Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2157 lines
71 KiB

# Copyright (c) 2012, Lambda Foundry, Inc.
# See LICENSE for the license
from collections import defaultdict
from csv import (
QUOTE_MINIMAL,
QUOTE_NONE,
QUOTE_NONNUMERIC,
)
import sys
import time
import warnings
from pandas.util._exceptions import find_stack_level
from pandas import StringDtype
from pandas.core.arrays import (
ArrowExtensionArray,
BooleanArray,
FloatingArray,
IntegerArray,
)
cimport cython
from cpython.bytes cimport PyBytes_AsString
from cpython.exc cimport (
PyErr_Fetch,
PyErr_Occurred,
)
from cpython.object cimport PyObject
from cpython.ref cimport (
Py_INCREF,
Py_XDECREF,
)
from cpython.unicode cimport (
PyUnicode_AsUTF8String,
PyUnicode_Decode,
PyUnicode_DecodeUTF8,
)
from cython cimport Py_ssize_t
from libc.stdlib cimport free
from libc.string cimport (
strcasecmp,
strlen,
strncpy,
)
cdef extern from "Python.h":
# TODO(cython3): get this from cpython.unicode
object PyUnicode_FromString(char *v)
import numpy as np
cimport numpy as cnp
from numpy cimport (
float64_t,
int64_t,
ndarray,
uint8_t,
uint64_t,
)
cnp.import_array()
from pandas._libs cimport util
from pandas._libs.util cimport (
INT64_MAX,
INT64_MIN,
UINT64_MAX,
)
from pandas._libs import lib
from pandas._libs.khash cimport (
kh_destroy_float64,
kh_destroy_str,
kh_destroy_str_starts,
kh_destroy_strbox,
kh_exist_str,
kh_float64_t,
kh_get_float64,
kh_get_str,
kh_get_str_starts_item,
kh_get_strbox,
kh_init_float64,
kh_init_str,
kh_init_str_starts,
kh_init_strbox,
kh_put_float64,
kh_put_str,
kh_put_str_starts_item,
kh_put_strbox,
kh_resize_float64,
kh_resize_str_starts,
kh_str_starts_t,
kh_str_t,
kh_strbox_t,
khiter_t,
)
from pandas.errors import (
EmptyDataError,
ParserError,
ParserWarning,
)
from pandas.core.dtypes.dtypes import (
CategoricalDtype,
ExtensionDtype,
)
from pandas.core.dtypes.inference import is_dict_like
from pandas.core.arrays.boolean import BooleanDtype
cdef:
float64_t INF = <float64_t>np.inf
float64_t NEGINF = -INF
int64_t DEFAULT_CHUNKSIZE = 256 * 1024
DEFAULT_BUFFER_HEURISTIC = 2 ** 20
cdef extern from "pandas/portable.h":
# I *think* this is here so that strcasecmp is defined on Windows
# so we don't get
# `parsers.obj : error LNK2001: unresolved external symbol strcasecmp`
# in Appveyor.
# In a sane world, the `from libc.string cimport` above would fail
# loudly.
pass
cdef extern from "pandas/parser/tokenizer.h":
ctypedef enum ParserState:
START_RECORD
START_FIELD
ESCAPED_CHAR
IN_FIELD
IN_QUOTED_FIELD
ESCAPE_IN_QUOTED_FIELD
QUOTE_IN_QUOTED_FIELD
EAT_CRNL
EAT_CRNL_NOP
EAT_WHITESPACE
EAT_COMMENT
EAT_LINE_COMMENT
WHITESPACE_LINE
SKIP_LINE
FINISHED
enum: ERROR_OVERFLOW
ctypedef enum BadLineHandleMethod:
ERROR,
WARN,
SKIP
ctypedef void* (*io_callback)(void *src, size_t nbytes, size_t *bytes_read,
int *status, const char *encoding_errors)
ctypedef int (*io_cleanup)(void *src)
ctypedef struct parser_t:
void *source
io_callback cb_io
io_cleanup cb_cleanup
int64_t chunksize # Number of bytes to prepare for each chunk
char *data # pointer to data to be processed
int64_t datalen # amount of data available
int64_t datapos
# where to write out tokenized data
char *stream
uint64_t stream_len
uint64_t stream_cap
# Store words in (potentially ragged) matrix for now, hmm
char **words
int64_t *word_starts # where we are in the stream
uint64_t words_len
uint64_t words_cap
uint64_t max_words_cap # maximum word cap encountered
char *pword_start # pointer to stream start of current field
int64_t word_start # position start of current field
int64_t *line_start # position in words for start of line
int64_t *line_fields # Number of fields in each line
uint64_t lines # Number of lines observed
uint64_t file_lines # Number of lines observed (with bad/skipped)
uint64_t lines_cap # Vector capacity
# Tokenizing stuff
ParserState state
int doublequote # is " represented by ""? */
char delimiter # field separator */
int delim_whitespace # consume tabs / spaces instead
char quotechar # quote character */
char escapechar # escape character */
char lineterminator
int skipinitialspace # ignore spaces following delimiter? */
int quoting # style of quoting to write */
char commentchar
int allow_embedded_newline
int usecols
Py_ssize_t expected_fields
BadLineHandleMethod on_bad_lines
# floating point options
char decimal
char sci
# thousands separator (comma, period)
char thousands
int header # Boolean: 1: has header, 0: no header
int64_t header_start # header row start
uint64_t header_end # header row end
void *skipset
PyObject *skipfunc
int64_t skip_first_N_rows
int64_t skipfooter
# pick one, depending on whether the converter requires GIL
double (*double_converter)(const char *, char **,
char, char, char,
int, int *, int *) nogil
# error handling
char *warn_msg
char *error_msg
int64_t skip_empty_lines
ctypedef struct coliter_t:
char **words
int64_t *line_start
int64_t col
ctypedef struct uint_state:
int seen_sint
int seen_uint
int seen_null
void COLITER_NEXT(coliter_t, const char *) nogil
cdef extern from "pandas/parser/pd_parser.h":
void *new_rd_source(object obj) except NULL
int del_rd_source(void *src)
void* buffer_rd_bytes(void *source, size_t nbytes,
size_t *bytes_read, int *status, const char *encoding_errors)
void uint_state_init(uint_state *self)
int uint64_conflict(uint_state *self)
void coliter_setup(coliter_t *it, parser_t *parser,
int64_t i, int64_t start) nogil
void COLITER_NEXT(coliter_t, const char *) nogil
parser_t* parser_new()
int parser_init(parser_t *self) nogil
void parser_free(parser_t *self) nogil
void parser_del(parser_t *self) nogil
int parser_add_skiprow(parser_t *self, int64_t row)
int parser_set_skipfirstnrows(parser_t *self, int64_t nrows)
void parser_set_default_options(parser_t *self)
int parser_consume_rows(parser_t *self, size_t nrows)
int parser_trim_buffers(parser_t *self)
int tokenize_all_rows(parser_t *self, const char *encoding_errors) nogil
int tokenize_nrows(parser_t *self, size_t nrows, const char *encoding_errors) nogil
int64_t str_to_int64(char *p_item, int64_t int_min,
int64_t int_max, int *error, char tsep) nogil
uint64_t str_to_uint64(uint_state *state, char *p_item, int64_t int_max,
uint64_t uint_max, int *error, char tsep) nogil
double xstrtod(const char *p, char **q, char decimal,
char sci, char tsep, int skip_trailing,
int *error, int *maybe_int) nogil
double precise_xstrtod(const char *p, char **q, char decimal,
char sci, char tsep, int skip_trailing,
int *error, int *maybe_int) nogil
double round_trip(const char *p, char **q, char decimal,
char sci, char tsep, int skip_trailing,
int *error, int *maybe_int) nogil
int to_boolean(const char *item, uint8_t *val) nogil
void PandasParser_IMPORT()
PandasParser_IMPORT
# When not invoked directly but rather assigned as a function,
# cdef extern'ed declarations seem to leave behind an undefined symbol
cdef double xstrtod_wrapper(const char *p, char **q, char decimal,
char sci, char tsep, int skip_trailing,
int *error, int *maybe_int) noexcept nogil:
return xstrtod(p, q, decimal, sci, tsep, skip_trailing, error, maybe_int)
cdef double precise_xstrtod_wrapper(const char *p, char **q, char decimal,
char sci, char tsep, int skip_trailing,
int *error, int *maybe_int) noexcept nogil:
return precise_xstrtod(p, q, decimal, sci, tsep, skip_trailing, error, maybe_int)
cdef double round_trip_wrapper(const char *p, char **q, char decimal,
char sci, char tsep, int skip_trailing,
int *error, int *maybe_int) noexcept nogil:
return round_trip(p, q, decimal, sci, tsep, skip_trailing, error, maybe_int)
cdef void* buffer_rd_bytes_wrapper(void *source, size_t nbytes,
size_t *bytes_read, int *status,
const char *encoding_errors) noexcept:
return buffer_rd_bytes(source, nbytes, bytes_read, status, encoding_errors)
cdef int del_rd_source_wrapper(void *src) noexcept:
return del_rd_source(src)
cdef class TextReader:
"""
# source: StringIO or file object
..versionchange:: 1.2.0
removed 'compression', 'memory_map', and 'encoding' argument.
