Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2888 lines
87 KiB

import re
cimport numpy as cnp
from cpython.object cimport (
Py_EQ,
Py_NE,
PyObject,
PyObject_RichCompare,
PyObject_RichCompareBool,
)
from numpy cimport (
int32_t,
int64_t,
ndarray,
)
import numpy as np
cnp.import_array()
cimport cython
from cpython.datetime cimport (
PyDate_Check,
PyDateTime_Check,
datetime,
import_datetime,
)
from libc.stdlib cimport (
free,
malloc,
)
from libc.string cimport (
memset,
strlen,
)
from libc.time cimport (
strftime,
tm,
)
# import datetime C API
import_datetime()
cimport pandas._libs.tslibs.util as util
from pandas._libs.missing cimport C_NA
from pandas._libs.tslibs.np_datetime cimport (
NPY_DATETIMEUNIT,
NPY_FR_D,
astype_overflowsafe,
check_dts_bounds,
get_timedelta64_value,
import_pandas_datetime,
npy_datetimestruct,
npy_datetimestruct_to_datetime,
pandas_datetime_to_datetimestruct,
)
import_pandas_datetime()
from pandas._libs.tslibs.timestamps import Timestamp
from pandas._libs.tslibs.ccalendar cimport (
dayofweek,
get_day_of_year,
get_days_in_month,
get_week_of_year,
is_leapyear,
)
from pandas._libs.tslibs.timedeltas cimport (
delta_to_nanoseconds,
is_any_td_scalar,
)
from pandas._libs.tslibs.conversion import DT64NS_DTYPE
from pandas._libs.tslibs.dtypes cimport (
FR_ANN,
FR_BUS,
FR_DAY,
FR_HR,
FR_MIN,
FR_MS,
FR_MTH,
FR_NS,
FR_QTR,
FR_SEC,
FR_UND,
FR_US,
FR_WK,
PeriodDtypeBase,
attrname_to_abbrevs,
freq_group_code_to_npy_unit,
)
from pandas._libs.tslibs.parsing cimport quarter_to_myear
from pandas._libs.tslibs.parsing import parse_datetime_string_with_reso
from pandas._libs.tslibs.nattype cimport (
NPY_NAT,
c_NaT as NaT,
c_nat_strings as nat_strings,
checknull_with_nat,
)
from pandas._libs.tslibs.offsets cimport (
BaseOffset,
is_offset_object,
to_offset,
)
from pandas._libs.tslibs.offsets import (
INVALID_FREQ_ERR_MSG,
BDay,
)
cdef:
enum:
INT32_MIN = -2_147_483_648LL
ctypedef struct asfreq_info:
int64_t intraday_conversion_factor
int is_end
int to_end
int from_end
ctypedef int64_t (*freq_conv_func)(int64_t, asfreq_info*) noexcept nogil
cdef extern from *:
"""
// must use npy typedef b/c int64_t is aliased in cython-generated c
// unclear why we need LL for that row.
// see https://github.com/pandas-dev/pandas/pull/34416/
static npy_int64 daytime_conversion_factor_matrix[7][7] = {
{1, 24, 1440, 86400, 86400000, 86400000000, 86400000000000},
{0LL, 1LL, 60LL, 3600LL, 3600000LL, 3600000000LL, 3600000000000LL},
{0, 0, 1, 60, 60000, 60000000, 60000000000},
{0, 0, 0, 1, 1000, 1000000, 1000000000},
{0, 0, 0, 0, 1, 1000, 1000000},
{0, 0, 0, 0, 0, 1, 1000},
{0, 0, 0, 0, 0, 0, 1}};
"""
int64_t daytime_conversion_factor_matrix[7][7]
cdef int max_value(int left, int right) noexcept nogil:
if left > right:
return left
return right
cdef int min_value(int left, int right) noexcept nogil:
if left < right:
return left
return right
cdef int64_t get_daytime_conversion_factor(int from_index, int to_index) noexcept nogil:
cdef:
int row = min_value(from_index, to_index)
int col = max_value(from_index, to_index)
# row or col < 6 means frequency strictly lower than Daily, which
# do not use daytime_conversion_factors
if row < 6:
return 0
elif col < 6:
return 0
return daytime_conversion_factor_matrix[row - 6][col - 6]
cdef int64_t nofunc(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return INT32_MIN
cdef int64_t no_op(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return ordinal
cdef freq_conv_func get_asfreq_func(int from_freq, int to_freq) noexcept nogil:
cdef:
int from_group = get_freq_group(from_freq)
int to_group = get_freq_group(to_freq)
if from_group == FR_UND:
from_group = FR_DAY
if from_group == FR_BUS:
if to_group == FR_ANN:
return <freq_conv_func>asfreq_BtoA
elif to_group == FR_QTR:
return <freq_conv_func>asfreq_BtoQ
elif to_group == FR_MTH:
return <freq_conv_func>asfreq_BtoM
elif to_group == FR_WK:
return <freq_conv_func>asfreq_BtoW
elif to_group == FR_BUS:
return <freq_conv_func>no_op
elif to_group in [FR_DAY, FR_HR, FR_MIN, FR_SEC, FR_MS, FR_US, FR_NS]:
return <freq_conv_func>asfreq_BtoDT
else:
return <freq_conv_func>nofunc
elif to_group == FR_BUS:
if from_group == FR_ANN:
return <freq_conv_func>asfreq_AtoB
elif from_group == FR_QTR:
return <freq_conv_func>asfreq_QtoB
elif from_group == FR_MTH:
return <freq_conv_func>asfreq_MtoB
elif from_group == FR_WK:
return <freq_conv_func>asfreq_WtoB
elif from_group in [FR_DAY, FR_HR, FR_MIN, FR_SEC, FR_MS, FR_US, FR_NS]:
return <freq_conv_func>asfreq_DTtoB
else:
return <freq_conv_func>nofunc
elif from_group == FR_ANN:
if to_group == FR_ANN:
return <freq_conv_func>asfreq_AtoA
elif to_group == FR_QTR:
return <freq_conv_func>asfreq_AtoQ
elif to_group == FR_MTH:
return <freq_conv_func>asfreq_AtoM
elif to_group == FR_WK:
return <freq_conv_func>asfreq_AtoW
elif to_group in [FR_DAY, FR_HR, FR_MIN, FR_SEC, FR_MS, FR_US, FR_NS]:
return <freq_conv_func>asfreq_AtoDT
else:
return <freq_conv_func>nofunc
elif from_group == FR_QTR:
if to_group == FR_ANN:
return <freq_conv_func>asfreq_QtoA
elif to_group == FR_QTR:
return <freq_conv_func>asfreq_QtoQ
elif to_group == FR_MTH:
return <freq_conv_func>asfreq_QtoM
elif to_group == FR_WK:
return <freq_conv_func>asfreq_QtoW
elif to_group in [FR_DAY, FR_HR, FR_MIN, FR_SEC, FR_MS, FR_US, FR_NS]:
return <freq_conv_func>asfreq_QtoDT
else:
return <freq_conv_func>nofunc
elif from_group == FR_MTH:
if to_group == FR_ANN:
return <freq_conv_func>asfreq_MtoA
elif to_group == FR_QTR:
return <freq_conv_func>asfreq_MtoQ
elif to_group == FR_MTH:
return <freq_conv_func>no_op
elif to_group == FR_WK:
return <freq_conv_func>asfreq_MtoW
elif to_group in [FR_DAY, FR_HR, FR_MIN, FR_SEC, FR_MS, FR_US, FR_NS]:
return <freq_conv_func>asfreq_MtoDT
else:
return <freq_conv_func>nofunc
elif from_group == FR_WK:
if to_group == FR_ANN:
return <freq_conv_func>asfreq_WtoA
elif to_group == FR_QTR:
return <freq_conv_func>asfreq_WtoQ
elif to_group == FR_MTH:
return <freq_conv_func>asfreq_WtoM
elif to_group == FR_WK:
return <freq_conv_func>asfreq_WtoW
elif to_group in [FR_DAY, FR_HR, FR_MIN, FR_SEC, FR_MS, FR_US, FR_NS]:
return <freq_conv_func>asfreq_WtoDT
else:
return <freq_conv_func>nofunc
elif from_group in [FR_DAY, FR_HR, FR_MIN, FR_SEC, FR_MS, FR_US, FR_NS]:
if to_group == FR_ANN:
return <freq_conv_func>asfreq_DTtoA
elif to_group == FR_QTR:
return <freq_conv_func>asfreq_DTtoQ
elif to_group == FR_MTH:
return <freq_conv_func>asfreq_DTtoM
elif to_group == FR_WK:
return <freq_conv_func>asfreq_DTtoW
elif to_group in [FR_DAY, FR_HR, FR_MIN, FR_SEC, FR_MS, FR_US, FR_NS]:
if from_group > to_group:
return <freq_conv_func>downsample_daytime
else:
return <freq_conv_func>upsample_daytime
else:
return <freq_conv_func>nofunc
else:
return <freq_conv_func>nofunc
# --------------------------------------------------------------------
# Frequency Conversion Helpers
cdef int64_t DtoB_weekday(int64_t unix_date) noexcept nogil:
return ((unix_date + 4) // 7) * 5 + ((unix_date + 4) % 7) - 4
cdef int64_t DtoB(npy_datetimestruct *dts, int roll_back,
int64_t unix_date) noexcept nogil:
# calculate the current week (counting from 1970-01-01) treating
# sunday as last day of a week
cdef:
int day_of_week = dayofweek(dts.year, dts.month, dts.day)
if roll_back == 1:
if day_of_week > 4:
# change to friday before weekend
unix_date -= (day_of_week - 4)
else:
if day_of_week > 4:
# change to Monday after weekend
unix_date += (7 - day_of_week)
return DtoB_weekday(unix_date)
cdef int64_t upsample_daytime(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
if af_info.is_end:
return (ordinal + 1) * af_info.intraday_conversion_factor - 1
else:
return ordinal * af_info.intraday_conversion_factor
cdef int64_t downsample_daytime(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return ordinal // af_info.intraday_conversion_factor
cdef int64_t transform_via_day(int64_t ordinal,
asfreq_info *af_info,
freq_conv_func first_func,
freq_conv_func second_func) noexcept nogil:
cdef:
int64_t result
result = first_func(ordinal, af_info)
result = second_func(result, af_info)
return result
# --------------------------------------------------------------------
# Conversion _to_ Daily Freq
cdef int64_t asfreq_AtoDT(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
cdef:
int64_t unix_date
npy_datetimestruct dts
ordinal += af_info.is_end
dts.year = ordinal + 1970
dts.month = 1
adjust_dts_for_month(&dts, af_info.from_end)
unix_date = unix_date_from_ymd(dts.year, dts.month, 1)
unix_date -= af_info.is_end
return upsample_daytime(unix_date, af_info)
