You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2267 lines
69 KiB
2267 lines
69 KiB
1 year ago
|
import collections
|
||
|
import warnings
|
||
|
|
||
|
cimport cython
|
||
|
from cpython.object cimport (
|
||
|
Py_EQ,
|
||
|
Py_GE,
|
||
|
Py_GT,
|
||
|
Py_LE,
|
||
|
Py_LT,
|
||
|
Py_NE,
|
||
|
PyObject,
|
||
|
PyObject_RichCompare,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
cimport numpy as cnp
|
||
|
from numpy cimport (
|
||
|
int64_t,
|
||
|
ndarray,
|
||
|
)
|
||
|
|
||
|
cnp.import_array()
|
||
|
|
||
|
from cpython.datetime cimport (
|
||
|
PyDateTime_Check,
|
||
|
PyDelta_Check,
|
||
|
import_datetime,
|
||
|
timedelta,
|
||
|
)
|
||
|
|
||
|
import_datetime()
|
||
|
|
||
|
|
||
|
cimport pandas._libs.tslibs.util as util
|
||
|
from pandas._libs.missing cimport checknull_with_nat_and_na
|
||
|
from pandas._libs.tslibs.base cimport ABCTimestamp
|
||
|
from pandas._libs.tslibs.conversion cimport (
|
||
|
cast_from_unit,
|
||
|
precision_from_unit,
|
||
|
)
|
||
|
from pandas._libs.tslibs.dtypes cimport (
|
||
|
get_supported_reso,
|
||
|
is_supported_unit,
|
||
|
npy_unit_to_abbrev,
|
||
|
)
|
||
|
from pandas._libs.tslibs.nattype cimport (
|
||
|
NPY_NAT,
|
||
|
c_NaT as NaT,
|
||
|
c_nat_strings as nat_strings,
|
||
|
checknull_with_nat,
|
||
|
)
|
||
|
from pandas._libs.tslibs.np_datetime cimport (
|
||
|
NPY_DATETIMEUNIT,
|
||
|
NPY_FR_ns,
|
||
|
cmp_dtstructs,
|
||
|
cmp_scalar,
|
||
|
convert_reso,
|
||
|
get_datetime64_unit,
|
||
|
get_timedelta64_value,
|
||
|
get_unit_from_dtype,
|
||
|
import_pandas_datetime,
|
||
|
npy_datetimestruct,
|
||
|
pandas_datetime_to_datetimestruct,
|
||
|
pandas_timedelta_to_timedeltastruct,
|
||
|
pandas_timedeltastruct,
|
||
|
)
|
||
|
|
||
|
import_pandas_datetime()
|
||
|
|
||
|
from pandas._libs.tslibs.np_datetime import (
|
||
|
OutOfBoundsDatetime,
|
||
|
OutOfBoundsTimedelta,
|
||
|
)
|
||
|
|
||
|
from pandas._libs.tslibs.offsets cimport is_tick_object
|
||
|
from pandas._libs.tslibs.util cimport (
|
||
|
is_array,
|
||
|
is_datetime64_object,
|
||
|
is_float_object,
|
||
|
is_integer_object,
|
||
|
is_timedelta64_object,
|
||
|
)
|
||
|
|
||
|
from pandas._libs.tslibs.fields import (
|
||
|
RoundTo,
|
||
|
round_nsint64,
|
||
|
)
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Constants
|
||
|
|
||
|
# components named tuple
|
||
|
Components = collections.namedtuple(
|
||
|
"Components",
|
||
|
[
|
||
|
"days",
|
||
|
"hours",
|
||
|
"minutes",
|
||
|
"seconds",
|
||
|
"milliseconds",
|
||
|
"microseconds",
|
||
|
"nanoseconds",
|
||
|
],
|
||
|
)
|
||
|
|
||
|
# This should be kept consistent with UnitChoices in pandas/_libs/tslibs/timedeltas.pyi
|
||
|
cdef dict timedelta_abbrevs = {
|
||
|
"Y": "Y",
|
||
|
"y": "Y",
|
||
|
"M": "M",
|
||
|
"W": "W",
|
||
|
"w": "W",
|
||
|
"D": "D",
|
||
|
"d": "D",
|
||
|
"days": "D",
|
||
|
"day": "D",
|
||
|
"hours": "h",
|
||
|
"hour": "h",
|
||
|
"hr": "h",
|
||
|
"h": "h",
|
||
|
"m": "m",
|
||
|
"minute": "m",
|
||
|
"min": "m",
|
||
|
"minutes": "m",
|
||
|
"t": "m",
|
||
|
"s": "s",
|
||
|
"seconds": "s",
|
||
|
"sec": "s",
|
||
|
"second": "s",
|
||
|
"ms": "ms",
|
||
|
"milliseconds": "ms",
|
||
|
"millisecond": "ms",
|
||
|
"milli": "ms",
|
||
|
"millis": "ms",
|
||
|
"l": "ms",
|
||
|
"us": "us",
|
||
|
"microseconds": "us",
|
||
|
"microsecond": "us",
|
||
|
"µs": "us",
|
||
|
"micro": "us",
|
||
|
"micros": "us",
|
||
|
"u": "us",
|
||
|
"ns": "ns",
|
||
|
"nanoseconds": "ns",
|
||
|
"nano": "ns",
|
||
|
"nanos": "ns",
|
||
|
"nanosecond": "ns",
|
||
|
"n": "ns",
|
||
|
}
|
||
|
|
||
|
_no_input = object()
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# API
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def ints_to_pytimedelta(ndarray m8values, box=False):
|
||
|
"""
|
||
|
convert an i8 repr to an ndarray of timedelta or Timedelta (if box ==
|
||
|
True)
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
arr : ndarray[timedelta64]
|
||
|
box : bool, default False
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