These arguments are outsourced to CParserWrapper.
'source' has to be a file handle.
"""
cdef:
parser_t *parser
object na_fvalues
object true_values, false_values
object handle
object orig_header
bint na_filter, keep_default_na, verbose, has_usecols, has_mi_columns
bint allow_leading_cols
uint64_t parser_start # this is modified after __init__
list clocks
const char *encoding_errors
kh_str_starts_t *false_set
kh_str_starts_t *true_set
int64_t buffer_lines, skipfooter
list dtype_cast_order # list[np.dtype]
list names # can be None
set noconvert # set[int]
cdef public:
int64_t leading_cols, table_width
object delimiter # bytes or str
object converters
object na_values
list header # list[list[non-negative integers]]
object index_col
object skiprows
object dtype
object usecols
set unnamed_cols # set[str]
str dtype_backend
def __cinit__(self, source,
delimiter=b",", # bytes | str
header=0,
int64_t header_start=0,
uint64_t header_end=0,
index_col=None,
names=None,
tokenize_chunksize=DEFAULT_CHUNKSIZE,
bint delim_whitespace=False,
converters=None,
bint skipinitialspace=False,
escapechar=None, # bytes | str
bint doublequote=True,
quotechar=b'"',
quoting=0, # int
lineterminator=None, # bytes | str
comment=None,
decimal=b".", # bytes | str
thousands=None, # bytes | str
dtype=None,
usecols=None,
on_bad_lines=ERROR,
bint na_filter=True,
na_values=None,
na_fvalues=None,
bint keep_default_na=True,
true_values=None,
false_values=None,
bint allow_leading_cols=True,
skiprows=None,
skipfooter=0, # int64_t
bint verbose=False,
float_precision=None,
bint skip_blank_lines=True,
encoding_errors=b"strict",
dtype_backend="numpy"):
# set encoding for native Python and C library
if isinstance(encoding_errors, str):
encoding_errors = encoding_errors.encode("utf-8")
elif encoding_errors is None:
encoding_errors = b"strict"
Py_INCREF(encoding_errors)
self.encoding_errors = PyBytes_AsString(encoding_errors)
self.parser = parser_new()
self.parser.chunksize = tokenize_chunksize
# For timekeeping
self.clocks = []
self.parser.usecols = (usecols is not None)
self._setup_parser_source(source)
parser_set_default_options(self.parser)
parser_init(self.parser)
if delim_whitespace:
self.parser.delim_whitespace = delim_whitespace
else:
if len(delimiter) > 1:
raise ValueError("only length-1 separators excluded right now")
self.parser.delimiter = <char>ord(delimiter)
# ----------------------------------------
# parser options
self.parser.doublequote = doublequote
self.parser.skipinitialspace = skipinitialspace
self.parser.skip_empty_lines = skip_blank_lines
if lineterminator is not None:
if len(lineterminator) != 1:
raise ValueError("Only length-1 line terminators supported")
self.parser.lineterminator = <char>ord(lineterminator)
if len(decimal) != 1:
raise ValueError("Only length-1 decimal markers supported")
self.parser.decimal = <char>ord(decimal)
if thousands is not None:
if len(thousands) != 1:
raise ValueError("Only length-1 thousands markers supported")
self.parser.thousands = <char>ord(thousands)
if escapechar is not None:
if len(escapechar) != 1:
raise ValueError("Only length-1 escapes supported")
self.parser.escapechar = <char>ord(escapechar)
self._set_quoting(quotechar, quoting)
dtype_order = ["int64", "float64", "bool", "object"]
if quoting == QUOTE_NONNUMERIC:
# consistent with csv module semantics, cast all to float
dtype_order = dtype_order[1:]
self.dtype_cast_order = [np.dtype(x) for x in dtype_order]
if comment is not None:
if len(comment) > 1:
raise ValueError("Only length-1 comment characters supported")
self.parser.commentchar = <char>ord(comment)
self.parser.on_bad_lines = on_bad_lines
self.skiprows = skiprows
if skiprows is not None:
self._make_skiprow_set()
self.skipfooter = skipfooter
if usecols is not None:
self.has_usecols = 1
# GH-20558, validate usecols at higher level and only pass clean
# usecols into TextReader.
self.usecols = usecols
if skipfooter > 0:
self.parser.on_bad_lines = SKIP
self.delimiter = delimiter
self.na_values = na_values
if na_fvalues is None:
na_fvalues = set()
self.na_fvalues = na_fvalues
self.true_values = _maybe_encode(true_values) + _true_values
self.false_values = _maybe_encode(false_values) + _false_values
self.true_set = kset_from_list(self.true_values)
self.false_set = kset_from_list(self.false_values)
self.keep_default_na = keep_default_na
self.converters = converters
self.na_filter = na_filter
self.verbose = verbose
if float_precision == "round_trip":
# see gh-15140
self.parser.double_converter = round_trip_wrapper
elif float_precision == "legacy":
self.parser.double_converter = xstrtod_wrapper
elif float_precision == "high" or float_precision is None:
self.parser.double_converter = precise_xstrtod_wrapper
else:
raise ValueError(f"Unrecognized float_precision option: "
f"{float_precision}")
# Caller is responsible for ensuring we have one of
# - None
# - DtypeObj
# - dict[Any, DtypeObj]
self.dtype = dtype
self.dtype_backend = dtype_backend
self.noconvert = set()
self.index_col = index_col
# ----------------------------------------
# header stuff
self.allow_leading_cols = allow_leading_cols
self.leading_cols = 0 # updated in _get_header
# TODO: no header vs. header is not the first row
self.has_mi_columns = 0
self.orig_header = header
if header is None:
# sentinel value
self.parser.header_start = -1
self.parser.header_end = -1
self.parser.header = -1
self.parser_start = 0
prelim_header = []
else:
if isinstance(header, list):
if len(header) > 1:
# need to artificially skip the final line
# which is still a header line
header = list(header)
header.append(header[-1] + 1)
self.parser.header_end = header[-1]
self.has_mi_columns = 1
else:
self.parser.header_end = header[0]
self.parser_start = header[-1] + 1
self.parser.header_start = header[0]
self.parser.header = header[0]
prelim_header = header
else:
self.parser.header_start = header
self.parser.header_end = header
self.parser_start = header + 1
self.parser.header = header
prelim_header = [header]
self.names = names
header, table_width, unnamed_cols = self._get_header(prelim_header)
# header, table_width, and unnamed_cols are set here, never changed
self.header = header
self.table_width = table_width
self.unnamed_cols = unnamed_cols
if not self.table_width:
raise EmptyDataError("No columns to parse from file")
# Compute buffer_lines as function of table width.
heuristic = DEFAULT_BUFFER_HEURISTIC // self.table_width
self.buffer_lines = 1
while self.buffer_lines * 2 < heuristic:
self.buffer_lines *= 2
def __init__(self, *args, **kwargs):
pass
def __dealloc__(self):
_close(self)
parser_del(self.parser)
def close(self):
_close(self)
def _set_quoting(self, quote_char: str | bytes | None, quoting: int):
if not isinstance(quoting, int):
raise TypeError('"quoting" must be an integer')
if not QUOTE_MINIMAL <= quoting <= QUOTE_NONE:
raise TypeError('bad "quoting" value')
if not isinstance(quote_char, (str, bytes)) and quote_char is not None:
dtype = type(quote_char).__name__
raise TypeError(f'"quotechar" must be string, not {dtype}')
if quote_char is None or quote_char == "":
if quoting != QUOTE_NONE:
raise TypeError("quotechar must be set if quoting enabled")
self.parser.quoting = quoting
self.parser.quotechar = -1
elif len(quote_char) > 1: # 0-len case handled earlier
raise TypeError('"quotechar" must be a 1-character string')
else:
self.parser.quoting = quoting
self.parser.quotechar = <char>ord(quote_char)
cdef _make_skiprow_set(self):
if util.is_integer_object(self.skiprows):
parser_set_skipfirstnrows(self.parser, self.skiprows)
elif not callable(self.skiprows):
for i in self.skiprows:
parser_add_skiprow(self.parser, i)
else:
self.parser.skipfunc = <PyObject *>self.skiprows
cdef _setup_parser_source(self, source):
cdef:
void *ptr
ptr = new_rd_source(source)
self.parser.source = ptr
self.parser.cb_io = buffer_rd_bytes_wrapper
self.parser.cb_cleanup = del_rd_source_wrapper
cdef _get_header(self, list prelim_header):
# header is now a list of lists, so field_count should use header[0]
#
# modifies:
# self.parser attributes
# self.parser_start
# self.leading_cols
cdef:
Py_ssize_t i, start, field_count, passed_count, unnamed_count, level
char *word
str name
uint64_t hr, data_line = 0
list header = []
set unnamed_cols = set()
if self.parser.header_start >= 0:
# Header is in the file
for level, hr in enumerate(prelim_header):
this_header = []
if self.parser.lines < hr + 1:
self._tokenize_rows(hr + 2)
if self.parser.lines == 0:
field_count = 0
start = self.parser.line_start[0]
# e.g., if header=3 and file only has 2 lines
elif (self.parser.lines < hr + 1
and not isinstance(self.orig_header, list)) or (
self.parser.lines < hr):
msg = self.orig_header
if isinstance(msg, list):
joined = ",".join(str(m) for m in msg)
msg = f"[{joined}], len of {len(msg)},"
raise ParserError(
f"Passed header={msg} but only "
f"{self.parser.lines} lines in file")
else:
field_count = self.parser.line_fields[hr]
start = self.parser.line_start[hr]
unnamed_count = 0
unnamed_col_indices = []
for i in range(field_count):
word = self.parser.words[start + i]
name = PyUnicode_DecodeUTF8(word, strlen(word),
self.encoding_errors)
if name == "":
if self.has_mi_columns:
name = f"Unnamed: {i}_level_{level}"
else:
name = f"Unnamed: {i}"
unnamed_count += 1
unnamed_col_indices.append(i)
this_header.append(name)
if not self.has_mi_columns:
# Ensure that regular columns are used before unnamed ones
# to keep given names and mangle unnamed columns
col_loop_order = [i for i in range(len(this_header))
if i not in unnamed_col_indices
] + unnamed_col_indices
counts = {}
for i in col_loop_order:
col = this_header[i]
old_col = col
cur_count = counts.get(col, 0)
if cur_count > 0:
while cur_count > 0:
counts[old_col] = cur_count + 1
col = f"{old_col}.{cur_count}"
if col in this_header:
cur_count += 1
else:
cur_count = counts.get(col, 0)
if (
self.dtype is not None
and is_dict_like(self.dtype)
and self.dtype.get(old_col) is not None
and self.dtype.get(col) is None
):
self.dtype.update({col: self.dtype.get(old_col)})
this_header[i] = col
counts[col] = cur_count + 1
if self.has_mi_columns:
# If we have grabbed an extra line, but it's not in our
# format, save in the buffer, and create an blank extra
# line for the rest of the parsing code.
if hr == prelim_header[-1]:
lc = len(this_header)
ic = (len(self.index_col) if self.index_col
is not None else 0)
# if wrong number of blanks or no index, not our format
if (lc != unnamed_count and lc - ic > unnamed_count) or ic == 0:
hr -= 1
self.parser_start -= 1
this_header = [None] * lc
data_line = hr + 1
header.append(this_header)
unnamed_cols.update({this_header[i] for i in unnamed_col_indices})
if self.names is not None:
header = [self.names]
elif self.names is not None:
# Names passed
if self.parser.lines < 1:
if not self.has_usecols:
self.parser.expected_fields = len(self.names)
self._tokenize_rows(1)
header = [self.names]
if self.parser.lines < 1:
field_count = len(header[0])
else:
field_count = self.parser.line_fields[data_line]
# Enforce this unless usecols
if not self.has_usecols:
self.parser.expected_fields = max(field_count, len(self.names))
else:
# No header passed nor to be found in the file
if self.parser.lines < 1:
self._tokenize_rows(1)
return None, self.parser.line_fields[0], unnamed_cols
# Corner case, not enough lines in the file
if self.parser.lines < data_line + 1:
field_count = len(header[0])
else:
field_count = self.parser.line_fields[data_line]
# #2981
if self.names is not None:
field_count = max(field_count, len(self.names))
passed_count = len(header[0])
if (self.has_usecols and self.allow_leading_cols and
not callable(self.usecols)):
nuse = len(self.usecols)
if nuse == passed_count:
self.leading_cols = 0
elif self.names is None and nuse < passed_count:
self.leading_cols = field_count - passed_count
elif passed_count != field_count:
raise ValueError("Number of passed names did not match number of "
"header fields in the file")
# oh boy, #2442, #2981
elif self.allow_leading_cols and passed_count < field_count:
self.leading_cols = field_count - passed_count
return header, field_count, unnamed_cols
def read(self, rows: int | None = None) -> dict[int, "ArrayLike"]:
"""
rows=None --> read all rows
"""
# Don't care about memory usage
columns = self._read_rows(rows, 1)
return columns
def read_low_memory(self, rows: int | None)-> list[dict[int, "ArrayLike"]]:
"""
rows=None --> read all rows
"""
# Conserve intermediate space
# Caller is responsible for concatenating chunks,
# see c_parser_wrapper._concatenate_chunks
cdef:
size_t rows_read = 0
list chunks = []
if rows is None:
while True:
try:
chunk = self._read_rows(self.buffer_lines, 0)
if len(chunk) == 0:
break
except StopIteration:
break
else:
chunks.append(chunk)
else:
while rows_read < rows:
try:
crows = min(self.buffer_lines, rows - rows_read)
chunk = self._read_rows(crows, 0)
if len(chunk) == 0:
break
rows_read += len(list(chunk.values())[0])
except StopIteration:
break
else:
chunks.append(chunk)
parser_trim_buffers(self.parser)
if len(chunks) == 0:
raise StopIteration
return chunks
cdef _tokenize_rows(self, size_t nrows):
cdef:
int status
with nogil:
status = tokenize_nrows(self.parser, nrows, self.encoding_errors)
self._check_tokenize_status(status)
cdef _check_tokenize_status(self, int status):
if self.parser.warn_msg != NULL:
print(PyUnicode_DecodeUTF8(
self.parser.warn_msg, strlen(self.parser.warn_msg),
self.encoding_errors), file=sys.stderr)
free(self.parser.warn_msg)
self.parser.warn_msg = NULL
if status < 0:
raise_parser_error("Error tokenizing data", self.parser)
# -> dict[int, "ArrayLike"]
cdef _read_rows(self, rows, bint trim):
cdef:
int64_t buffered_lines
int64_t irows
self._start_clock()
if rows is not None:
irows = rows
buffered_lines = self.parser.lines - self.parser_start
if buffered_lines < irows:
self._tokenize_rows(irows - buffered_lines)
if self.skipfooter > 0:
raise ValueError("skipfooter can only be used to read "
"the whole file")
else:
with nogil:
status = tokenize_all_rows(self.parser, self.encoding_errors)
self._check_tokenize_status(status)
if self.parser_start >= self.parser.lines:
raise StopIteration
self._end_clock("Tokenization")
self._start_clock()
columns = self._convert_column_data(rows)
self._end_clock("Type conversion")
self._start_clock()
if len(columns) > 0:
rows_read = len(list(columns.values())[0])
# trim
parser_consume_rows(self.parser, rows_read)
if trim:
parser_trim_buffers(self.parser)
self.parser_start -= rows_read
self._end_clock("Parser memory cleanup")
return columns
cdef _start_clock(self):
self.clocks.append(time.time())
cdef _end_clock(self, str what):
if self.verbose:
elapsed = time.time() - self.clocks.pop(-1)
print(f"{what} took: {elapsed * 1000:.2f} ms")
def set_noconvert(self, i: int) -> None:
self.noconvert.add(i)
def remove_noconvert(self, i: int) -> None:
self.noconvert.remove(i)
def _convert_column_data(self, rows: int | None) -> dict[int, "ArrayLike"]:
cdef:
int64_t i
int nused
kh_str_starts_t *na_hashset = NULL
int64_t start, end
object name, na_flist, col_dtype = None
bint na_filter = 0
int64_t num_cols
dict results
start = self.parser_start
if rows is None:
end = self.parser.lines
else:
end = min(start + rows, self.parser.lines)
num_cols = -1
# Py_ssize_t cast prevents build warning
for i in range(<Py_ssize_t>self.parser.lines):
num_cols = (num_cols < self.parser.line_fields[i]) * \
self.parser.line_fields[i] + \
(num_cols >= self.parser.line_fields[i]) * num_cols
usecols_not_callable_and_exists = not callable(self.usecols) and self.usecols
names_larger_num_cols = (self.names and
len(self.names) - self.leading_cols > num_cols)
if self.table_width - self.leading_cols > num_cols:
if (usecols_not_callable_and_exists
and self.table_width - self.leading_cols < len(self.usecols)
or names_larger_num_cols):
raise ParserError(f"Too many columns specified: expected "
f"{self.table_width - self.leading_cols} "
f"and found {num_cols}")
if (usecols_not_callable_and_exists and
all(isinstance(u, int) for u in self.usecols)):
missing_usecols = [col for col in self.usecols if col >= num_cols]
if missing_usecols:
raise ParserError(
"Defining usecols without of bounds indices is not allowed. "
f"{missing_usecols} are out of bounds.",
)
results = {}
nused = 0
is_default_dict_dtype = isinstance(self.dtype, defaultdict)
for i in range(self.table_width):
if i < self.leading_cols:
# Pass through leading columns always
name = i
elif (self.usecols and not callable(self.usecols) and
nused == len(self.usecols)):
# Once we've gathered all requested columns, stop. GH5766
break
else:
name = self._get_column_name(i, nused)
usecols = set()
if callable(self.usecols):
if self.usecols(name):
usecols = {i}
else:
usecols = self.usecols
if self.has_usecols and not (i in usecols or
name in usecols):
continue
nused += 1
conv = self._get_converter(i, name)
col_dtype = None
if self.dtype is not None:
if isinstance(self.dtype, dict):
if name in self.dtype:
col_dtype = self.dtype[name]
elif i in self.dtype:
col_dtype = self.dtype[i]
elif is_default_dict_dtype:
col_dtype = self.dtype[name]
else:
if self.dtype.names:
# structured array
col_dtype = np.dtype(self.dtype.descr[i][1])
else:
col_dtype = self.dtype
if conv:
if col_dtype is not None:
warnings.warn((f"Both a converter and dtype were specified "
f"for column {name} - only the converter will "
f"be used."), ParserWarning,
stacklevel=find_stack_level())
results[i] = _apply_converter(conv, self.parser, i, start, end)
continue
# Collect the list of NaN values associated with the column.
# If we aren't supposed to do that, or none are collected,
# we set `na_filter` to `0` (`1` otherwise).
na_flist = set()
if self.na_filter:
na_list, na_flist = self._get_na_list(i, name)
if na_list is None:
na_filter = 0
else:
na_filter = 1
na_hashset = kset_from_list(na_list)
else:
na_filter = 0
# Attempt to parse tokens and infer dtype of the column.
# Should return as the desired dtype (inferred or specified).
try:
col_res, na_count = self._convert_tokens(
i, start, end, name, na_filter, na_hashset,
na_flist, col_dtype)
finally:
# gh-21353
#
# Cleanup the NaN hash that we generated
# to avoid memory leaks.
if na_filter:
self._free_na_set(na_hashset)
# don't try to upcast EAs
if (
na_count > 0 and not isinstance(col_dtype, ExtensionDtype)
or self.dtype_backend != "numpy"
):
use_dtype_backend = self.dtype_backend != "numpy" and col_dtype is None
col_res = _maybe_upcast(
col_res,
use_dtype_backend=use_dtype_backend,
dtype_backend=self.dtype_backend,
)
if col_res is None:
raise ParserError(f"Unable to parse column {i}")
results[i] = col_res
self.parser_start += end - start
return results
# -> tuple["ArrayLike", int]:
cdef _convert_tokens(self, Py_ssize_t i, int64_t start,
int64_t end, object name, bint na_filter,
kh_str_starts_t *na_hashset,
object na_flist, object col_dtype):
if col_dtype is not None:
col_res, na_count = self._convert_with_dtype(
col_dtype, i, start, end, na_filter,
1, na_hashset, na_flist)
# Fallback on the parse (e.g. we requested int dtype,
# but its actually a float).
if col_res is not None:
return col_res, na_count
if i in self.noconvert:
return self._string_convert(i, start, end, na_filter, na_hashset)
else:
col_res = None
for dt in self.dtype_cast_order:
try:
col_res, na_count = self._convert_with_dtype(
dt, i, start, end, na_filter, 0, na_hashset, na_flist)
except ValueError:
# This error is raised from trying to convert to uint64,
# and we discover that we cannot convert to any numerical
# dtype successfully. As a result, we leave the data
# column AS IS with object dtype.
col_res, na_count = self._convert_with_dtype(
np.dtype("object"), i, start, end, 0,
0, na_hashset, na_flist)
except OverflowError:
col_res, na_count = self._convert_with_dtype(
np.dtype("object"), i, start, end, na_filter,
0, na_hashset, na_flist)
if col_res is not None:
break
# we had a fallback parse on the dtype, so now try to cast
if col_res is not None and col_dtype is not None:
# If col_res is bool, it might actually be a bool array mixed with NaNs
# (see _try_bool_flex()). Usually this would be taken care of using
# _maybe_upcast(), but if col_dtype is a floating type we should just
# take care of that cast here.
if col_res.dtype == np.bool_ and col_dtype.kind == "f":
mask = col_res.view(np.uint8) == na_values[np.uint8]
col_res = col_res.astype(col_dtype)
np.putmask(col_res, mask, np.nan)
return col_res, na_count
# NaNs are already cast to True here, so can not use astype
if col_res.dtype == np.bool_ and col_dtype.kind in "iu":
if na_count > 0:
raise ValueError(
f"cannot safely convert passed user dtype of "
f"{col_dtype} for {np.bool_} dtyped data in "
f"column {i} due to NA values"
)
# only allow safe casts, eg. with a nan you cannot safely cast to int
try:
col_res = col_res.astype(col_dtype, casting="safe")
except TypeError:
# float -> int conversions can fail the above
# even with no nans
col_res_orig = col_res
col_res = col_res.astype(col_dtype)
if (col_res != col_res_orig).any():
raise ValueError(
f"cannot safely convert passed user dtype of "
f"{col_dtype} for {col_res_orig.dtype.name} dtyped data in "
f"column {i}")
return col_res, na_count
cdef _convert_with_dtype(self, object dtype, Py_ssize_t i,
int64_t start, int64_t end,
bint na_filter,
bint user_dtype,
kh_str_starts_t *na_hashset,
object na_flist):
if isinstance(dtype, CategoricalDtype):
# TODO: I suspect that _categorical_convert could be
# optimized when dtype is an instance of CategoricalDtype
codes, cats, na_count = _categorical_convert(
self.parser, i, start, end, na_filter, na_hashset)
# Method accepts list of strings, not encoded ones.
true_values = [x.decode() for x in self.true_values]
array_type = dtype.construct_array_type()
cat = array_type._from_inferred_categories(
cats, codes, dtype, true_values=true_values)
return cat, na_count
elif isinstance(dtype, ExtensionDtype):
result, na_count = self._string_convert(i, start, end, na_filter,
na_hashset)
array_type = dtype.construct_array_type()
try:
# use _from_sequence_of_strings if the class defines it
if isinstance(dtype, BooleanDtype):
# xref GH 47534: BooleanArray._from_sequence_of_strings has extra
# kwargs
true_values = [x.decode() for x in self.true_values]
false_values = [x.decode() for x in self.false_values]
result = array_type._from_sequence_of_strings(
result, dtype=dtype, true_values=true_values,
false_values=false_values)
else:
result = array_type._from_sequence_of_strings(result, dtype=dtype)
except NotImplementedError:
raise NotImplementedError(
f"Extension Array: {array_type} must implement "
f"_from_sequence_of_strings in order "
f"to be used in parser methods")
return result, na_count
elif dtype.kind in "iu":
try:
result, na_count = _try_int64(self.parser, i, start,
end, na_filter, na_hashset)
if user_dtype and na_count is not None:
if na_count > 0:
raise ValueError(f"Integer column has NA values in column {i}")
except OverflowError:
result = _try_uint64(self.parser, i, start, end,
na_filter, na_hashset)
na_count = 0
if result is not None and dtype != "int64":
result = result.astype(dtype)
return result, na_count
elif dtype.kind == "f":
result, na_count = _try_double(self.parser, i, start, end,
na_filter, na_hashset, na_flist)
if result is not None and dtype != "float64":
result = result.astype(dtype)
return result, na_count
elif dtype.kind == "b":
result, na_count = _try_bool_flex(self.parser, i, start, end,
na_filter, na_hashset,
self.true_set, self.false_set)
if user_dtype and na_count is not None:
if na_count > 0:
raise ValueError(f"Bool column has NA values in column {i}")
return result, na_count
elif dtype.kind == "S":
# TODO: na handling
width = dtype.itemsize
if width > 0:
result = _to_fw_string(self.parser, i, start, end, width)
return result, 0
# treat as a regular string parsing
return self._string_convert(i, start, end, na_filter,
na_hashset)
elif dtype.kind == "U":
width = dtype.itemsize
if width > 0:
raise TypeError(f"the dtype {dtype} is not supported for parsing")
# unicode variable width
return self._string_convert(i, start, end, na_filter,
na_hashset)
elif dtype == object:
return self._string_convert(i, start, end, na_filter,
na_hashset)
elif dtype.kind == "M":
raise TypeError(f"the dtype {dtype} is not supported "
f"for parsing, pass this column "
f"using parse_dates instead")
else:
raise TypeError(f"the dtype {dtype} is not supported for parsing")
# -> tuple[ndarray[object], int]
cdef _string_convert(self, Py_ssize_t i, int64_t start, int64_t end,
bint na_filter, kh_str_starts_t *na_hashset):
return _string_box_utf8(self.parser, i, start, end, na_filter,
na_hashset, self.encoding_errors)
def _get_converter(self, i: int, name):
if self.converters is None:
return None
if name is not None and name in self.converters:
return self.converters[name]
# Converter for position, if any
return self.converters.get(i)
cdef _get_na_list(self, Py_ssize_t i, name):
# Note: updates self.na_values, self.na_fvalues
if self.na_values is None:
return None, set()
if isinstance(self.na_values, dict):
key = None
values = None
if name is not None and name in self.na_values:
key = name
elif i in self.na_values:
key = i
else: # No na_values provided for this column.