cdef int64_t asfreq_QtoDT(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
cdef:
int64_t unix_date
npy_datetimestruct dts
ordinal += af_info.is_end
dts.year = ordinal // 4 + 1970
dts.month = (ordinal % 4) * 3 + 1
adjust_dts_for_month(&dts, af_info.from_end)
unix_date = unix_date_from_ymd(dts.year, dts.month, 1)
unix_date -= af_info.is_end
return upsample_daytime(unix_date, af_info)
cdef int64_t asfreq_MtoDT(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
cdef:
int64_t unix_date
int year, month
ordinal += af_info.is_end
year = ordinal // 12 + 1970
month = ordinal % 12 + 1
unix_date = unix_date_from_ymd(year, month, 1)
unix_date -= af_info.is_end
return upsample_daytime(unix_date, af_info)
cdef int64_t asfreq_WtoDT(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
ordinal = (ordinal * 7 + af_info.from_end - 4 +
(7 - 1) * (af_info.is_end - 1))
return upsample_daytime(ordinal, af_info)
# --------------------------------------------------------------------
# Conversion _to_ BusinessDay Freq
cdef int64_t asfreq_AtoB(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
cdef:
int roll_back
npy_datetimestruct dts
int64_t unix_date = asfreq_AtoDT(ordinal, af_info)
pandas_datetime_to_datetimestruct(unix_date, NPY_FR_D, &dts)
roll_back = af_info.is_end
return DtoB(&dts, roll_back, unix_date)
cdef int64_t asfreq_QtoB(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
cdef:
int roll_back
npy_datetimestruct dts
int64_t unix_date = asfreq_QtoDT(ordinal, af_info)
pandas_datetime_to_datetimestruct(unix_date, NPY_FR_D, &dts)
roll_back = af_info.is_end
return DtoB(&dts, roll_back, unix_date)
cdef int64_t asfreq_MtoB(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
cdef:
int roll_back
npy_datetimestruct dts
int64_t unix_date = asfreq_MtoDT(ordinal, af_info)
pandas_datetime_to_datetimestruct(unix_date, NPY_FR_D, &dts)
roll_back = af_info.is_end
return DtoB(&dts, roll_back, unix_date)
cdef int64_t asfreq_WtoB(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
cdef:
int roll_back
npy_datetimestruct dts
int64_t unix_date = asfreq_WtoDT(ordinal, af_info)
pandas_datetime_to_datetimestruct(unix_date, NPY_FR_D, &dts)
roll_back = af_info.is_end
return DtoB(&dts, roll_back, unix_date)
cdef int64_t asfreq_DTtoB(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
cdef:
int roll_back
npy_datetimestruct dts
int64_t unix_date = downsample_daytime(ordinal, af_info)
pandas_datetime_to_datetimestruct(unix_date, NPY_FR_D, &dts)
# This usage defines roll_back the opposite way from the others
roll_back = 1 - af_info.is_end
return DtoB(&dts, roll_back, unix_date)
# ----------------------------------------------------------------------
# Conversion _from_ Daily Freq
cdef int64_t asfreq_DTtoA(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
cdef:
npy_datetimestruct dts
ordinal = downsample_daytime(ordinal, af_info)
pandas_datetime_to_datetimestruct(ordinal, NPY_FR_D, &dts)
return dts_to_year_ordinal(&dts, af_info.to_end)
cdef int DtoQ_yq(int64_t ordinal, asfreq_info *af_info,
npy_datetimestruct* dts) noexcept nogil:
cdef:
int quarter
pandas_datetime_to_datetimestruct(ordinal, NPY_FR_D, dts)
adjust_dts_for_qtr(dts, af_info.to_end)
quarter = month_to_quarter(dts.month)
return quarter
cdef int64_t asfreq_DTtoQ(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
cdef:
int quarter
npy_datetimestruct dts
ordinal = downsample_daytime(ordinal, af_info)
quarter = DtoQ_yq(ordinal, af_info, &dts)
return <int64_t>((dts.year - 1970) * 4 + quarter - 1)
cdef int64_t asfreq_DTtoM(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
cdef:
npy_datetimestruct dts
ordinal = downsample_daytime(ordinal, af_info)
pandas_datetime_to_datetimestruct(ordinal, NPY_FR_D, &dts)
return dts_to_month_ordinal(&dts)
cdef int64_t asfreq_DTtoW(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
ordinal = downsample_daytime(ordinal, af_info)
return unix_date_to_week(ordinal, af_info.to_end)
cdef int64_t unix_date_to_week(int64_t unix_date, int to_end) noexcept nogil:
return (unix_date + 3 - to_end) // 7 + 1
# --------------------------------------------------------------------
# Conversion _from_ BusinessDay Freq
cdef int64_t asfreq_BtoDT(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
ordinal = ((ordinal + 3) // 5) * 7 + (ordinal + 3) % 5 - 3
return upsample_daytime(ordinal, af_info)
cdef int64_t asfreq_BtoA(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_BtoDT,
<freq_conv_func>asfreq_DTtoA)
cdef int64_t asfreq_BtoQ(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_BtoDT,
<freq_conv_func>asfreq_DTtoQ)
cdef int64_t asfreq_BtoM(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_BtoDT,
<freq_conv_func>asfreq_DTtoM)
cdef int64_t asfreq_BtoW(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_BtoDT,
<freq_conv_func>asfreq_DTtoW)
# ----------------------------------------------------------------------
# Conversion _from_ Annual Freq
cdef int64_t asfreq_AtoA(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_AtoDT,
<freq_conv_func>asfreq_DTtoA)
cdef int64_t asfreq_AtoQ(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_AtoDT,
<freq_conv_func>asfreq_DTtoQ)
cdef int64_t asfreq_AtoM(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_AtoDT,
<freq_conv_func>asfreq_DTtoM)
cdef int64_t asfreq_AtoW(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_AtoDT,
<freq_conv_func>asfreq_DTtoW)
# ----------------------------------------------------------------------
# Conversion _from_ Quarterly Freq
cdef int64_t asfreq_QtoQ(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_QtoDT,
<freq_conv_func>asfreq_DTtoQ)
cdef int64_t asfreq_QtoA(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_QtoDT,
<freq_conv_func>asfreq_DTtoA)
cdef int64_t asfreq_QtoM(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_QtoDT,
<freq_conv_func>asfreq_DTtoM)
cdef int64_t asfreq_QtoW(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_QtoDT,
<freq_conv_func>asfreq_DTtoW)
# ----------------------------------------------------------------------
# Conversion _from_ Monthly Freq
cdef int64_t asfreq_MtoA(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_MtoDT,
<freq_conv_func>asfreq_DTtoA)
cdef int64_t asfreq_MtoQ(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_MtoDT,
<freq_conv_func>asfreq_DTtoQ)
cdef int64_t asfreq_MtoW(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_MtoDT,
<freq_conv_func>asfreq_DTtoW)
# ----------------------------------------------------------------------
# Conversion _from_ Weekly Freq
cdef int64_t asfreq_WtoA(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_WtoDT,
<freq_conv_func>asfreq_DTtoA)
cdef int64_t asfreq_WtoQ(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_WtoDT,
<freq_conv_func>asfreq_DTtoQ)
cdef int64_t asfreq_WtoM(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_WtoDT,
<freq_conv_func>asfreq_DTtoM)
cdef int64_t asfreq_WtoW(int64_t ordinal, asfreq_info *af_info) noexcept nogil:
return transform_via_day(ordinal, af_info,
<freq_conv_func>asfreq_WtoDT,
<freq_conv_func>asfreq_DTtoW)
# ----------------------------------------------------------------------
@cython.cdivision
cdef char* c_strftime(npy_datetimestruct *dts, char *fmt):
"""
Generate a nice string representation of the period
object, originally from DateObject_strftime
Parameters
----------
dts : npy_datetimestruct*
fmt : char*
Returns
-------
result : char*
"""
cdef:
tm c_date
char *result
int result_len = strlen(fmt) + 50
c_date.tm_sec = dts.sec
c_date.tm_min = dts.min
c_date.tm_hour = dts.hour
c_date.tm_mday = dts.day
c_date.tm_mon = dts.month - 1
c_date.tm_year = dts.year - 1900
c_date.tm_wday = (dayofweek(dts.year, dts.month, dts.day) + 1) % 7
c_date.tm_yday = get_day_of_year(dts.year, dts.month, dts.day) - 1
c_date.tm_isdst = -1
result = <char*>malloc(result_len * sizeof(char))
strftime(result, result_len, fmt, &c_date)
return result
# ----------------------------------------------------------------------
# Conversion between date_info and npy_datetimestruct
cdef int get_freq_group(int freq) noexcept nogil:
# See also FreqGroup.get_freq_group
return (freq // 1000) * 1000
cdef int get_freq_group_index(int freq) noexcept nogil:
return freq // 1000
cdef void adjust_dts_for_month(npy_datetimestruct* dts, int from_end) noexcept nogil:
if from_end != 12:
dts.month += from_end
if dts.month > 12:
dts.month -= 12
else:
dts.year -= 1
cdef void adjust_dts_for_qtr(npy_datetimestruct* dts, int to_end) noexcept nogil:
if to_end != 12:
dts.month -= to_end
if dts.month <= 0:
dts.month += 12
else:
dts.year += 1
# Find the unix_date (days elapsed since datetime(1970, 1, 1)
# for the given year/month/day.
# Assumes GREGORIAN_CALENDAR */
cdef int64_t unix_date_from_ymd(int year, int month, int day) noexcept nogil:
# Calculate the absolute date
cdef:
npy_datetimestruct dts
int64_t unix_date
memset(&dts, 0, sizeof(npy_datetimestruct))
dts.year = year
dts.month = month
dts.day = day
unix_date = npy_datetimestruct_to_datetime(NPY_FR_D, &dts)
return unix_date
cdef int64_t dts_to_month_ordinal(npy_datetimestruct* dts) noexcept nogil:
# AKA: use npy_datetimestruct_to_datetime(NPY_FR_M, &dts)
return <int64_t>((dts.year - 1970) * 12 + dts.month - 1)
cdef int64_t dts_to_year_ordinal(npy_datetimestruct *dts, int to_end) noexcept nogil:
cdef:
int64_t result
result = npy_datetimestruct_to_datetime(NPY_DATETIMEUNIT.NPY_FR_Y, dts)
if dts.month > to_end:
return result + 1
else:
return result
cdef int64_t dts_to_qtr_ordinal(npy_datetimestruct* dts, int to_end) noexcept nogil:
cdef:
int quarter
adjust_dts_for_qtr(dts, to_end)
quarter = month_to_quarter(dts.month)
return <int64_t>((dts.year - 1970) * 4 + quarter - 1)
cdef int get_anchor_month(int freq, int freq_group) noexcept nogil:
cdef:
int fmonth
fmonth = freq - freq_group
if fmonth == 0:
fmonth = 12
return fmonth
# specifically _dont_ use cdvision or else ordinals near -1 are assigned to
# incorrect dates GH#19643
@cython.cdivision(False)
cdef int64_t get_period_ordinal(npy_datetimestruct *dts, int freq) noexcept nogil:
"""
Generate an ordinal in period space
Parameters
----------
dts : npy_datetimestruct*
freq : int
Returns
-------
period_ordinal : int64_t
"""
cdef:
int64_t unix_date
int freq_group, fmonth
NPY_DATETIMEUNIT unit
freq_group = get_freq_group(freq)
if freq_group == FR_ANN:
fmonth = get_anchor_month(freq, freq_group)
return dts_to_year_ordinal(dts, fmonth)
elif freq_group == FR_QTR:
fmonth = get_anchor_month(freq, freq_group)
return dts_to_qtr_ordinal(dts, fmonth)
elif freq_group == FR_WK:
unix_date = npy_datetimestruct_to_datetime(NPY_FR_D, dts)
return unix_date_to_week(unix_date, freq - FR_WK)
elif freq == FR_BUS:
unix_date = npy_datetimestruct_to_datetime(NPY_FR_D, dts)
return DtoB(dts, 0, unix_date)
unit = freq_group_code_to_npy_unit(freq)
return npy_datetimestruct_to_datetime(unit, dts)
cdef void get_date_info(int64_t ordinal,
int freq, npy_datetimestruct *dts) noexcept nogil:
cdef:
int64_t unix_date, nanos
npy_datetimestruct dts2
unix_date = get_unix_date(ordinal, freq)
nanos = get_time_nanos(freq, unix_date, ordinal)
pandas_datetime_to_datetimestruct(unix_date, NPY_FR_D, dts)
pandas_datetime_to_datetimestruct(nanos, NPY_DATETIMEUNIT.NPY_FR_ns, &dts2)
dts.hour = dts2.hour
dts.min = dts2.min
dts.sec = dts2.sec
dts.us = dts2.us
dts.ps = dts2.ps
cdef int64_t get_unix_date(int64_t period_ordinal, int freq) noexcept nogil:
"""
Returns the proleptic Gregorian ordinal of the date, as an integer.
This corresponds to the number of days since Jan., 1st, 1970 AD.
When the instance has a frequency less than daily, the proleptic date
is calculated for the last day of the period.
Parameters
----------
period_ordinal : int64_t
freq : int
Returns
-------
unix_date : int64_t number of days since datetime(1970, 1, 1)
"""
cdef:
asfreq_info af_info
freq_conv_func toDaily = NULL
if freq == FR_DAY:
return period_ordinal
toDaily = get_asfreq_func(freq, FR_DAY)
get_asfreq_info(freq, FR_DAY, True, &af_info)
return toDaily(period_ordinal, &af_info)
@cython.cdivision
cdef int64_t get_time_nanos(int freq, int64_t unix_date,
int64_t ordinal) noexcept nogil:
"""
Find the number of nanoseconds after midnight on the given unix_date
that the ordinal represents in the given frequency.
Parameters
----------
freq : int
unix_date : int64_t
ordinal : int64_t
Returns
-------
int64_t
"""
cdef:
int64_t sub, factor
int64_t nanos_in_day = 24 * 3600 * 10**9
freq = get_freq_group(freq)
if freq <= FR_DAY:
return 0
elif freq == FR_NS:
factor = 1
elif freq == FR_US:
factor = 10**3
elif freq == FR_MS:
factor = 10**6
elif freq == FR_SEC:
factor = 10 **9
elif freq == FR_MIN:
factor = 10**9 * 60
else:
# We must have freq == FR_HR
factor = 10**9 * 3600
sub = ordinal - unix_date * (nanos_in_day / factor)
return sub * factor
cdef int get_yq(int64_t ordinal, int freq, npy_datetimestruct* dts):
"""
Find the year and quarter of a Period with the given ordinal and frequency
Parameters
----------
ordinal : int64_t
freq : int
dts : *npy_datetimestruct
Returns
-------
quarter : int
describes the implied quarterly frequency associated with `freq`
Notes
-----
Sets dts.year in-place.
"""
cdef:
asfreq_info af_info
int qtr_freq
int64_t unix_date
int quarter
unix_date = get_unix_date(ordinal, freq)
if get_freq_group(freq) == FR_QTR:
qtr_freq = freq
else:
qtr_freq = FR_QTR
get_asfreq_info(FR_DAY, qtr_freq, True, &af_info)
quarter = DtoQ_yq(unix_date, &af_info, dts)
return quarter
cdef int month_to_quarter(int month) noexcept nogil:
return (month - 1) // 3 + 1
# ----------------------------------------------------------------------
# Period logic
@cython.wraparound(False)
@cython.boundscheck(False)
def periodarr_to_dt64arr(const int64_t[:] periodarr, int freq):
"""
Convert array to datetime64 values from a set of ordinals corresponding to
periods per period convention.
"""
cdef:
int64_t[::1] out
Py_ssize_t i, N
if freq < 6000: # i.e. FR_DAY, hard-code to avoid need to cast
N = len(periodarr)
out = np.empty(N, dtype="i8")
# We get here with freqs that do not correspond to a datetime64 unit
for i in range(N):
out[i] = period_ordinal_to_dt64(periodarr[i], freq)
return out.base # .base to access underlying np.ndarray
else:
# Short-circuit for performance
if freq == FR_NS:
# TODO: copy?
return periodarr.base
if freq == FR_US:
dta = periodarr.base.view("M8[us]")
elif freq == FR_MS:
dta = periodarr.base.view("M8[ms]")
elif freq == FR_SEC:
dta = periodarr.base.view("M8[s]")
elif freq == FR_MIN:
dta = periodarr.base.view("M8[m]")
elif freq == FR_HR:
dta = periodarr.base.view("M8[h]")
elif freq == FR_DAY:
dta = periodarr.base.view("M8[D]")
return astype_overflowsafe(dta, dtype=DT64NS_DTYPE)
cdef void get_asfreq_info(int from_freq, int to_freq,
bint is_end, asfreq_info *af_info) noexcept nogil:
"""
Construct the `asfreq_info` object used to convert an ordinal from
`from_freq` to `to_freq`.
Parameters
----------
from_freq : int
to_freq int
is_end : bool
af_info : *asfreq_info
"""
cdef:
int from_group = get_freq_group(from_freq)
int to_group = get_freq_group(to_freq)
af_info.is_end = is_end
af_info.intraday_conversion_factor = get_daytime_conversion_factor(
get_freq_group_index(max_value(from_group, FR_DAY)),
get_freq_group_index(max_value(to_group, FR_DAY)))
if from_group == FR_WK:
af_info.from_end = calc_week_end(from_freq, from_group)
elif from_group == FR_ANN:
af_info.from_end = calc_a_year_end(from_freq, from_group)
elif from_group == FR_QTR:
af_info.from_end = calc_a_year_end(from_freq, from_group)
if to_group == FR_WK:
af_info.to_end = calc_week_end(to_freq, to_group)
elif to_group == FR_ANN:
af_info.to_end = calc_a_year_end(to_freq, to_group)
elif to_group == FR_QTR:
af_info.to_end = calc_a_year_end(to_freq, to_group)
@cython.cdivision
cdef int calc_a_year_end(int freq, int group) noexcept nogil:
cdef:
int result = (freq - group) % 12
if result == 0:
return 12
else:
return result
cdef int calc_week_end(int freq, int group) noexcept nogil:
return freq - group
cpdef int64_t period_asfreq(int64_t ordinal, int freq1, int freq2, bint end):
"""
Convert period ordinal from one frequency to another, and if upsampling,
choose to use start ('S') or end ('E') of period.