result : ndarray[object]
|
||
|
array of Timedelta or timedeltas objects
|
||
|
"""
|
||
|
cdef:
|
||
|
NPY_DATETIMEUNIT reso = get_unit_from_dtype(m8values.dtype)
|
||
|
Py_ssize_t i, n = m8values.size
|
||
|
int64_t value
|
||
|
object res_val
|
||
|
|
||
|
# Note that `result` (and thus `result_flat`) is C-order and
|
||
|
# `it` iterates C-order as well, so the iteration matches
|
||
|
# See discussion at
|
||
|
# github.com/pandas-dev/pandas/pull/46886#discussion_r860261305
|
||
|
ndarray result = cnp.PyArray_EMPTY(
|
||
|
m8values.ndim, m8values.shape, cnp.NPY_OBJECT, 0
|
||
|
)
|
||
|
object[::1] res_flat = result.ravel() # should NOT be a copy
|
||
|
|
||
|
ndarray arr = m8values.view("i8")
|
||
|
cnp.flatiter it = cnp.PyArray_IterNew(arr)
|
||
|
|
||
|
for i in range(n):
|
||
|
# Analogous to: value = arr[i]
|
||
|
value = (<int64_t*>cnp.PyArray_ITER_DATA(it))[0]
|
||
|
|
||
|
if value == NPY_NAT:
|
||
|
res_val = <object>NaT
|
||
|
else:
|
||
|
if box:
|
||
|
res_val = _timedelta_from_value_and_reso(Timedelta, value, reso=reso)
|
||
|
elif reso == NPY_DATETIMEUNIT.NPY_FR_ns:
|
||
|
res_val = timedelta(microseconds=int(value) / 1000)
|
||
|
elif reso == NPY_DATETIMEUNIT.NPY_FR_us:
|
||
|
res_val = timedelta(microseconds=value)
|
||
|
elif reso == NPY_DATETIMEUNIT.NPY_FR_ms:
|
||
|
res_val = timedelta(milliseconds=value)
|
||
|
elif reso == NPY_DATETIMEUNIT.NPY_FR_s:
|
||
|
res_val = timedelta(seconds=value)
|
||
|
elif reso == NPY_DATETIMEUNIT.NPY_FR_m:
|
||
|
res_val = timedelta(minutes=value)
|
||
|
elif reso == NPY_DATETIMEUNIT.NPY_FR_h:
|
||
|
res_val = timedelta(hours=value)
|
||
|
elif reso == NPY_DATETIMEUNIT.NPY_FR_D:
|
||
|
res_val = timedelta(days=value)
|
||
|
elif reso == NPY_DATETIMEUNIT.NPY_FR_W:
|
||
|
res_val = timedelta(weeks=value)
|
||
|
else:
|
||
|
# Month, Year, NPY_FR_GENERIC, pico, femto, atto
|
||
|
raise NotImplementedError(reso)
|
||
|
|
||
|
# Note: we can index result directly instead of using PyArray_MultiIter_DATA
|
||
|
# like we do for the other functions because result is known C-contiguous
|
||
|
# and is the first argument to PyArray_MultiIterNew2. The usual pattern
|
||
|
# does not seem to work with object dtype.
|
||
|
# See discussion at
|
||
|
# github.com/pandas-dev/pandas/pull/46886#discussion_r860261305
|
||
|
res_flat[i] = res_val
|
||
|
|
||
|
cnp.PyArray_ITER_NEXT(it)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
cpdef int64_t delta_to_nanoseconds(
|
||
|
delta,
|
||
|
NPY_DATETIMEUNIT reso=NPY_FR_ns,
|
||
|
bint round_ok=True,
|
||
|
) except? -1:
|
||
|
# Note: this will raise on timedelta64 with Y or M unit
|
||
|
|
||
|
cdef:
|
||
|
NPY_DATETIMEUNIT in_reso
|
||
|
int64_t n
|
||
|
|
||
|
if is_tick_object(delta):
|
||
|
n = delta.n
|
||
|
in_reso = delta._creso
|
||
|
|
||
|
elif isinstance(delta, _Timedelta):
|
||
|
n = delta._value
|
||
|
in_reso = delta._creso
|
||
|
|
||
|
elif is_timedelta64_object(delta):
|
||
|
in_reso = get_datetime64_unit(delta)
|
||
|
if in_reso == NPY_DATETIMEUNIT.NPY_FR_Y or in_reso == NPY_DATETIMEUNIT.NPY_FR_M:
|
||
|
raise ValueError(
|
||
|
"delta_to_nanoseconds does not support Y or M units, "
|
||
|
"as their duration in nanoseconds is ambiguous."
|
||
|
)
|
||
|
n = get_timedelta64_value(delta)
|
||
|
|
||
|
elif PyDelta_Check(delta):
|
||
|
in_reso = NPY_DATETIMEUNIT.NPY_FR_us
|
||
|
try:
|
||
|
n = (
|
||
|
delta.days * 24 * 3600 * 1_000_000
|
||
|
+ delta.seconds * 1_000_000
|
||
|
+ delta.microseconds
|
||
|
)
|
||
|
except OverflowError as err:
|
||
|
raise OutOfBoundsTimedelta(*err.args) from err
|
||
|
|
||
|
else:
|
||
|
raise TypeError(type(delta))
|
||
|
|
||
|
try:
|
||
|
return convert_reso(n, in_reso, reso, round_ok=round_ok)
|
||
|
except (OutOfBoundsDatetime, OverflowError) as err:
|
||
|
# Catch OutOfBoundsDatetime bc convert_reso can call check_dts_bounds
|
||
|
# for Y/M-resolution cases
|
||
|
unit_str = npy_unit_to_abbrev(reso)
|
||
|
raise OutOfBoundsTimedelta(
|
||
|
f"Cannot cast {str(delta)} to unit={unit_str} without overflow."