if self.keep_default_na:
return _NA_VALUES, set()
return list(), set()
values = self.na_values[key]
if values is not None and not isinstance(values, list):
values = list(values)
fvalues = self.na_fvalues[key]
if fvalues is not None and not isinstance(fvalues, set):
fvalues = set(fvalues)
return _ensure_encoded(values), fvalues
else:
if not isinstance(self.na_values, list):
self.na_values = list(self.na_values)
if not isinstance(self.na_fvalues, set):
self.na_fvalues = set(self.na_fvalues)
return _ensure_encoded(self.na_values), self.na_fvalues
cdef _free_na_set(self, kh_str_starts_t *table):
kh_destroy_str_starts(table)
cdef _get_column_name(self, Py_ssize_t i, Py_ssize_t nused):
cdef int64_t j
if self.has_usecols and self.names is not None:
if (not callable(self.usecols) and
len(self.names) == len(self.usecols)):
return self.names[nused]
else:
return self.names[i - self.leading_cols]
else:
if self.header is not None:
j = i - self.leading_cols
# generate extra (bogus) headers if there are more columns than headers
# These should be strings, not integers, because otherwise we might get
# issues with callables as usecols GH#46997
if j >= len(self.header[0]):
return str(j)
elif self.has_mi_columns:
return tuple(header_row[j] for header_row in self.header)
else:
return self.header[0][j]
else:
return None
# Factor out code common to TextReader.__dealloc__ and TextReader.close
# It cannot be a class method, since calling self.close() in __dealloc__
# which causes a class attribute lookup and violates best practices
# https://cython.readthedocs.io/en/latest/src/userguide/special_methods.html#finalization-method-dealloc
cdef _close(TextReader reader):
# also preemptively free all allocated memory
parser_free(reader.parser)
if reader.true_set:
kh_destroy_str_starts(reader.true_set)
reader.true_set = NULL
if reader.false_set:
kh_destroy_str_starts(reader.false_set)
reader.false_set = NULL
cdef:
object _true_values = [b"True", b"TRUE", b"true"]
object _false_values = [b"False", b"FALSE", b"false"]
def _ensure_encoded(list lst):
cdef:
list result = []
for x in lst:
if isinstance(x, str):
x = PyUnicode_AsUTF8String(x)
elif not isinstance(x, bytes):
x = str(x).encode("utf-8")
result.append(x)
return result
# common NA values
# no longer excluding inf representations
# '1.#INF','-1.#INF', '1.#INF000000',
STR_NA_VALUES = {
"-1.#IND",
"1.#QNAN",
"1.#IND",
"-1.#QNAN",
"#N/A N/A",
"#N/A",
"N/A",
"n/a",
"NA",
"<NA>",
"#NA",
"NULL",
"null",
"NaN",
"-NaN",
"nan",
"-nan",
"",
"None",
}
_NA_VALUES = _ensure_encoded(list(STR_NA_VALUES))
def _maybe_upcast(
arr, use_dtype_backend: bool = False, dtype_backend: str = "numpy"
):
"""Sets nullable dtypes or upcasts if nans are present.
Upcast, if use_dtype_backend is false and nans are present so that the
current dtype can not hold the na value. We use nullable dtypes if the
flag is true for every array.
Parameters
----------
arr: ndarray
Numpy array that is potentially being upcast.
use_dtype_backend: bool, default False
If true, we cast to the associated nullable dtypes.
Returns
-------
The casted array.
"""
if isinstance(arr.dtype, ExtensionDtype):
# TODO: the docstring says arr is an ndarray, in which case this cannot
# be reached. Is that incorrect?
return arr
na_value = na_values[arr.dtype]
if issubclass(arr.dtype.type, np.integer):
mask = arr == na_value
if use_dtype_backend:
arr = IntegerArray(arr, mask)
else:
arr = arr.astype(float)
np.putmask(arr, mask, np.nan)
elif arr.dtype == np.bool_:
mask = arr.view(np.uint8) == na_value
if use_dtype_backend:
arr = BooleanArray(arr, mask)
else:
arr = arr.astype(object)
np.putmask(arr, mask, np.nan)
elif issubclass(arr.dtype.type, float) or arr.dtype.type == np.float32:
if use_dtype_backend:
mask = np.isnan(arr)
arr = FloatingArray(arr, mask)
elif arr.dtype == np.object_:
if use_dtype_backend:
arr = StringDtype().construct_array_type()._from_sequence(arr)
if use_dtype_backend and dtype_backend == "pyarrow":
import pyarrow as pa
if isinstance(arr, IntegerArray) and arr.isna().all():
# use null instead of int64 in pyarrow
arr = arr.to_numpy()
arr = ArrowExtensionArray(pa.array(arr, from_pandas=True))
return arr
# ----------------------------------------------------------------------
# Type conversions / inference support code
# -> tuple[ndarray[object], int]
cdef _string_box_utf8(parser_t *parser, int64_t col,
int64_t line_start, int64_t line_end,
bint na_filter, kh_str_starts_t *na_hashset,
const char *encoding_errors):
cdef:
int na_count = 0
Py_ssize_t i, lines
coliter_t it
const char *word = NULL
ndarray[object] result
int ret = 0
kh_strbox_t *table
object pyval
object NA = na_values[np.object_]
khiter_t k
table = kh_init_strbox()
lines = line_end - line_start
result = np.empty(lines, dtype=np.object_)
coliter_setup(&it, parser, col, line_start)
for i in range(lines):
COLITER_NEXT(it, word)
if na_filter:
if kh_get_str_starts_item(na_hashset, word):
# in the hash table
na_count += 1
result[i] = NA
continue
k = kh_get_strbox(table, word)
# in the hash table
if k != table.n_buckets:
# this increments the refcount, but need to test
pyval = <object>table.vals[k]
else:
# box it. new ref?
pyval = PyUnicode_Decode(word, strlen(word), "utf-8", encoding_errors)
k = kh_put_strbox(table, word, &ret)
table.vals[k] = <PyObject *>pyval
result[i] = pyval
kh_destroy_strbox(table)
return result, na_count
@cython.boundscheck(False)
cdef _categorical_convert(parser_t *parser, int64_t col,
int64_t line_start, int64_t line_end,
bint na_filter, kh_str_starts_t *na_hashset):
"Convert column data into codes, categories"
cdef:
int na_count = 0
Py_ssize_t i, lines
coliter_t it
const char *word = NULL
int64_t NA = -1
int64_t[::1] codes
int64_t current_category = 0
int ret = 0
kh_str_t *table
khiter_t k
lines = line_end - line_start
codes = np.empty(lines, dtype=np.int64)
# factorize parsed values, creating a hash table
# bytes -> category code
with nogil:
table = kh_init_str()
coliter_setup(&it, parser, col, line_start)
for i in range(lines):
COLITER_NEXT(it, word)
if na_filter:
if kh_get_str_starts_item(na_hashset, word):
# is in NA values
na_count += 1
codes[i] = NA
continue
k = kh_get_str(table, word)
# not in the hash table
if k == table.n_buckets:
k = kh_put_str(table, word, &ret)
table.vals[k] = current_category
current_category += 1
codes[i] = table.vals[k]
# parse and box categories to python strings
result = np.empty(table.n_occupied, dtype=np.object_)
for k in range(table.n_buckets):
if kh_exist_str(table, k):
result[table.vals[k]] = PyUnicode_FromString(table.keys[k])
kh_destroy_str(table)
return np.asarray(codes), result, na_count
# -> ndarray[f'|S{width}']
cdef _to_fw_string(parser_t *parser, int64_t col, int64_t line_start,
int64_t line_end, int64_t width):
cdef:
char *data
ndarray result
result = np.empty(line_end - line_start, dtype=f"|S{width}")
data = <char*>result.data
with nogil:
_to_fw_string_nogil(parser, col, line_start, line_end, width, data)
return result
cdef void _to_fw_string_nogil(parser_t *parser, int64_t col,
int64_t line_start, int64_t line_end,
size_t width, char *data) nogil:
cdef:
int64_t i
coliter_t it
const char *word = NULL
coliter_setup(&it, parser, col, line_start)
for i in range(line_end - line_start):
COLITER_NEXT(it, word)
strncpy(data, word, width)
data += width
cdef:
char* cinf = b"inf"
char* cposinf = b"+inf"
char* cneginf = b"-inf"
char* cinfty = b"Infinity"
char* cposinfty = b"+Infinity"
char* cneginfty = b"-Infinity"
# -> tuple[ndarray[float64_t], int] | tuple[None, None]
cdef _try_double(parser_t *parser, int64_t col,
int64_t line_start, int64_t line_end,
bint na_filter, kh_str_starts_t *na_hashset, object na_flist):
cdef:
int error, na_count = 0
Py_ssize_t lines
float64_t *data
float64_t NA = na_values[np.float64]
kh_float64_t *na_fset
ndarray[float64_t] result
bint use_na_flist = len(na_flist) > 0
lines = line_end - line_start
result = np.empty(lines, dtype=np.float64)
data = <float64_t *>result.data
na_fset = kset_float64_from_list(na_flist)
with nogil:
error = _try_double_nogil(parser, parser.double_converter,
col, line_start, line_end,
na_filter, na_hashset, use_na_flist,
na_fset, NA, data, &na_count)
kh_destroy_float64(na_fset)
if error != 0:
return None, None
return result, na_count
cdef int _try_double_nogil(parser_t *parser,
float64_t (*double_converter)(
const char *, char **, char,
char, char, int, int *, int *) nogil,
int64_t col, int64_t line_start, int64_t line_end,
bint na_filter, kh_str_starts_t *na_hashset,
bint use_na_flist,
const kh_float64_t *na_flist,
float64_t NA, float64_t *data,
int *na_count) nogil:
cdef:
int error = 0,
Py_ssize_t i, lines = line_end - line_start
coliter_t it
const char *word = NULL
char *p_end
khiter_t k64
na_count[0] = 0
coliter_setup(&it, parser, col, line_start)
if na_filter:
for i in range(lines):
COLITER_NEXT(it, word)
if kh_get_str_starts_item(na_hashset, word):
# in the hash table
na_count[0] += 1
data[0] = NA
else:
data[0] = double_converter(word, &p_end, parser.decimal,
parser.sci, parser.thousands,
1, &error, NULL)
if error != 0 or p_end == word or p_end[0]:
error = 0
if (strcasecmp(word, cinf) == 0 or
strcasecmp(word, cposinf) == 0 or
strcasecmp(word, cinfty) == 0 or
strcasecmp(word, cposinfty) == 0):
data[0] = INF
elif (strcasecmp(word, cneginf) == 0 or
strcasecmp(word, cneginfty) == 0):
data[0] = NEGINF
else:
return 1
if use_na_flist:
k64 = kh_get_float64(na_flist, data[0])
if k64 != na_flist.n_buckets:
na_count[0] += 1
data[0] = NA
data += 1
else:
for i in range(lines):
COLITER_NEXT(it, word)
data[0] = double_converter(word, &p_end, parser.decimal,
parser.sci, parser.thousands,
1, &error, NULL)
if error != 0 or p_end == word or p_end[0]:
error = 0
if (strcasecmp(word, cinf) == 0 or
strcasecmp(word, cposinf) == 0 or
strcasecmp(word, cinfty) == 0 or
strcasecmp(word, cposinfty) == 0):
data[0] = INF
elif (strcasecmp(word, cneginf) == 0 or
strcasecmp(word, cneginfty) == 0):
data[0] = NEGINF
else:
return 1
data += 1
return 0
cdef _try_uint64(parser_t *parser, int64_t col,
int64_t line_start, int64_t line_end,
bint na_filter, kh_str_starts_t *na_hashset):
cdef:
int error
Py_ssize_t lines
coliter_t it
uint64_t *data
ndarray result
uint_state state
lines = line_end - line_start
result = np.empty(lines, dtype=np.uint64)
data = <uint64_t *>result.data
uint_state_init(&state)
coliter_setup(&it, parser, col, line_start)
with nogil:
error = _try_uint64_nogil(parser, col, line_start, line_end,
na_filter, na_hashset, data, &state)
if error != 0:
if error == ERROR_OVERFLOW:
# Can't get the word variable
raise OverflowError("Overflow")
return None
if uint64_conflict(&state):
raise ValueError("Cannot convert to numerical dtype")
if state.seen_sint:
raise OverflowError("Overflow")
return result
cdef int _try_uint64_nogil(parser_t *parser, int64_t col,
int64_t line_start,
int64_t line_end, bint na_filter,
const kh_str_starts_t *na_hashset,
uint64_t *data, uint_state *state) nogil:
cdef:
int error
Py_ssize_t i, lines = line_end - line_start
coliter_t it
const char *word = NULL
coliter_setup(&it, parser, col, line_start)
if na_filter:
for i in range(lines):
COLITER_NEXT(it, word)
if kh_get_str_starts_item(na_hashset, word):
# in the hash table
state.seen_null = 1
data[i] = 0
continue
data[i] = str_to_uint64(state, word, INT64_MAX, UINT64_MAX,
&error, parser.thousands)
if error != 0:
return error
else:
for i in range(lines):
COLITER_NEXT(it, word)
data[i] = str_to_uint64(state, word, INT64_MAX, UINT64_MAX,
&error, parser.thousands)
if error != 0:
return error
return 0
cdef _try_int64(parser_t *parser, int64_t col,
int64_t line_start, int64_t line_end,
bint na_filter, kh_str_starts_t *na_hashset):
cdef:
int error, na_count = 0
Py_ssize_t lines
coliter_t it
int64_t *data
ndarray result
int64_t NA = na_values[np.int64]
lines = line_end - line_start
result = np.empty(lines, dtype=np.int64)
data = <int64_t *>result.data
