIndexEngine): ...
|
||
|
class MaskedUInt64Engine(MaskedIndexEngine): ...
|
||
|
class MaskedUInt32Engine(MaskedIndexEngine): ...
|
||
|
class MaskedUInt16Engine(MaskedIndexEngine): ...
|
||
|
class MaskedUInt8Engine(MaskedIndexEngine): ...
|
||
|
class MaskedBoolEngine(MaskedUInt8Engine): ...
|
||
|
|
||
|
class BaseMultiIndexCodesEngine:
|
||
|
levels: list[np.ndarray]
|
||
|
offsets: np.ndarray # ndarray[uint64_t, ndim=1]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
levels: list[np.ndarray], # all entries hashable
|
||
|
labels: list[np.ndarray], # all entries integer-dtyped
|
||
|
offsets: np.ndarray, # np.ndarray[np.uint64, ndim=1]
|
||
|
) -> None: ...
|
||
|
def get_indexer(self, target: npt.NDArray[np.object_]) -> npt.NDArray[np.intp]: ...
|
||
|
def _extract_level_codes(self, target: MultiIndex) -> np.ndarray: ...
|
||
|
def get_indexer_with_fill(
|
||
|
self,
|
||
|
target: np.ndarray, # np.ndarray[object] of tuples
|
||
|
values: np.ndarray, # np.ndarray[object] of tuples
|
||
|
method: str,
|
||
|
limit: int | None,
|
||
|
) -> npt.NDArray[np.intp]: ...
|
||
|
|
||
|
class ExtensionEngine:
|
||
|
def __init__(self, values: ExtensionArray) -> None: ...
|
||
|
def __contains__(self, val: object) -> bool: ...
|
||
|
def get_loc(self, val: object) -> int | slice | np.ndarray: ...
|
||
|
def get_indexer(self, values: np.ndarray) -> npt.NDArray[np.intp]: ...
|
||
|
def get_indexer_non_unique(
|
||
|
self,
|
||
|
targets: np.ndarray,
|
||
|
) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]]: ...
|
||
|
@property
|
||
|
def is_unique(self) -> bool: ...
|
||
|
@property
|
||
|
def is_monotonic_increasing(self) -> bool: ...
|
||
|
@property
|
||
|
def is_monotonic_decreasing(self) -> bool: ...
|
||
|
def sizeof(self, deep: bool = ...) -> int: ...
|
||
|
def clear_mapping(self): ...
|