|
||
|
) from err
|
||
|
|
||
|
|
||
|
@cython.overflowcheck(True)
|
||
|
cdef object ensure_td64ns(object ts):
|
||
|
"""
|
||
|
Overflow-safe implementation of td64.astype("m8[ns]")
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ts : np.timedelta64
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
np.timedelta64[ns]
|
||
|
"""
|
||
|
cdef:
|
||
|
NPY_DATETIMEUNIT td64_unit
|
||
|
int64_t td64_value, mult
|
||
|
str unitstr
|
||
|
|
||
|
td64_unit = get_datetime64_unit(ts)
|
||
|
if (
|
||
|
td64_unit != NPY_DATETIMEUNIT.NPY_FR_ns
|
||
|
and td64_unit != NPY_DATETIMEUNIT.NPY_FR_GENERIC
|
||
|
):
|
||
|
unitstr = npy_unit_to_abbrev(td64_unit)
|
||
|
|
||
|
td64_value = get_timedelta64_value(ts)
|
||
|
|
||
|
mult = precision_from_unit(unitstr)[0]
|
||
|
try:
|
||
|
# NB: cython#1381 this cannot be *=
|
||
|
td64_value = td64_value * mult
|
||
|
except OverflowError as err:
|
||
|
raise OutOfBoundsTimedelta(ts) from err
|
||
|
|
||
|
return np.timedelta64(td64_value, "ns")
|
||
|
|
||
|
return ts
|
||
|
|
||
|
|
||
|
cdef convert_to_timedelta64(object ts, str unit):
|
||
|
"""
|
||
|
Convert an incoming object to a timedelta64 if possible.
|
||
|
Before calling, unit must be standardized to avoid repeated unit conversion
|
||
|
|
||
|
Handle these types of objects:
|
||
|
- timedelta/Timedelta
|
||
|
- timedelta64
|
||
|
- an offset
|
||
|
- np.int64 (with unit providing a possible modifier)
|
||
|
- None/NaT
|
||
|
|
||
|
Return an ns based int64
|
||
|
"""
|
||
|
# Caller is responsible for checking unit not in ["Y", "y", "M"]
|
||
|
if checknull_with_nat_and_na(ts):
|
||
|
return np.timedelta64(NPY_NAT, "ns")
|
||
|
elif isinstance(ts, _Timedelta):
|
||
|
# already in the proper format
|
||
|
if ts._creso != NPY_FR_ns:
|
||
|
ts = ts.as_unit("ns").asm8
|
||
|
else:
|
||
|
ts = np.timedelta64(ts._value, "ns")
|
||
|
elif is_timedelta64_object(ts):
|
||
|
ts = ensure_td64ns(ts)
|
||
|
elif is_integer_object(ts):
|
||
|
if ts == NPY_NAT:
|
||
|
return np.timedelta64(NPY_NAT, "ns")
|
||
|
else:
|
||
|
ts = _maybe_cast_from_unit(ts, unit)
|
||
|
elif is_float_object(ts):
|
||
|
ts = _maybe_cast_from_unit(ts, unit)
|
||
|
elif isinstance(ts, str):
|
||
|
if (len(ts) > 0 and ts[0] == "P") or (len(ts) > 1 and ts[:2] == "-P"):
|
||
|
ts = parse_iso_format_string(ts)
|
||
|
else:
|
||
|
ts = parse_timedelta_string(ts)
|
||
|
ts = np.timedelta64(ts, "ns")
|
||
|
elif is_tick_object(ts):
|
||
|
ts = np.timedelta64(ts.nanos, "ns")
|
||
|
|
||
|
if PyDelta_Check(ts):
|
||
|
ts = np.timedelta64(delta_to_nanoseconds(ts), "ns")
|
||
|
elif not is_timedelta64_object(ts):
|
||
|
raise TypeError(f"Invalid type for timedelta scalar: {type(ts)}")
|
||
|
return ts.astype("timedelta64[ns]")
|
||
|
|
||
|
|
||
|
cdef _maybe_cast_from_unit(ts, str unit):
|
||
|
# caller is responsible for checking
|
||
|
# assert unit not in ["Y", "y", "M"]
|
||
|
try:
|
||
|
ts = cast_from_unit(ts, unit)
|
||
|
except OutOfBoundsDatetime as err:
|
||
|
raise OutOfBoundsTimedelta(
|
||
|
f"Cannot cast {ts} from {unit} to 'ns' without overflow."