coliter_setup(&it, parser, col, line_start)
with nogil:
error = _try_int64_nogil(parser, col, line_start, line_end,
na_filter, na_hashset, NA, data, &na_count)
if error != 0:
if error == ERROR_OVERFLOW:
# Can't get the word variable
raise OverflowError("Overflow")
return None, None
return result, na_count
cdef int _try_int64_nogil(parser_t *parser, int64_t col,
int64_t line_start,
int64_t line_end, bint na_filter,
const kh_str_starts_t *na_hashset, int64_t NA,
int64_t *data, int *na_count) nogil:
cdef:
int error
Py_ssize_t i, lines = line_end - line_start
coliter_t it
const char *word = NULL
na_count[0] = 0
coliter_setup(&it, parser, col, line_start)
if na_filter:
for i in range(lines):
COLITER_NEXT(it, word)
if kh_get_str_starts_item(na_hashset, word):
# in the hash table
na_count[0] += 1
data[i] = NA
continue
data[i] = str_to_int64(word, INT64_MIN, INT64_MAX,
&error, parser.thousands)
if error != 0:
return error
else:
for i in range(lines):
COLITER_NEXT(it, word)
data[i] = str_to_int64(word, INT64_MIN, INT64_MAX,
&error, parser.thousands)
if error != 0:
return error
return 0
# -> tuple[ndarray[bool], int]
cdef _try_bool_flex(parser_t *parser, int64_t col,
int64_t line_start, int64_t line_end,
bint na_filter, const kh_str_starts_t *na_hashset,
const kh_str_starts_t *true_hashset,
const kh_str_starts_t *false_hashset):
cdef:
int error, na_count = 0
Py_ssize_t lines
uint8_t *data
ndarray result
uint8_t NA = na_values[np.bool_]
lines = line_end - line_start
result = np.empty(lines, dtype=np.uint8)
data = <uint8_t *>result.data
with nogil:
error = _try_bool_flex_nogil(parser, col, line_start, line_end,
na_filter, na_hashset, true_hashset,
false_hashset, NA, data, &na_count)
if error != 0:
return None, None
return result.view(np.bool_), na_count
cdef int _try_bool_flex_nogil(parser_t *parser, int64_t col,
int64_t line_start,
int64_t line_end, bint na_filter,
const kh_str_starts_t *na_hashset,
const kh_str_starts_t *true_hashset,
const kh_str_starts_t *false_hashset,
uint8_t NA, uint8_t *data,
int *na_count) nogil:
cdef:
int error = 0
Py_ssize_t i, lines = line_end - line_start
coliter_t it
const char *word = NULL
na_count[0] = 0
coliter_setup(&it, parser, col, line_start)
if na_filter:
for i in range(lines):
COLITER_NEXT(it, word)
if kh_get_str_starts_item(na_hashset, word):
# in the hash table
na_count[0] += 1
data[0] = NA
data += 1
continue
if kh_get_str_starts_item(true_hashset, word):
data[0] = 1
data += 1
continue
if kh_get_str_starts_item(false_hashset, word):
data[0] = 0
data += 1
continue
error = to_boolean(word, data)
if error != 0:
return error
data += 1
else:
for i in range(lines):
COLITER_NEXT(it, word)
if kh_get_str_starts_item(true_hashset, word):
data[0] = 1
data += 1
continue
if kh_get_str_starts_item(false_hashset, word):
data[0] = 0
data += 1
continue
error = to_boolean(word, data)
if error != 0:
return error
data += 1
return 0
cdef kh_str_starts_t* kset_from_list(list values) except NULL:
# caller takes responsibility for freeing the hash table
cdef:
Py_ssize_t i
kh_str_starts_t *table
int ret = 0
object val
table = kh_init_str_starts()
for i in range(len(values)):
val = values[i]
# None creeps in sometimes, which isn't possible here
if not isinstance(val, bytes):
kh_destroy_str_starts(table)
raise ValueError("Must be all encoded bytes")
kh_put_str_starts_item(table, PyBytes_AsString(val), &ret)
if table.table.n_buckets <= 128:
# Resize the hash table to make it almost empty, this
# reduces amount of hash collisions on lookup thus
# "key not in table" case is faster.
# Note that this trades table memory footprint for lookup speed.
kh_resize_str_starts(table, table.table.n_buckets * 8)
return table
cdef kh_float64_t* kset_float64_from_list(values) except NULL:
# caller takes responsibility for freeing the hash table
cdef:
kh_float64_t *table
int ret = 0
float64_t val
object value
table = kh_init_float64()
for value in values:
val = float(value)
kh_put_float64(table, val, &ret)
if table.n_buckets <= 128:
# See reasoning in kset_from_list
kh_resize_float64(table, table.n_buckets * 8)
return table
cdef raise_parser_error(object base, parser_t *parser):
cdef:
object old_exc
object exc_type
PyObject *type
PyObject *value
PyObject *traceback
if PyErr_Occurred():
PyErr_Fetch(&type, &value, &traceback)
Py_XDECREF(traceback)
if value != NULL:
old_exc = <object>value
Py_XDECREF(value)
# PyErr_Fetch only returned the error message in *value,
# so the Exception class must be extracted from *type.
if isinstance(old_exc, str):
if type != NULL:
exc_type = <object>type
else:
exc_type = ParserError
Py_XDECREF(type)
raise exc_type(old_exc)
else:
Py_XDECREF(type)
raise old_exc
message = f"{base}. C error: "
if parser.error_msg != NULL:
message += parser.error_msg.decode("utf-8")
else:
message += "no error message set"
raise ParserError(message)
# ----------------------------------------------------------------------
# NA values
def _compute_na_values():
int64info = np.iinfo(np.int64)
int32info = np.iinfo(np.int32)
int16info = np.iinfo(np.int16)
int8info = np.iinfo(np.int8)
uint64info = np.iinfo(np.uint64)
uint32info = np.iinfo(np.uint32)
uint16info = np.iinfo(np.uint16)
uint8info = np.iinfo(np.uint8)
na_values = {
np.float32: np.nan,
np.float64: np.nan,
np.int64: int64info.min,
np.int32: int32info.min,
np.int16: int16info.min,
np.int8: int8info.min,
np.uint64: uint64info.max,
np.uint32: uint32info.max,
np.uint16: uint16info.max,
np.uint8: uint8info.max,
np.bool_: uint8info.max,
np.object_: np.nan,
}
return na_values
na_values = _compute_na_values()
for k in list(na_values):
na_values[np.dtype(k)] = na_values[k]
# -> ArrayLike
cdef _apply_converter(object f, parser_t *parser, int64_t col,
int64_t line_start, int64_t line_end):
cdef:
Py_ssize_t i, lines
coliter_t it
const char *word = NULL
ndarray[object] result
object val
lines = line_end - line_start
result = np.empty(lines, dtype=np.object_)
coliter_setup(&it, parser, col, line_start)
for i in range(lines):
COLITER_NEXT(it, word)
val = PyUnicode_FromString(word)
result[i] = f(val)
return lib.maybe_convert_objects(result)
cdef list _maybe_encode(list values):
if values is None:
return []
return [x.encode("utf-8") if isinstance(x, str) else x for x in values]
def sanitize_objects(ndarray[object] values, set na_values) -> int:
"""
Convert specified values, including the given set na_values to np.nan.
Parameters
----------
values : ndarray[object]
na_values : set
Returns
-------
na_count : int
"""
cdef:
Py_ssize_t i, n
object val, onan
Py_ssize_t na_count = 0
dict memo = {}
n = len(values)
onan = np.nan
for i in range(n):
val = values[i]
if val in na_values:
values[i] = onan
na_count += 1
elif val in memo:
values[i] = memo[val]
else:
memo[val] = val
return na_count