"""
cdef:
int64_t retval
_period_asfreq(&ordinal, &retval, 1, freq1, freq2, end)
return retval
@cython.wraparound(False)
@cython.boundscheck(False)
def period_asfreq_arr(ndarray[int64_t] arr, int freq1, int freq2, bint end):
"""
Convert int64-array of period ordinals from one frequency to another, and
if upsampling, choose to use start ('S') or end ('E') of period.
"""
cdef:
Py_ssize_t n = len(arr)
Py_ssize_t increment = arr.strides[0] // 8
ndarray[int64_t] result = cnp.PyArray_EMPTY(
arr.ndim, arr.shape, cnp.NPY_INT64, 0
)
_period_asfreq(
<int64_t*>cnp.PyArray_DATA(arr),
<int64_t*>cnp.PyArray_DATA(result),
n,
freq1,
freq2,
end,
increment,
)
return result
@cython.wraparound(False)
@cython.boundscheck(False)
cdef void _period_asfreq(
int64_t* ordinals,
int64_t* out,
Py_ssize_t length,
int freq1,
int freq2,
bint end,
Py_ssize_t increment=1,
) noexcept:
"""See period_asfreq.__doc__"""
cdef:
Py_ssize_t i
freq_conv_func func
asfreq_info af_info
int64_t val
if length == 1 and ordinals[0] == NPY_NAT:
# fastpath avoid calling get_asfreq_func
out[0] = NPY_NAT
return
func = get_asfreq_func(freq1, freq2)
get_asfreq_info(freq1, freq2, end, &af_info)
for i in range(length):
val = ordinals[i * increment]
if val != NPY_NAT:
val = func(val, &af_info)
out[i] = val
cpdef int64_t period_ordinal(int y, int m, int d, int h, int min,
int s, int us, int ps, int freq):
"""
Find the ordinal representation of the given datetime components at the
frequency `freq`.
Parameters
----------
y : int
m : int
d : int
h : int
min : int
s : int
us : int
ps : int
Returns
-------
ordinal : int64_t
"""
cdef:
npy_datetimestruct dts
dts.year = y
dts.month = m
dts.day = d
dts.hour = h
dts.min = min
dts.sec = s
dts.us = us
dts.ps = ps
return get_period_ordinal(&dts, freq)
cdef int64_t period_ordinal_to_dt64(int64_t ordinal, int freq) except? -1:
cdef:
npy_datetimestruct dts
if ordinal == NPY_NAT:
return NPY_NAT
get_date_info(ordinal, freq, &dts)
check_dts_bounds(&dts)
return npy_datetimestruct_to_datetime(NPY_DATETIMEUNIT.NPY_FR_ns, &dts)
cdef str period_format(int64_t value, int freq, object fmt=None):
cdef:
int freq_group, quarter
npy_datetimestruct dts
bint is_fmt_none
if value == NPY_NAT:
return "NaT"
# fill dts and freq group
get_date_info(value, freq, &dts)
freq_group = get_freq_group(freq)
# use the appropriate default format depending on frequency group
is_fmt_none = fmt is None
if freq_group == FR_ANN and (is_fmt_none or fmt == "%Y"):
return f"{dts.year}"
elif freq_group == FR_QTR and (is_fmt_none or fmt == "%FQ%q"):
# get quarter and modify dts.year to be the 'Fiscal' year
quarter = get_yq(value, freq, &dts)
return f"{dts.year}Q{quarter}"
elif freq_group == FR_MTH and (is_fmt_none or fmt == "%Y-%m"):
return f"{dts.year}-{dts.month:02d}"
elif freq_group == FR_WK and is_fmt_none:
# special: start_date/end_date. Recurse
left = period_asfreq(value, freq, FR_DAY, 0)
right = period_asfreq(value, freq, FR_DAY, 1)
return f"{period_format(left, FR_DAY)}/{period_format(right, FR_DAY)}"
elif (
(freq_group == FR_BUS or freq_group == FR_DAY)
and (is_fmt_none or fmt == "%Y-%m-%d")
):
return f"{dts.year}-{dts.month:02d}-{dts.day:02d}"
elif freq_group == FR_HR and (is_fmt_none or fmt == "%Y-%m-%d %H:00"):
return f"{dts.year}-{dts.month:02d}-{dts.day:02d} {dts.hour:02d}:00"
elif freq_group == FR_MIN and (is_fmt_none or fmt == "%Y-%m-%d %H:%M"):
return (f"{dts.year}-{dts.month:02d}-{dts.day:02d} "
f"{dts.hour:02d}:{dts.min:02d}")
elif freq_group == FR_SEC and (is_fmt_none or fmt == "%Y-%m-%d %H:%M:%S"):
return (f"{dts.year}-{dts.month:02d}-{dts.day:02d} "
f"{dts.hour:02d}:{dts.min:02d}:{dts.sec:02d}")
elif freq_group == FR_MS and (is_fmt_none or fmt == "%Y-%m-%d %H:%M:%S.%l"):
return (f"{dts.year}-{dts.month:02d}-{dts.day:02d} "
f"{dts.hour:02d}:{dts.min:02d}:{dts.sec:02d}"
f".{(dts.us // 1_000):03d}")
elif freq_group == FR_US and (is_fmt_none or fmt == "%Y-%m-%d %H:%M:%S.%u"):
return (f"{dts.year}-{dts.month:02d}-{dts.day:02d} "
f"{dts.hour:02d}:{dts.min:02d}:{dts.sec:02d}"
f".{(dts.us):06d}")
elif freq_group == FR_NS and (is_fmt_none or fmt == "%Y-%m-%d %H:%M:%S.%n"):
return (f"{dts.year}-{dts.month:02d}-{dts.day:02d} "
f"{dts.hour:02d}:{dts.min:02d}:{dts.sec:02d}"
f".{((dts.us * 1000) + (dts.ps // 1000)):09d}")
elif is_fmt_none:
# `freq_group` is invalid, raise
raise ValueError(f"Unknown freq: {freq}")
else:
# A custom format is requested
if isinstance(fmt, str):
# Encode using current locale, in case fmt contains non-utf8 chars
fmt = <bytes>util.string_encode_locale(fmt)
return _period_strftime(value, freq, fmt, dts)
cdef list extra_fmts = [(b"%q", b"^`AB`^"),
(b"%f", b"^`CD`^"),
(b"%F", b"^`EF`^"),
(b"%l", b"^`GH`^"),
(b"%u", b"^`IJ`^"),
(b"%n", b"^`KL`^")]
cdef list str_extra_fmts = ["^`AB`^", "^`CD`^", "^`EF`^",
"^`GH`^", "^`IJ`^", "^`KL`^"]
cdef str _period_strftime(int64_t value, int freq, bytes fmt, npy_datetimestruct dts):
cdef:
Py_ssize_t i
char *formatted
bytes pat, brepl
list found_pat = [False] * len(extra_fmts)
int quarter
int32_t us, ps
str result, repl
# Find our additional directives in the pattern and replace them with
# placeholders that are not processed by c_strftime
for i in range(len(extra_fmts)):
pat = extra_fmts[i][0]
brepl = extra_fmts[i][1]
if pat in fmt:
fmt = fmt.replace(pat, brepl)
found_pat[i] = True
# Execute c_strftime to process the usual datetime directives
formatted = c_strftime(&dts, <char*>fmt)
# Decode result according to current locale
result = util.char_to_string_locale(formatted)
free(formatted)
# Now we will fill the placeholders corresponding to our additional directives
# First prepare the contents
# Save these to local vars as dts can be modified by get_yq below
us = dts.us
ps = dts.ps
if any(found_pat[0:3]):
# Note: this modifies `dts` in-place so that year becomes fiscal year
# However it looses the us and ps
quarter = get_yq(value, freq, &dts)
else:
quarter = 0
# Now do the filling per se
for i in range(len(extra_fmts)):
if found_pat[i]:
if i == 0: # %q, 1-digit quarter.
repl = f"{quarter}"
elif i == 1: # %f, 2-digit 'Fiscal' year
repl = f"{(dts.year % 100):02d}"
elif i == 2: # %F, 'Fiscal' year with a century
repl = str(dts.year)
elif i == 3: # %l, milliseconds
repl = f"{(us // 1_000):03d}"
elif i == 4: # %u, microseconds
repl = f"{(us):06d}"
elif i == 5: # %n, nanoseconds
repl = f"{((us * 1000) + (ps // 1000)):09d}"
result = result.replace(str_extra_fmts[i], repl)
return result
def period_array_strftime(
ndarray values, int dtype_code, object na_rep, str date_format
):
"""
Vectorized Period.strftime used for PeriodArray._format_native_types.