|
||
|
) from err
|
||
|
|
||
|
ts = np.timedelta64(ts, "ns")
|
||
|
return ts
|
||
|
|
||
|
|
||
|
@cython.boundscheck(False)
|
||
|
@cython.wraparound(False)
|
||
|
def array_to_timedelta64(
|
||
|
ndarray values, str unit=None, str errors="raise"
|
||
|
) -> ndarray:
|
||
|
# values is object-dtype, may be 2D
|
||
|
"""
|
||
|
Convert an ndarray to an array of timedeltas. If errors == 'coerce',
|
||
|
coerce non-convertible objects to NaT. Otherwise, raise.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
np.ndarray[timedelta64ns]
|
||
|
"""
|
||
|
# Caller is responsible for checking
|
||
|
assert unit not in ["Y", "y", "M"]
|
||
|
|
||
|
cdef:
|
||
|
Py_ssize_t i, n = values.size
|
||
|
ndarray result = np.empty((<object>values).shape, dtype="m8[ns]")
|
||
|
object item
|
||
|
int64_t ival
|
||
|
cnp.broadcast mi = cnp.PyArray_MultiIterNew2(result, values)
|
||
|
cnp.flatiter it
|
||
|
|
||
|
if values.descr.type_num != cnp.NPY_OBJECT:
|
||
|
# raise here otherwise we segfault below
|
||
|
raise TypeError("array_to_timedelta64 'values' must have object dtype")
|
||
|
|
||
|
if errors not in {"ignore", "raise", "coerce"}:
|
||
|
raise ValueError("errors must be one of {'ignore', 'raise', or 'coerce'}")
|
||
|
|
||
|
if unit is not None and errors != "coerce":
|
||
|
it = cnp.PyArray_IterNew(values)
|
||
|
for i in range(n):
|
||
|
# Analogous to: item = values[i]
|
||
|
item = cnp.PyArray_GETITEM(values, cnp.PyArray_ITER_DATA(it))
|
||
|
if isinstance(item, str):
|
||
|
raise ValueError(
|
||
|
"unit must not be specified if the input contains a str"
|
||
|
)
|
||
|
cnp.PyArray_ITER_NEXT(it)
|
||
|
|
||
|
# Usually, we have all strings. If so, we hit the fast path.
|
||
|
# If this path fails, we try conversion a different way, and
|
||
|
# this is where all of the error handling will take place.
|
||
|
try:
|
||
|
for i in range(n):
|
||
|
# Analogous to: item = values[i]
|
||
|
item = <object>(<PyObject**>cnp.PyArray_MultiIter_DATA(mi, 1))[0]
|
||
|
|
||
|
ival = _item_to_timedelta64_fastpath(item)
|
||
|
|
||
|
# Analogous to: iresult[i] = ival
|
||
|
(<int64_t*>cnp.PyArray_MultiIter_DATA(mi, 0))[0] = ival
|
||
|
|
||
|
cnp.PyArray_MultiIter_NEXT(mi)
|
||
|
|
||
|
except (TypeError, ValueError):
|
||
|
cnp.PyArray_MultiIter_RESET(mi)
|
||
|
|
||
|
parsed_unit = parse_timedelta_unit(unit or "ns")
|
||
|
for i in range(n):
|
||
|
item = <object>(<PyObject**>cnp.PyArray_MultiIter_DATA(mi, 1))[0]
|
||
|
|
||
|
ival = _item_to_timedelta64(item, parsed_unit, errors)
|
||
|
|
||
|
(<int64_t*>cnp.PyArray_MultiIter_DATA(mi, 0))[0] = ival
|
||
|
|
||
|
cnp.PyArray_MultiIter_NEXT(mi)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
cdef int64_t _item_to_timedelta64_fastpath(object item) except? -1:
|
||
|
"""
|
||
|
See array_to_timedelta64.
|
||
|
"""
|
||
|
if item is NaT:
|
||
|
# we allow this check in the fast-path because NaT is a C-object
|
||
|
# so this is an inexpensive check
|
||
|
return NPY_NAT
|
||
|
else:
|
||
|
return parse_timedelta_string(item)
|
||
|
|
||
|
|
||
|
cdef int64_t _item_to_timedelta64(
|
||
|
object item,
|
||
|
str parsed_unit,
|
||
|
str errors
|
||
|
) except? -1:
|
||
|
"""
|
||
|
See array_to_timedelta64.
|
||
|
"""
|
||
|
try:
|
||
|
return get_timedelta64_value(convert_to_timedelta64(item, parsed_unit))
|
||
|
except ValueError as err:
|
||
|
if errors == "coerce":
|
||
|
return NPY_NAT
|
||
|
elif "unit abbreviation w/o a number" in str(err):
|
||
|
# re-raise with more pertinent message
|
||
|
msg = f"Could not convert '{item}' to NumPy timedelta"
|
||
|
raise ValueError(msg) from err
|
||
|
else:
|
||
|
raise
|
||
|
|
||
|
|
||
|
@cython.cpow(True)
|
||
|
cdef int64_t parse_timedelta_string(str ts) except? -1:
|
||
|
"""
|
||
|
Parse a regular format timedelta string. Return an int64_t (in ns)
|
||
|
or raise a ValueError on an invalid parse.
|
||
|
"""
|
||
|
|
||
|
cdef:
|
||
|
unicode c
|
||
|
bint neg = 0, have_dot = 0, have_value = 0, have_hhmmss = 0
|
||
|
object current_unit = None
|
||
|
int64_t result = 0, m = 0, r
|
||
|
list number = [], frac = [], unit = []
|
||
|
|
||
|
# neg : tracks if we have a leading negative for the value
|
||
|
# have_dot : tracks if we are processing a dot (either post hhmmss or
|
||
|
# inside an expression)
|
||
|
# have_value : track if we have at least 1 leading unit
|
||
|
# have_hhmmss : tracks if we have a regular format hh:mm:ss
|
||
|
|
||
|
if len(ts) == 0 or ts in nat_strings:
|
||
|
return NPY_NAT
|
||
|
|
||
|
for c in ts:
|
||
|
|
||
|
# skip whitespace / commas
|
||
|
if c == " " or c == ",":
|
||
|
pass
|
||
|
|
||
|
# positive signs are ignored
|
||
|
elif c == "+":
|
||
|
pass
|
||
|
|
||
|
# neg
|
||
|
elif c == "-":
|
||
|
|
||
|
if neg or have_value or have_hhmmss:
|
||
|
raise ValueError("only leading negative signs are allowed")
|
||
|
|
||
|
neg = 1
|
||
|
|
||
|
# number (ascii codes)
|
||
|
elif ord(c) >= 48 and ord(c) <= 57:
|
||
|
|
||
|
if have_dot:
|
||
|
|
||
|
# we found a dot, but now its just a fraction
|
||
|
if len(unit):
|
||
|
number.append(c)
|
||
|
have_dot = 0
|
||
|
else:
|
||
|
frac.append(c)
|
||
|
|
||
|
elif not len(unit):
|
||
|
number.append(c)
|
||
|
|
||
|
else:
|
||
|
r = timedelta_from_spec(number, frac, unit)
|
||
|
unit, number, frac = [], [c], []
|
||
|
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
|
||
|
# hh:mm:ss.
|
||
|
elif c == ":":
|
||
|
|
||
|
# we flip this off if we have a leading value
|
||
|
if have_value:
|
||
|
neg = 0
|
||
|
|
||
|
# we are in the pattern hh:mm:ss pattern
|
||
|
if len(number):
|
||
|
if current_unit is None:
|
||
|
current_unit = "h"
|
||
|
m = 1000000000 * 3600
|
||
|
elif current_unit == "h":
|
||
|
current_unit = "m"
|
||
|
m = 1000000000 * 60
|
||
|
elif current_unit == "m":
|
||
|
current_unit = "s"
|
||
|
m = 1000000000
|
||
|
r = <int64_t>int("".join(number)) * m
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
have_hhmmss = 1
|
||
|
else:
|
||
|
raise ValueError(f"expecting hh:mm:ss format, received: {ts}")
|
||
|
|
||
|
unit, number = [], []
|
||
|
|
||
|
# after the decimal point
|
||
|
elif c == ".":
|
||
|
|
||
|
if len(number) and current_unit is not None:
|
||
|
|
||
|
# by definition we had something like
|
||
|
# so we need to evaluate the final field from a
|
||
|
# hh:mm:ss (so current_unit is 'm')
|
||
|
if current_unit != "m":
|
||
|
raise ValueError("expected hh:mm:ss format before .")
|
||
|
m = 1000000000
|
||
|
r = <int64_t>int("".join(number)) * m
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
have_value = 1
|
||
|
unit, number, frac = [], [], []
|
||
|
|
||
|
have_dot = 1
|
||
|
|
||
|
# unit
|
||
|
else:
|
||
|
unit.append(c)
|
||
|
have_value = 1
|
||
|
have_dot = 0
|
||
|
|
||
|
# we had a dot, but we have a fractional
|
||
|
# value since we have an unit
|
||
|
if have_dot and len(unit):
|
||
|
r = timedelta_from_spec(number, frac, unit)
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
|
||
|
# we have a dot as part of a regular format
|
||
|
# e.g. hh:mm:ss.fffffff
|
||
|
elif have_dot:
|
||
|
|
||
|
if ((len(number) or len(frac)) and not len(unit)
|
||
|
and current_unit is None):
|
||
|
raise ValueError("no units specified")
|
||
|
|
||
|
if len(frac) > 0 and len(frac) <= 3:
|
||
|
m = 10**(3 -len(frac)) * 1000 * 1000
|
||
|
elif len(frac) > 3 and len(frac) <= 6:
|
||
|
m = 10**(6 -len(frac)) * 1000
|
||
|
elif len(frac) > 6 and len(frac) <= 9:
|
||
|
m = 10**(9 -len(frac))
|
||
|
else:
|
||
|
m = 1
|
||
|
frac = frac[:9]
|
||
|
r = <int64_t>int("".join(frac)) * m
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
|
||
|
# we have a regular format
|
||
|
# we must have seconds at this point (hence the unit is still 'm')
|
||
|
elif current_unit is not None:
|
||
|
if current_unit != "m":
|
||
|
raise ValueError("expected hh:mm:ss format")
|
||
|
m = 1000000000
|
||
|
r = <int64_t>int("".join(number)) * m
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
|
||
|
# we have a last abbreviation
|
||
|
elif len(unit):
|
||
|
if len(number):
|
||
|
r = timedelta_from_spec(number, frac, unit)
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
else:
|
||
|
raise ValueError("unit abbreviation w/o a number")
|
||
|
|
||
|
# we only have symbols and no numbers
|
||
|
elif len(number) == 0:
|
||
|
raise ValueError("symbols w/o a number")
|
||
|
|
||
|
# treat as nanoseconds
|
||
|
# but only if we don't have anything else
|
||
|
else:
|
||
|
if have_value:
|
||
|
raise ValueError("have leftover units")
|
||
|
if len(number):
|
||
|
r = timedelta_from_spec(number, frac, "ns")
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
cdef int64_t timedelta_as_neg(int64_t value, bint neg):
|
||
|
"""
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
value : int64_t of the timedelta value
|
||
|
neg : bool if the a negative value
|
||
|
"""
|
||
|
if neg:
|
||
|
return -value
|
||
|
return value
|
||
|
|
||
|
|
||
|
cdef timedelta_from_spec(object number, object frac, object unit):
|
||
|
"""
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
number : a list of number digits
|
||
|
frac : a list of frac digits
|
||
|
unit : a list of unit characters
|
||
|
"""
|
||
|
cdef:
|
||
|
str n
|
||
|
|
||
|
unit = "".join(unit)
|
||
|
if unit in ["M", "Y", "y"]:
|
||
|
raise ValueError(
|
||
|
"Units 'M', 'Y' and 'y' do not represent unambiguous timedelta "
|
||
|
"values and are not supported."
|
||
|
)
|
||
|
|
||
|
unit = parse_timedelta_unit(unit)
|
||
|
|
||
|
n = "".join(number) + "." + "".join(frac)
|
||
|
return cast_from_unit(float(n), unit)
|
||
|
|
||
|
|
||
|
cpdef inline str parse_timedelta_unit(str unit):
|
||
|
"""
|
||
|
Parameters
|
||
|
----------
|
||
|
unit : str or None
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
str
|
||
|
Canonical unit string.