Parameters
----------
values : ndarray[int64_t], ndim unrestricted
dtype_code : int
Corresponds to PeriodDtype._dtype_code
na_rep : any
date_format : str or None
"""
cdef:
Py_ssize_t i, n = values.size
int64_t ordinal
object item_repr
ndarray out = cnp.PyArray_EMPTY(
values.ndim, values.shape, cnp.NPY_OBJECT, 0
)
object[::1] out_flat = out.ravel()
cnp.broadcast mi = cnp.PyArray_MultiIterNew2(out, values)
for i in range(n):
# Analogous to: ordinal = values[i]
ordinal = (<int64_t*>cnp.PyArray_MultiIter_DATA(mi, 1))[0]
if ordinal == NPY_NAT:
item_repr = na_rep
else:
# This is equivalent to
# freq = frequency_corresponding_to_dtype_code(dtype_code)
# per = Period(ordinal, freq=freq)
# if date_format:
# item_repr = per.strftime(date_format)
# else:
# item_repr = str(per)
item_repr = period_format(ordinal, dtype_code, date_format)
# Analogous to: ordinals[i] = ordinal
out_flat[i] = item_repr
cnp.PyArray_MultiIter_NEXT(mi)
return out
# ----------------------------------------------------------------------
# period accessors
ctypedef int (*accessor)(int64_t ordinal, int freq) except INT32_MIN
cdef int pyear(int64_t ordinal, int freq):
cdef:
npy_datetimestruct dts
get_date_info(ordinal, freq, &dts)
return dts.year
cdef int pqyear(int64_t ordinal, int freq):
cdef:
npy_datetimestruct dts
get_yq(ordinal, freq, &dts)
return dts.year
cdef int pquarter(int64_t ordinal, int freq):
cdef:
int quarter
npy_datetimestruct dts
quarter = get_yq(ordinal, freq, &dts)
return quarter
cdef int pmonth(int64_t ordinal, int freq):
cdef:
npy_datetimestruct dts
get_date_info(ordinal, freq, &dts)
return dts.month
cdef int pday(int64_t ordinal, int freq):
cdef:
npy_datetimestruct dts
get_date_info(ordinal, freq, &dts)
return dts.day
cdef int pweekday(int64_t ordinal, int freq):
cdef:
npy_datetimestruct dts
get_date_info(ordinal, freq, &dts)
return dayofweek(dts.year, dts.month, dts.day)
cdef int pday_of_year(int64_t ordinal, int freq):
cdef:
npy_datetimestruct dts
get_date_info(ordinal, freq, &dts)
return get_day_of_year(dts.year, dts.month, dts.day)
cdef int pweek(int64_t ordinal, int freq):
cdef:
npy_datetimestruct dts
get_date_info(ordinal, freq, &dts)
return get_week_of_year(dts.year, dts.month, dts.day)
cdef int phour(int64_t ordinal, int freq):
cdef:
npy_datetimestruct dts
get_date_info(ordinal, freq, &dts)
return dts.hour
cdef int pminute(int64_t ordinal, int freq):
cdef:
npy_datetimestruct dts
get_date_info(ordinal, freq, &dts)
return dts.min
cdef int psecond(int64_t ordinal, int freq):
cdef:
npy_datetimestruct dts
get_date_info(ordinal, freq, &dts)
return <int>dts.sec
cdef int pdays_in_month(int64_t ordinal, int freq):
cdef:
npy_datetimestruct dts
get_date_info(ordinal, freq, &dts)
return get_days_in_month(dts.year, dts.month)
@cython.wraparound(False)
@cython.boundscheck(False)
def get_period_field_arr(str field, const int64_t[:] arr, int freq):
cdef:
Py_ssize_t i, sz
int64_t[::1] out
func = _get_accessor_func(field)
if func is NULL:
raise ValueError(f"Unrecognized field name: {field}")
sz = len(arr)
out = np.empty(sz, dtype=np.int64)
for i in range(sz):
if arr[i] == NPY_NAT:
out[i] = -1
continue
out[i] = func(arr[i], freq)
return out.base # .base to access underlying np.ndarray
cdef accessor _get_accessor_func(str field):
if field == "year":
return <accessor>pyear
elif field == "qyear":
return <accessor>pqyear
elif field == "quarter":
return <accessor>pquarter
elif field == "month":
return <accessor>pmonth
elif field == "day":
return <accessor>pday
elif field == "hour":
return <accessor>phour
elif field == "minute":
return <accessor>pminute
elif field == "second":
return <accessor>psecond
elif field == "week":
return <accessor>pweek
elif field == "day_of_year":
return <accessor>pday_of_year
elif field == "weekday" or field == "day_of_week":
return <accessor>pweekday
elif field == "days_in_month":
return <accessor>pdays_in_month
return NULL
@cython.wraparound(False)
@cython.boundscheck(False)
def from_ordinals(const int64_t[:] values, freq):
cdef:
Py_ssize_t i, n = len(values)
int64_t[::1] result = np.empty(len(values), dtype="i8")
int64_t val
freq = to_offset(freq)
if not isinstance(freq, BaseOffset):
raise ValueError("freq not specified and cannot be inferred")
for i in range(n):
val = values[i]
if val == NPY_NAT:
result[i] = NPY_NAT
else:
result[i] = Period(val, freq=freq).ordinal
return result.base
@cython.wraparound(False)
@cython.boundscheck(False)
def extract_ordinals(ndarray values, freq) -> np.ndarray:
# values is object-dtype, may be 2D
cdef:
Py_ssize_t i, n = values.size
int64_t ordinal
ndarray ordinals = cnp.PyArray_EMPTY(
values.ndim, values.shape, cnp.NPY_INT64, 0
)
cnp.broadcast mi = cnp.PyArray_MultiIterNew2(ordinals, values)
object p
if values.descr.type_num != cnp.NPY_OBJECT:
# if we don't raise here, we'll segfault later!
raise TypeError("extract_ordinals values must be object-dtype")
freqstr = Period._maybe_convert_freq(freq).freqstr
for i in range(n):
# Analogous to: p = values[i]
p = <object>(<PyObject**>cnp.PyArray_MultiIter_DATA(mi, 1))[0]
ordinal = _extract_ordinal(p, freqstr, freq)
# Analogous to: ordinals[i] = ordinal
(<int64_t*>cnp.PyArray_MultiIter_DATA(mi, 0))[0] = ordinal
cnp.PyArray_MultiIter_NEXT(mi)
return ordinals
cdef int64_t _extract_ordinal(object item, str freqstr, freq) except? -1:
"""
See extract_ordinals.
"""
cdef:
int64_t ordinal
if checknull_with_nat(item) or item is C_NA:
ordinal = NPY_NAT
elif util.is_integer_object(item):
if item == NPY_NAT:
ordinal = NPY_NAT
else:
raise TypeError(item)
else:
try:
ordinal = item.ordinal
if item.freqstr != freqstr:
msg = DIFFERENT_FREQ.format(cls="PeriodIndex",
own_freq=freqstr,
other_freq=item.freqstr)
raise IncompatibleFrequency(msg)
except AttributeError:
item = Period(item, freq=freq)
if item is NaT:
# input may contain NaT-like string
ordinal = NPY_NAT
else:
ordinal = item.ordinal
return ordinal
def extract_freq(ndarray[object] values) -> BaseOffset:
# TODO: Change type to const object[:] when Cython supports that.
cdef:
Py_ssize_t i, n = len(values)
object value
for i in range(n):
value = values[i]
if is_period_object(value):
return value.freq
raise ValueError("freq not specified and cannot be inferred")
# -----------------------------------------------------------------------
# period helpers
DIFFERENT_FREQ = ("Input has different freq={other_freq} "
"from {cls}(freq={own_freq})")
class IncompatibleFrequency(ValueError):
pass
cdef class PeriodMixin:
# Methods shared between Period and PeriodArray
@property
def start_time(self) -> Timestamp:
"""
Get the Timestamp for the start of the period.
Returns
-------
Timestamp
See Also
--------
Period.end_time : Return the end Timestamp.
Period.dayofyear : Return the day of year.
Period.daysinmonth : Return the days in that month.
Period.dayofweek : Return the day of the week.
Examples
--------
>>> period = pd.Period('2012-1-1', freq='D')
>>> period
Period('2012-01-01', 'D')
>>> period.start_time
Timestamp('2012-01-01 00:00:00')
>>> period.end_time
Timestamp('2012-01-01 23:59:59.999999999')
"""
return self.to_timestamp(how="start")
@property
def end_time(self) -> Timestamp:
"""
Get the Timestamp for the end of the period.
Returns
-------
Timestamp
See Also
--------
Period.start_time : Return the start Timestamp.
Period.dayofyear : Return the day of year.
Period.daysinmonth : Return the days in that month.
Period.dayofweek : Return the day of the week.
Examples
--------
For Period:
>>> pd.Period('2020-01', 'D').end_time
Timestamp('2020-01-01 23:59:59.999999999')
For Series:
>>> period_index = pd.period_range('2020-1-1 00:00', '2020-3-1 00:00', freq='M')
>>> s = pd.Series(period_index)
>>> s
0 2020-01
1 2020-02
2 2020-03
dtype: period[M]
>>> s.dt.end_time
0 2020-01-31 23:59:59.999999999
1 2020-02-29 23:59:59.999999999
2 2020-03-31 23:59:59.999999999
dtype: datetime64[ns]
For PeriodIndex:
>>> idx = pd.PeriodIndex(["2023-01", "2023-02", "2023-03"], freq="M")
>>> idx.end_time
DatetimeIndex(['2023-01-31 23:59:59.999999999',
'2023-02-28 23:59:59.999999999',
'2023-03-31 23:59:59.999999999'],
dtype='datetime64[ns]', freq=None)
"""
return self.to_timestamp(how="end")
def _require_matching_freq(self, other, base=False):
# See also arrays.period.raise_on_incompatible
if is_offset_object(other):
other_freq = other
else:
other_freq = other.freq
if base:
condition = self.freq.base != other_freq.base
else:
condition = self.freq != other_freq
if condition:
msg = DIFFERENT_FREQ.format(
cls=type(self).__name__,
own_freq=self.freqstr,
other_freq=other_freq.freqstr,
)
raise IncompatibleFrequency(msg)
cdef class _Period(PeriodMixin):
cdef readonly:
int64_t ordinal
PeriodDtypeBase _dtype
BaseOffset freq
# higher than np.ndarray, np.matrix, np.timedelta64
__array_priority__ = 100
dayofweek = _Period.day_of_week
dayofyear = _Period.day_of_year
def __cinit__(self, int64_t ordinal, BaseOffset freq):
self.ordinal = ordinal
self.freq = freq
# Note: this is more performant than PeriodDtype.from_date_offset(freq)
# because from_date_offset cannot be made a cdef method (until cython
# supported cdef classmethods)
self._dtype = PeriodDtypeBase(freq._period_dtype_code, freq.n)
@classmethod
def _maybe_convert_freq(cls, object freq) -> BaseOffset:
"""
Internally we allow integer and tuple representations (for now) that
are not recognized by to_offset, so we convert them here. Also, a
Period's freq attribute must have `freq.n > 0`, which we check for here.