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError : on non-parseable input
|
||
|
"""
|
||
|
if unit is None:
|
||
|
return "ns"
|
||
|
elif unit == "M":
|
||
|
return unit
|
||
|
try:
|
||
|
return timedelta_abbrevs[unit.lower()]
|
||
|
except KeyError:
|
||
|
raise ValueError(f"invalid unit abbreviation: {unit}")
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Timedelta ops utilities
|
||
|
|
||
|
cdef bint _validate_ops_compat(other):
|
||
|
# return True if we are compat with operating
|
||
|
if checknull_with_nat(other):
|
||
|
return True
|
||
|
elif is_any_td_scalar(other):
|
||
|
return True
|
||
|
elif isinstance(other, str):
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _op_unary_method(func, name):
|
||
|
def f(self):
|
||
|
new_value = func(self._value)
|
||
|
return _timedelta_from_value_and_reso(Timedelta, new_value, self._creso)
|
||
|
f.__name__ = name
|
||
|
return f
|
||
|
|
||
|
|
||
|
def _binary_op_method_timedeltalike(op, name):
|
||
|
# define a binary operation that only works if the other argument is
|
||
|
# timedelta like or an array of timedeltalike
|
||
|
def f(self, other):
|
||
|
if other is NaT:
|
||
|
return NaT
|
||
|
|
||
|
elif is_datetime64_object(other) or (
|
||
|
PyDateTime_Check(other) and not isinstance(other, ABCTimestamp)
|
||
|
):
|
||
|
# this case is for a datetime object that is specifically
|
||
|
# *not* a Timestamp, as the Timestamp case will be
|
||
|
# handled after `_validate_ops_compat` returns False below
|
||
|
from pandas._libs.tslibs.timestamps import Timestamp
|
||
|
return op(self, Timestamp(other))
|
||
|
# We are implicitly requiring the canonical behavior to be
|
||
|
# defined by Timestamp methods.
|
||
|
|
||
|
elif is_array(other):
|
||
|
if other.ndim == 0:
|
||
|
# see also: item_from_zerodim
|
||
|
item = cnp.PyArray_ToScalar(cnp.PyArray_DATA(other), other)
|
||
|
return f(self, item)
|
||
|
|
||
|
elif other.dtype.kind in "mM":
|
||
|
return op(self.to_timedelta64(), other)
|
||
|
elif other.dtype.kind == "O":
|
||
|
return np.array([op(self, x) for x in other])
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
elif not _validate_ops_compat(other):
|
||
|
# Includes any of our non-cython classes
|
||
|
return NotImplemented
|
||
|
|
||
|
try:
|
||
|
other = Timedelta(other)
|
||
|
except ValueError:
|
||
|
# failed to parse as timedelta
|
||
|
return NotImplemented
|
||
|
|
||
|
if other is NaT:
|
||
|
# e.g. if original other was timedelta64('NaT')
|
||
|
return NaT
|
||
|
|
||
|
# Matching numpy, we cast to the higher resolution. Unlike numpy,
|
||
|
# we raise instead of silently overflowing during this casting.
|
||
|
if self._creso < other._creso:
|
||
|
self = (<_Timedelta>self)._as_creso(other._creso, round_ok=True)
|
||
|
elif self._creso > other._creso:
|
||
|
other = (<_Timedelta>other)._as_creso(self._creso, round_ok=True)
|
||
|
|
||
|
res = op(self._value, other._value)
|
||
|
if res == NPY_NAT:
|
||
|
# e.g. test_implementation_limits
|
||
|
# TODO: more generally could do an overflowcheck in op?
|
||
|
return NaT
|
||
|
|
||
|
return _timedelta_from_value_and_reso(Timedelta, res, reso=self._creso)
|
||
|
|
||
|
f.__name__ = name
|
||
|
return f
|
||
|
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Timedelta Construction
|
||
|
|
||
|
cdef int64_t parse_iso_format_string(str ts) except? -1:
|
||
|
"""
|
||
|
Extracts and cleanses the appropriate values from a match object with
|
||
|
groups for each component of an ISO 8601 duration
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
ts: str
|
||
|
ISO 8601 Duration formatted string
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
ns: int64_t
|
||
|
Precision in nanoseconds of matched ISO 8601 duration
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If ``ts`` cannot be parsed
|
||
|
"""
|
||
|
|
||
|
cdef:
|
||
|
unicode c
|
||
|
int64_t result = 0, r
|
||
|
int p = 0, sign = 1
|
||
|
object dec_unit = "ms", err_msg
|
||
|
bint have_dot = 0, have_value = 0, neg = 0
|
||
|
list number = [], unit = []
|
||
|
|
||
|
err_msg = f"Invalid ISO 8601 Duration format - {ts}"
|
||
|
|
||
|
if ts[0] == "-":
|
||
|
sign = -1
|
||
|
ts = ts[1:]
|
||
|
|
||
|
for c in ts:
|
||
|
# number (ascii codes)
|
||
|
if 48 <= ord(c) <= 57:
|
||
|
|
||
|
have_value = 1
|
||
|
if have_dot:
|
||
|
if p == 3 and dec_unit != "ns":
|
||
|
unit.append(dec_unit)
|
||
|
if dec_unit == "ms":
|
||
|
dec_unit = "us"
|
||
|
elif dec_unit == "us":
|
||
|
dec_unit = "ns"
|
||
|
p = 0
|
||
|
p += 1
|
||
|
|
||
|
if not len(unit):
|
||
|
number.append(c)
|
||
|
else:
|
||
|
r = timedelta_from_spec(number, "0", unit)
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
|
||
|
neg = 0
|
||
|
unit, number = [], [c]
|
||
|
else:
|
||
|
if c == "P" or c == "T":
|
||
|
pass # ignore marking characters P and T
|
||
|
elif c == "-":
|
||
|
if neg or have_value:
|
||
|
raise ValueError(err_msg)
|
||
|
else:
|
||
|
neg = 1
|
||
|
elif c == "+":
|
||
|
pass
|
||
|
elif c in ["W", "D", "H", "M"]:
|
||
|
if c in ["H", "M"] and len(number) > 2:
|
||
|
raise ValueError(err_msg)
|
||
|
if c == "M":
|
||
|
c = "min"
|
||
|
unit.append(c)
|
||
|
r = timedelta_from_spec(number, "0", unit)
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
|
||
|
neg = 0
|
||
|
unit, number = [], []
|
||
|
elif c == ".":
|
||
|
# append any seconds
|
||
|
if len(number):
|
||
|
r = timedelta_from_spec(number, "0", "S")
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
unit, number = [], []
|
||
|
have_dot = 1
|
||
|
elif c == "S":
|
||
|
if have_dot: # ms, us, or ns
|
||
|
if not len(number) or p > 3:
|
||
|
raise ValueError(err_msg)
|
||
|
# pad to 3 digits as required
|
||
|
pad = 3 - p
|
||
|
while pad > 0:
|
||
|
number.append("0")
|
||
|
pad -= 1
|
||
|
|
||
|
r = timedelta_from_spec(number, "0", dec_unit)
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
else: # seconds
|
||
|
r = timedelta_from_spec(number, "0", "S")
|
||
|
result += timedelta_as_neg(r, neg)
|
||
|
else:
|
||
|
raise ValueError(err_msg)
|
||
|
|
||
|
if not have_value:
|
||
|
# Received string only - never parsed any values
|
||
|
raise ValueError(err_msg)
|
||
|
|
||
|
return sign*result
|
||
|
|
||
|
|
||
|
cdef _to_py_int_float(v):
|
||
|
# Note: This used to be defined inside Timedelta.__new__
|
||
|
# but cython will not allow `cdef` functions to be defined dynamically.
|
||
|
if is_integer_object(v):
|
||
|
return int(v)
|
||
|
elif is_float_object(v):
|
||
|
return float(v)
|
||
|
raise TypeError(f"Invalid type {type(v)}. Must be int or float.")
|
||
|
|
||
|
|
||
|
def _timedelta_unpickle(value, reso):
|
||
|
return _timedelta_from_value_and_reso(Timedelta, value, reso)
|
||
|
|
||
|
|
||
|
cdef _timedelta_from_value_and_reso(cls, int64_t value, NPY_DATETIMEUNIT reso):
|
||
|
# Could make this a classmethod if/when cython supports cdef classmethods
|
||
|
cdef:
|
||
|
_Timedelta td_base
|
||
|
|
||
|
assert value != NPY_NAT
|
||
|
# For millisecond and second resos, we cannot actually pass int(value) because
|
||
|
# many cases would fall outside of the pytimedelta implementation bounds.
|
||
|
# We pass 0 instead, and override seconds, microseconds, days.
|
||
|
# In principle we could pass 0 for ns and us too.
|
||
|
if reso == NPY_FR_ns:
|
||
|
td_base = _Timedelta.__new__(cls, microseconds=int(value) // 1000)
|
||
|
elif reso == NPY_DATETIMEUNIT.NPY_FR_us:
|
||
|
td_base = _Timedelta.__new__(cls, microseconds=int(value))
|
||
|
elif reso == NPY_DATETIMEUNIT.NPY_FR_ms:
|
||
|
td_base = _Timedelta.__new__(cls, milliseconds=0)
|
||
|
elif reso == NPY_DATETIMEUNIT.NPY_FR_s:
|
||
|
td_base = _Timedelta.__new__(cls, seconds=0)
|
||
|
# Other resolutions are disabled but could potentially be implemented here:
|
||
|
# elif reso == NPY_DATETIMEUNIT.NPY_FR_m:
|
||
|
# td_base = _Timedelta.__new__(Timedelta, minutes=int(value))
|
||
|
# elif reso == NPY_DATETIMEUNIT.NPY_FR_h:
|
||
|
# td_base = _Timedelta.__new__(Timedelta, hours=int(value))
|
||
|
# elif reso == NPY_DATETIMEUNIT.NPY_FR_D:
|
||
|
# td_base = _Timedelta.__new__(Timedelta, days=int(value))
|
||
|
else:
|
||
|
raise NotImplementedError(
|
||
|
"Only resolutions 's', 'ms', 'us', 'ns' are supported."