Returns
-------
DateOffset
"""
if isinstance(freq, int):
# We already have a dtype code
dtype = PeriodDtypeBase(freq, 1)
freq = dtype._freqstr
elif isinstance(freq, PeriodDtypeBase):
freq = freq._freqstr
freq = to_offset(freq)
if freq.n <= 0:
raise ValueError("Frequency must be positive, because it "
f"represents span: {freq.freqstr}")
return freq
@classmethod
def _from_ordinal(cls, ordinal: int64_t, freq) -> "Period":
"""
Fast creation from an ordinal and freq that are already validated!
"""
if ordinal == NPY_NAT:
return NaT
else:
freq = cls._maybe_convert_freq(freq)
self = _Period.__new__(cls, ordinal, freq)
return self
def __richcmp__(self, other, op):
if is_period_object(other):
if other._dtype != self._dtype:
if op == Py_EQ:
return False
elif op == Py_NE:
return True
self._require_matching_freq(other)
return PyObject_RichCompareBool(self.ordinal, other.ordinal, op)
elif other is NaT:
return op == Py_NE
elif util.is_array(other):
# GH#44285
if cnp.PyArray_IsZeroDim(other):
return PyObject_RichCompare(self, other.item(), op)
else:
# in particular ndarray[object]; see test_pi_cmp_period
return np.array([PyObject_RichCompare(self, x, op) for x in other])
return NotImplemented
def __hash__(self):
return hash((self.ordinal, self.freqstr))
def _add_timedeltalike_scalar(self, other) -> "Period":
cdef:
int64_t inc
if not self._dtype._is_tick_like():
raise IncompatibleFrequency("Input cannot be converted to "
f"Period(freq={self.freqstr})")
if (
util.is_timedelta64_object(other) and
get_timedelta64_value(other) == NPY_NAT
):
# i.e. np.timedelta64("nat")
return NaT
try:
inc = delta_to_nanoseconds(other, reso=self._dtype._creso, round_ok=False)
except ValueError as err:
raise IncompatibleFrequency("Input cannot be converted to "
f"Period(freq={self.freqstr})") from err
# TODO: overflow-check here
ordinal = self.ordinal + inc
return Period(ordinal=ordinal, freq=self.freq)
def _add_offset(self, other) -> "Period":
# Non-Tick DateOffset other
cdef:
int64_t ordinal
self._require_matching_freq(other, base=True)
ordinal = self.ordinal + other.n
return Period(ordinal=ordinal, freq=self.freq)
def __add__(self, other):
if not is_period_object(self):
# cython semantics; this is analogous to a call to __radd__
# TODO(cython3): remove this
if self is NaT:
return NaT
return other.__add__(self)
if is_any_td_scalar(other):
return self._add_timedeltalike_scalar(other)
elif is_offset_object(other):
return self._add_offset(other)
elif other is NaT:
return NaT
elif util.is_integer_object(other):
ordinal = self.ordinal + other * self._dtype._n
return Period(ordinal=ordinal, freq=self.freq)
elif is_period_object(other):
# can't add datetime-like
# GH#17983; can't just return NotImplemented bc we get a RecursionError
# when called via np.add.reduce see TestNumpyReductions.test_add
# in npdev build
sname = type(self).__name__
oname = type(other).__name__
raise TypeError(f"unsupported operand type(s) for +: '{sname}' "
f"and '{oname}'")
elif util.is_array(other):
if other.dtype == object:
# GH#50162
return np.array([self + x for x in other], dtype=object)
return NotImplemented
def __radd__(self, other):
return self.__add__(other)
def __sub__(self, other):
if not is_period_object(self):
# cython semantics; this is like a call to __rsub__
# TODO(cython3): remove this
if self is NaT:
return NaT
return NotImplemented
elif (
is_any_td_scalar(other)
or is_offset_object(other)
or util.is_integer_object(other)
):
return self + (-other)
elif is_period_object(other):
self._require_matching_freq(other)
# GH 23915 - mul by base freq since __add__ is agnostic of n
return (self.ordinal - other.ordinal) * self.freq.base
elif other is NaT:
return NaT
elif util.is_array(other):
if other.dtype == object:
# GH#50162
return np.array([self - x for x in other], dtype=object)
return NotImplemented
def __rsub__(self, other):
if other is NaT:
return NaT
elif util.is_array(other):
if other.dtype == object:
# GH#50162
return np.array([x - self for x in other], dtype=object)
return NotImplemented
def asfreq(self, freq, how="E") -> "Period":
"""
Convert Period to desired frequency, at the start or end of the interval.
Parameters
----------
freq : str, BaseOffset
The desired frequency. If passing a `str`, it needs to be a
valid :ref:`period alias <timeseries.period_aliases>`.
how : {'E', 'S', 'end', 'start'}, default 'end'
Start or end of the timespan.
Returns
-------
resampled : Period
Examples
--------
>>> period = pd.Period('2023-1-1', freq='D')
>>> period.asfreq('H')
Period('2023-01-01 23:00', 'H')
"""
freq = self._maybe_convert_freq(freq)
how = validate_end_alias(how)
base1 = self._dtype._dtype_code
base2 = freq_to_dtype_code(freq)
# self.n can't be negative or 0
end = how == "E"
if end:
ordinal = self.ordinal + self._dtype._n - 1
else:
ordinal = self.ordinal
ordinal = period_asfreq(ordinal, base1, base2, end)
return Period(ordinal=ordinal, freq=freq)
def to_timestamp(self, freq=None, how="start") -> Timestamp:
"""
Return the Timestamp representation of the Period.
Uses the target frequency specified at the part of the period specified
by `how`, which is either `Start` or `Finish`.
Parameters
----------
freq : str or DateOffset
Target frequency. Default is 'D' if self.freq is week or
longer and 'S' otherwise.
how : str, default 'S' (start)
One of 'S', 'E'. Can be aliased as case insensitive
'Start', 'Finish', 'Begin', 'End'.
Returns
-------
Timestamp
Examples
--------
>>> period = pd.Period('2023-1-1', freq='D')
>>> timestamp = period.to_timestamp()
>>> timestamp
Timestamp('2023-01-01 00:00:00')
"""
how = validate_end_alias(how)
end = how == "E"
if end:
if freq == "B" or self.freq == "B":
# roll forward to ensure we land on B date
adjust = np.timedelta64(1, "D") - np.timedelta64(1, "ns")
return self.to_timestamp(how="start") + adjust
endpoint = (self + self.freq).to_timestamp(how="start")
return endpoint - np.timedelta64(1, "ns")
if freq is None:
freq = self._dtype._get_to_timestamp_base()
base = freq
else:
freq = self._maybe_convert_freq(freq)
base = freq._period_dtype_code
val = self.asfreq(freq, how)
dt64 = period_ordinal_to_dt64(val.ordinal, base)
return Timestamp(dt64)
@property
def year(self) -> int:
"""
Return the year this Period falls on.
Examples
--------
>>> period = pd.Period('2022-01', 'M')
>>> period.year
2022
"""
base = self._dtype._dtype_code
return pyear(self.ordinal, base)
@property
def month(self) -> int:
"""
Return the month this Period falls on.
Examples
--------
>>> period = pd.Period('2022-01', 'M')
>>> period.month
1
"""
base = self._dtype._dtype_code
return pmonth(self.ordinal, base)
@property
def day(self) -> int:
"""
Get day of the month that a Period falls on.
Returns
-------
int
See Also
--------
Period.dayofweek : Get the day of the week.
Period.dayofyear : Get the day of the year.
Examples
--------
>>> p = pd.Period("2018-03-11", freq='H')
>>> p.day
11
"""
base = self._dtype._dtype_code
return pday(self.ordinal, base)
@property
def hour(self) -> int:
"""
Get the hour of the day component of the Period.
Returns
-------
int
The hour as an integer, between 0 and 23.
See Also
--------
Period.second : Get the second component of the Period.
Period.minute : Get the minute component of the Period.
Examples
--------
>>> p = pd.Period("2018-03-11 13:03:12.050000")
>>> p.hour
13
Period longer than a day
>>> p = pd.Period("2018-03-11", freq="M")
>>> p.hour
0
"""
base = self._dtype._dtype_code
return phour(self.ordinal, base)
@property
def minute(self) -> int:
"""
Get minute of the hour component of the Period.
Returns
-------
int
The minute as an integer, between 0 and 59.
See Also
--------
Period.hour : Get the hour component of the Period.
Period.second : Get the second component of the Period.
Examples
--------
>>> p = pd.Period("2018-03-11 13:03:12.050000")
>>> p.minute
3
"""
base = self._dtype._dtype_code
return pminute(self.ordinal, base)
@property
def second(self) -> int:
"""
Get the second component of the Period.
Returns
-------
int
The second of the Period (ranges from 0 to 59).
See Also
--------
Period.hour : Get the hour component of the Period.
Period.minute : Get the minute component of the Period.
Examples
--------
>>> p = pd.Period("2018-03-11 13:03:12.050000")
>>> p.second
12
"""
base = self._dtype._dtype_code
return psecond(self.ordinal, base)
@property
def weekofyear(self) -> int:
"""
Get the week of the year on the given Period.
Returns
-------
int
See Also
--------
Period.dayofweek : Get the day component of the Period.
Period.weekday : Get the day component of the Period.
Examples
--------
>>> p = pd.Period("2018-03-11", "H")
>>> p.weekofyear
10
>>> p = pd.Period("2018-02-01", "D")
>>> p.weekofyear
5
>>> p = pd.Period("2018-01-06", "D")
>>> p.weekofyear
1
"""
base = self._dtype._dtype_code
return pweek(self.ordinal, base)
@property
def week(self) -> int:
"""
Get the week of the year on the given Period.
Returns
-------
int
See Also
--------
Period.dayofweek : Get the day component of the Period.
Period.weekday : Get the day component of the Period.
Examples
--------
>>> p = pd.Period("2018-03-11", "H")
>>> p.week
10
>>> p = pd.Period("2018-02-01", "D")
>>> p.week
5
>>> p = pd.Period("2018-01-06", "D")
>>> p.week
1
"""
return self.weekofyear
@property
def day_of_week(self) -> int:
"""
Day of the week the period lies in, with Monday=0 and Sunday=6.
If the period frequency is lower than daily (e.g. hourly), and the
period spans over multiple days, the day at the start of the period is
used.
If the frequency is higher than daily (e.g. monthly), the last day
of the period is used.
Returns
-------
int
Day of the week.
See Also
--------
Period.day_of_week : Day of the week the period lies in.
Period.weekday : Alias of Period.day_of_week.
Period.day : Day of the month.
Period.dayofyear : Day of the year.
Examples
--------
>>> per = pd.Period('2017-12-31 22:00', 'H')
>>> per.day_of_week
6
For periods that span over multiple days, the day at the beginning of
the period is returned.
>>> per = pd.Period('2017-12-31 22:00', '4H')
>>> per.day_of_week
6
>>> per.start_time.day_of_week
6
For periods with a frequency higher than days, the last day of the
period is returned.
>>> per = pd.Period('2018-01', 'M')
>>> per.day_of_week
2
>>> per.end_time.day_of_week
2
"""
base = self._dtype._dtype_code
return pweekday(self.ordinal, base)
@property
def weekday(self) -> int:
"""
Day of the week the period lies in, with Monday=0 and Sunday=6.
If the period frequency is lower than daily (e.g. hourly), and the
period spans over multiple days, the day at the start of the period is
used.
If the frequency is higher than daily (e.g. monthly), the last day
of the period is used.
Returns
-------
int
Day of the week.
See Also
--------
Period.dayofweek : Day of the week the period lies in.
Period.weekday : Alias of Period.dayofweek.
Period.day : Day of the month.
Period.dayofyear : Day of the year.
Examples
--------
>>> per = pd.Period('2017-12-31 22:00', 'H')
>>> per.dayofweek
6
For periods that span over multiple days, the day at the beginning of
the period is returned.
>>> per = pd.Period('2017-12-31 22:00', '4H')
>>> per.dayofweek
6
>>> per.start_time.dayofweek
6
For periods with a frequency higher than days, the last day of the
period is returned.
>>> per = pd.Period('2018-01', 'M')
>>> per.dayofweek
2
>>> per.end_time.dayofweek
2
"""
# Docstring is a duplicate from dayofweek. Reusing docstrings with
# Appender doesn't work for properties in Cython files, and setting
# the __doc__ attribute is also not possible.
return self.dayofweek
@property
def day_of_year(self) -> int:
"""
Return the day of the year.
This attribute returns the day of the year on which the particular
date occurs. The return value ranges between 1 to 365 for regular
years and 1 to 366 for leap years.
Returns
-------
int
The day of year.
See Also
--------
Period.day : Return the day of the month.
Period.day_of_week : Return the day of week.
PeriodIndex.day_of_year : Return the day of year of all indexes.
Examples
--------
>>> period = pd.Period("2015-10-23", freq='H')
>>> period.day_of_year
296
>>> period = pd.Period("2012-12-31", freq='D')
>>> period.day_of_year
366
>>> period = pd.Period("2013-01-01", freq='D')
>>> period.day_of_year
1
"""
base = self._dtype._dtype_code
return pday_of_year(self.ordinal, base)
@property
def quarter(self) -> int:
"""
Return the quarter this Period falls on.
Examples
--------
>>> period = pd.Period('2022-04', 'M')
>>> period.quarter
2
"""
base = self._dtype._dtype_code
return pquarter(self.ordinal, base)
@property
def qyear(self) -> int:
"""
Fiscal year the Period lies in according to its starting-quarter.
The `year` and the `qyear` of the period will be the same if the fiscal
and calendar years are the same. When they are not, the fiscal year
can be different from the calendar year of the period.
Returns
-------
int
The fiscal year of the period.
See Also
--------
Period.year : Return the calendar year of the period.
Examples
--------
If the natural and fiscal year are the same, `qyear` and `year` will
be the same.
>>> per = pd.Period('2018Q1', freq='Q')
>>> per.qyear
2018
>>> per.year
2018
If the fiscal year starts in April (`Q-MAR`), the first quarter of
2018 will start in April 2017. `year` will then be 2017, but `qyear`
will be the fiscal year, 2018.
>>> per = pd.Period('2018Q1', freq='Q-MAR')
>>> per.start_time
Timestamp('2017-04-01 00:00:00')
>>> per.qyear
2018
>>> per.year
2017
"""
base = self._dtype._dtype_code
return pqyear(self.ordinal, base)
@property
def days_in_month(self) -> int:
"""
Get the total number of days in the month that this period falls on.
Returns
-------
int
See Also
--------
Period.daysinmonth : Gets the number of days in the month.
DatetimeIndex.daysinmonth : Gets the number of days in the month.
calendar.monthrange : Returns a tuple containing weekday
(0-6 ~ Mon-Sun) and number of days (28-31).
Examples
--------
>>> p = pd.Period('2018-2-17')
>>> p.days_in_month
28
>>> pd.Period('2018-03-01').days_in_month
31
Handles the leap year case as well:
>>> p = pd.Period('2016-2-17')
>>> p.days_in_month
29
"""
base = self._dtype._dtype_code
return pdays_in_month(self.ordinal, base)
@property
def daysinmonth(self) -> int:
"""
Get the total number of days of the month that this period falls on.
Returns
-------
int
See Also
--------
Period.days_in_month : Return the days of the month.
Period.dayofyear : Return the day of the year.
Examples
--------
>>> p = pd.Period("2018-03-11", freq='H')
>>> p.daysinmonth
31
"""
return self.days_in_month
@property
def is_leap_year(self) -> bool:
"""
Return True if the period's year is in a leap year.
Examples
--------
>>> period = pd.Period('2022-01', 'M')
>>> period.is_leap_year
False
>>> period = pd.Period('2020-01', 'M')
>>> period.is_leap_year
True
"""
return bool(is_leapyear(self.year))
@classmethod
def now(cls, freq):
"""
Return the period of now's date.
Parameters
----------
freq : str, BaseOffset
Frequency to use for the returned period.
Examples
--------
>>> pd.Period.now('H') # doctest: +SKIP
Period('2023-06-12 11:00', 'H')
"""
return Period(datetime.now(), freq=freq)
@property
def freqstr(self) -> str:
"""
Return a string representation of the frequency.
Examples
--------
>>> pd.Period('2020-01', 'D').freqstr
'D'
"""
return self._dtype._freqstr
def __repr__(self) -> str:
base = self._dtype._dtype_code
formatted = period_format(self.ordinal, base)
return f"Period('{formatted}', '{self.freqstr}')"
def __str__(self) -> str:
"""
Return a string representation for a particular DataFrame
"""
base = self._dtype._dtype_code
formatted = period_format(self.ordinal, base)
value = str(formatted)
return value
def __setstate__(self, state):
self.freq = state[1]
self.ordinal = state[2]
def __reduce__(self):
object_state = None, self.freq, self.ordinal
return (Period, object_state)
def strftime(self, fmt: str) -> str:
r"""
Returns a formatted string representation of the :class:`Period`.
``fmt`` must be a string containing one or several directives.
The method recognizes the same directives as the :func:`time.strftime`
function of the standard Python distribution, as well as the specific
additional directives ``%f``, ``%F``, ``%q``, ``%l``, ``%u``, ``%n``.
(formatting & docs originally from scikits.timeries).
+-----------+--------------------------------+-------+
| Directive | Meaning | Notes |
+===========+================================+=======+
| ``%a`` | Locale's abbreviated weekday | |
| | name. | |
+-----------+--------------------------------+-------+
| ``%A`` | Locale's full weekday name. | |
+-----------+--------------------------------+-------+
| ``%b`` | Locale's abbreviated month | |
| | name. | |
+-----------+--------------------------------+-------+
| ``%B`` | Locale's full month name. | |
+-----------+--------------------------------+-------+
| ``%c`` | Locale's appropriate date and | |
| | time representation. | |
+-----------+--------------------------------+-------+
| ``%d`` | Day of the month as a decimal | |
| | number [01,31]. | |
+-----------+--------------------------------+-------+
| ``%f`` | 'Fiscal' year without a | \(1) |
| | century as a decimal number | |
| | [00,99] | |
+-----------+--------------------------------+-------+
| ``%F`` | 'Fiscal' year with a century | \(2) |
| | as a decimal number | |
+-----------+--------------------------------+-------+
| ``%H`` | Hour (24-hour clock) as a | |
| | decimal number [00,23]. | |
+-----------+--------------------------------+-------+
| ``%I`` | Hour (12-hour clock) as a | |
| | decimal number [01,12]. | |
+-----------+--------------------------------+-------+
| ``%j`` | Day of the year as a decimal | |
| | number [001,366]. | |
+-----------+--------------------------------+-------+
| ``%m`` | Month as a decimal number | |
| | [01,12]. | |
+-----------+--------------------------------+-------+
| ``%M`` | Minute as a decimal number | |
| | [00,59]. | |
+-----------+--------------------------------+-------+
| ``%p`` | Locale's equivalent of either | \(3) |
| | AM or PM. | |
+-----------+--------------------------------+-------+
| ``%q`` | Quarter as a decimal number | |
| | [1,4] | |
+-----------+--------------------------------+-------+
| ``%S`` | Second as a decimal number | \(4) |
| | [00,61]. | |
+-----------+--------------------------------+-------+
| ``%l`` | Millisecond as a decimal number| |
| | [000,999]. | |
+-----------+--------------------------------+-------+
| ``%u`` | Microsecond as a decimal number| |
| | [000000,999999]. | |
+-----------+--------------------------------+-------+
| ``%n`` | Nanosecond as a decimal number | |
| | [000000000,999999999]. | |
+-----------+--------------------------------+-------+
| ``%U`` | Week number of the year | \(5) |
| | (Sunday as the first day of | |
| | the week) as a decimal number | |
| | [00,53]. All days in a new | |
| | year preceding the first | |
| | Sunday are considered to be in | |
| | week 0. | |
+-----------+--------------------------------+-------+
| ``%w`` | Weekday as a decimal number | |
| | [0(Sunday),6]. | |
+-----------+--------------------------------+-------+
| ``%W`` | Week number of the year | \(5) |
| | (Monday as the first day of | |
| | the week) as a decimal number | |
| | [00,53]. All days in a new | |
| | year preceding the first | |
| | Monday are considered to be in | |
| | week 0. | |
+-----------+--------------------------------+-------+
| ``%x`` | Locale's appropriate date | |
| | representation. | |
+-----------+--------------------------------+-------+
| ``%X`` | Locale's appropriate time | |
| | representation. | |
+-----------+--------------------------------+-------+
| ``%y`` | Year without century as a | |
| | decimal number [00,99]. | |
+-----------+--------------------------------+-------+
| ``%Y`` | Year with century as a decimal | |
| | number. | |
+-----------+--------------------------------+-------+
| ``%Z`` | Time zone name (no characters | |
| | if no time zone exists). | |
+-----------+--------------------------------+-------+
| ``%%`` | A literal ``'%'`` character. | |
+-----------+--------------------------------+-------+
Notes
-----
(1)
The ``%f`` directive is the same as ``%y`` if the frequency is
not quarterly.
Otherwise, it corresponds to the 'fiscal' year, as defined by
the :attr:`qyear` attribute.
(2)
The ``%F`` directive is the same as ``%Y`` if the frequency is
not quarterly.
Otherwise, it corresponds to the 'fiscal' year, as defined by
the :attr:`qyear` attribute.
(3)
The ``%p`` directive only affects the output hour field
if the ``%I`` directive is used to parse the hour.
(4)
The range really is ``0`` to ``61``; this accounts for leap
seconds and the (very rare) double leap seconds.
(5)
The ``%U`` and ``%W`` directives are only used in calculations
when the day of the week and the year are specified.
Examples
--------
>>> from pandas import Period
>>> a = Period(freq='Q-JUL', year=2006, quarter=1)
>>> a.strftime('%F-Q%q')
'2006-Q1'
>>> # Output the last month in the quarter of this date
>>> a.strftime('%b-%Y')
'Oct-2005'
>>>
>>> a = Period(freq='D', year=2001, month=1, day=1)
>>> a.strftime('%d-%b-%Y')
'01-Jan-2001'
>>> a.strftime('%b. %d, %Y was a %A')
'Jan. 01, 2001 was a Monday'
"""
base = self._dtype._dtype_code
return period_format(self.ordinal, base, fmt)
class Period(_Period):
"""
Represents a period of time.
Parameters
----------
value : Period, str, datetime, date or pandas.Timestamp, default None
The time period represented (e.g., '4Q2005'). This represents neither
the start or the end of the period, but rather the entire period itself.
freq : str, default None
One of pandas period strings or corresponding objects. Accepted
strings are listed in the
:ref:`period alias section <timeseries.period_aliases>` in the user docs.
If value is datetime, freq is required.
ordinal : int, default None
The period offset from the proleptic Gregorian epoch.
year : int, default None
Year value of the period.
month : int, default 1
Month value of the period.
quarter : int, default None
Quarter value of the period.
day : int, default 1
Day value of the period.
hour : int, default 0
Hour value of the period.
minute : int, default 0
Minute value of the period.
second : int, default 0
Second value of the period.
Examples
--------
>>> period = pd.Period('2012-1-1', freq='D')
>>> period
Period('2012-01-01', 'D')
"""
def __new__(cls, value=None, freq=None, ordinal=None,
year=None, month=None, quarter=None, day=None,
hour=None, minute=None, second=None):
# freq points to a tuple (base, mult); base is one of the defined
# periods such as A, Q, etc. Every five minutes would be, e.g.,
# ('T', 5) but may be passed in as a string like '5T'
# ordinal is the period offset from the gregorian proleptic epoch
if freq is not None:
freq = cls._maybe_convert_freq(freq)
nanosecond = 0
if ordinal is not None and value is not None:
raise ValueError("Only value or ordinal but not both should be "
"given but not both")
elif ordinal is not None:
if not util.is_integer_object(ordinal):
raise ValueError("Ordinal must be an integer")
if freq is None:
raise ValueError("Must supply freq for ordinal value")
elif value is None:
if (year is None and month is None and
quarter is None and day is None and
hour is None and minute is None and second is None):
ordinal = NPY_NAT
else:
if freq is None:
raise ValueError("If value is None, freq cannot be None")
# set defaults
month = 1 if month is None else month
day = 1 if day is None else day
hour = 0 if hour is None else hour
minute = 0 if minute is None else minute
second = 0 if second is None else second
ordinal = _ordinal_from_fields(year, month, quarter, day,
hour, minute, second, freq)
elif is_period_object(value):
other = value
if freq is None or freq._period_dtype_code == other._dtype._dtype_code:
ordinal = other.ordinal
freq = other.freq
else:
converted = other.asfreq(freq)
ordinal = converted.ordinal
elif checknull_with_nat(value) or (isinstance(value, str) and
(value in nat_strings or len(value) == 0)):
# explicit str check is necessary to avoid raising incorrectly
# if we have a non-hashable value.
ordinal = NPY_NAT
elif isinstance(value, str) or util.is_integer_object(value):
if util.is_integer_object(value):
if value == NPY_NAT:
value = "NaT"
value = str(value)
value = value.upper()
freqstr = freq.rule_code if freq is not None else None
try:
dt, reso = parse_datetime_string_with_reso(value, freqstr)
except ValueError as err:
match = re.search(r"^\d{4}-\d{2}-\d{2}/\d{4}-\d{2}-\d{2}", value)
if match:
# Case that cannot be parsed (correctly) by our datetime
# parsing logic
dt, freq = _parse_weekly_str(value, freq)
else:
raise err
else:
if reso == "nanosecond":
nanosecond = dt.nanosecond
if dt is NaT:
ordinal = NPY_NAT
if freq is None and ordinal != NPY_NAT:
# Skip NaT, since it doesn't have a resolution
freq = attrname_to_abbrevs[reso]
freq = to_offset(freq)
elif PyDateTime_Check(value):
dt = value
if freq is None:
raise ValueError("Must supply freq for datetime value")
if isinstance(dt, Timestamp):
nanosecond = dt.nanosecond
elif util.is_datetime64_object(value):
dt = Timestamp(value)
if freq is None:
raise ValueError("Must supply freq for datetime value")
nanosecond = dt.nanosecond
elif PyDate_Check(value):
dt = datetime(year=value.year, month=value.month, day=value.day)
if freq is None:
raise ValueError("Must supply freq for datetime value")
else:
msg = "Value must be Period, string, integer, or datetime"
raise ValueError(msg)
if ordinal is None:
base = freq_to_dtype_code(freq)
ordinal = period_ordinal(dt.year, dt.month, dt.day,
dt.hour, dt.minute, dt.second,
dt.microsecond, 1000*nanosecond, base)
if isinstance(freq, BDay):
# GH#53446
import warnings
from pandas.util._exceptions import find_stack_level
warnings.warn(
"Period with BDay freq is deprecated and will be removed "
"in a future version. Use a DatetimeIndex with BDay freq instead.",
FutureWarning,
stacklevel=find_stack_level(),
)
return cls._from_ordinal(ordinal, freq)
cdef bint is_period_object(object obj):
return isinstance(obj, _Period)
cpdef int freq_to_dtype_code(BaseOffset freq) except? -1:
try:
return freq._period_dtype_code
except AttributeError as err:
raise ValueError(INVALID_FREQ_ERR_MSG.format(freq)) from err
cdef int64_t _ordinal_from_fields(int year, int month, quarter, int day,
int hour, int minute, int second,
BaseOffset freq):
base = freq_to_dtype_code(freq)
if quarter is not None:
year, month = quarter_to_myear(year, quarter, freq.freqstr)
return period_ordinal(year, month, day, hour,
minute, second, 0, 0, base)
def validate_end_alias(how: str) -> str: # Literal["E", "S"]
how_dict = {"S": "S", "E": "E",
"START": "S", "FINISH": "E",
"BEGIN": "S", "END": "E"}
how = how_dict.get(str(how).upper())
if how not in {"S", "E"}:
raise ValueError("How must be one of S or E")
return how
cdef _parse_weekly_str(value, BaseOffset freq):
"""
Parse e.g. "2017-01-23/2017-01-29", which cannot be parsed by the general
datetime-parsing logic. This ensures that we can round-trip with
Period.__str__ with weekly freq.
"""
# GH#50803
start, end = value.split("/")
start = Timestamp(start)
end = Timestamp(end)
if (end - start).days != 6:
# We are interested in cases where this is str(period)
# of a Week-freq period
raise ValueError("Could not parse as weekly-freq Period")
if freq is None:
day_name = end.day_name()[:3].upper()
freqstr = f"W-{day_name}"
freq = to_offset(freqstr)
# We _should_ have freq.is_on_offset(end)
return end, freq