|
||
|
)
|
||
|
|
||
|
td_base._value = value
|
||
|
td_base._is_populated = 0
|
||
|
td_base._creso = reso
|
||
|
return td_base
|
||
|
|
||
|
|
||
|
class MinMaxReso:
|
||
|
"""
|
||
|
We need to define min/max/resolution on both the Timedelta _instance_
|
||
|
and Timedelta class. On an instance, these depend on the object's _reso.
|
||
|
On the class, we default to the values we would get with nanosecond _reso.
|
||
|
"""
|
||
|
def __init__(self, name):
|
||
|
self._name = name
|
||
|
|
||
|
def __get__(self, obj, type=None):
|
||
|
if self._name == "min":
|
||
|
val = np.iinfo(np.int64).min + 1
|
||
|
elif self._name == "max":
|
||
|
val = np.iinfo(np.int64).max
|
||
|
else:
|
||
|
assert self._name == "resolution"
|
||
|
val = 1
|
||
|
|
||
|
if obj is None:
|
||
|
# i.e. this is on the class, default to nanos
|
||
|
return Timedelta(val)
|
||
|
else:
|
||
|
return Timedelta._from_value_and_reso(val, obj._creso)
|
||
|
|
||
|
def __set__(self, obj, value):
|
||
|
raise AttributeError(f"{self._name} is not settable.")
|
||
|
|
||
|
|
||
|
# Similar to Timestamp/datetime, this is a construction requirement for
|
||
|
# timedeltas that we need to do object instantiation in python. This will
|
||
|
# serve as a C extension type that shadows the Python class, where we do any
|
||
|
# heavy lifting.
|
||
|
cdef class _Timedelta(timedelta):
|
||
|
# cdef readonly:
|
||
|
# int64_t value # nanoseconds
|
||
|
# bint _is_populated # are my components populated
|
||
|
# int64_t _d, _h, _m, _s, _ms, _us, _ns
|
||
|
# NPY_DATETIMEUNIT _reso
|
||
|
|
||
|
# higher than np.ndarray and np.matrix
|
||
|
__array_priority__ = 100
|
||
|
min = MinMaxReso("min")
|
||
|
max = MinMaxReso("max")
|
||
|
resolution = MinMaxReso("resolution")
|
||
|
|
||
|
@property
|
||
|
def value(self):
|
||
|
try:
|
||
|
return convert_reso(self._value, self._creso, NPY_FR_ns, False)
|
||
|
except OverflowError:
|
||
|
raise OverflowError(
|
||
|
"Cannot convert Timedelta to nanoseconds without overflow. "
|
||
|
"Use `.asm8.view('i8')` to cast represent Timedelta in its own "
|
||
|
f"unit (here, {self.unit})."
|
||
|
)
|
||
|
|
||
|
@property
|
||
|
def _unit(self) -> str:
|
||
|
"""
|
||
|
The abbreviation associated with self._creso.
|
||
|
"""
|
||
|
return npy_unit_to_abbrev(self._creso)
|
||
|
|
||
|
@property
|
||
|
def days(self) -> int: # TODO(cython3): make cdef property
|
||
|
"""
|
||
|
Returns the days of the timedelta.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta(1, "d")
|
||
|
>>> td.days
|
||
|
1
|
||
|
|
||
|
>>> td = pd.Timedelta('4 min 3 us 42 ns')
|
||
|
>>> td.days
|
||
|
0
|
||
|
"""
|
||
|
# NB: using the python C-API PyDateTime_DELTA_GET_DAYS will fail
|
||
|
# (or be incorrect)
|
||
|
self._ensure_components()
|
||
|
return self._d
|
||
|
|
||
|
@property
|
||
|
def seconds(self) -> int: # TODO(cython3): make cdef property
|
||
|
"""
|
||
|
Return the total hours, minutes, and seconds of the timedelta as seconds.
|
||
|
|
||
|
Timedelta.seconds = hours * 3600 + minutes * 60 + seconds.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int
|
||
|
Number of seconds.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Timedelta.components : Return all attributes with assigned values
|
||
|
(i.e. days, hours, minutes, seconds, milliseconds, microseconds,
|
||
|
nanoseconds).
|
||
|
Timedelta.total_seconds : Express the Timedelta as total number of seconds.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
**Using string input**
|
||
|
|
||
|
>>> td = pd.Timedelta('1 days 2 min 3 us 42 ns')
|
||
|
>>> td.seconds
|
||
|
120
|
||
|
|
||
|
**Using integer input**
|
||
|
|
||
|
>>> td = pd.Timedelta(42, unit='s')
|
||
|
>>> td.seconds
|
||
|
42
|
||
|
"""
|
||
|
# NB: using the python C-API PyDateTime_DELTA_GET_SECONDS will fail
|
||
|
# (or be incorrect)
|
||
|
self._ensure_components()
|
||
|
return self._h * 3600 + self._m * 60 + self._s
|
||
|
|
||
|
@property
|
||
|
def microseconds(self) -> int: # TODO(cython3): make cdef property
|
||
|
# NB: using the python C-API PyDateTime_DELTA_GET_MICROSECONDS will fail
|
||
|
# (or be incorrect)
|
||
|
self._ensure_components()
|
||
|
return self._ms * 1000 + self._us
|
||
|
|
||
|
def total_seconds(self) -> float:
|
||
|
"""
|
||
|
Total seconds in the duration.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('1min')
|
||
|
>>> td
|
||
|
Timedelta('0 days 00:01:00')
|
||
|
>>> td.total_seconds()
|
||
|
60.0
|
||
|
"""
|
||
|
# We need to override bc we overrode days/seconds/microseconds
|
||
|
# TODO: add nanos/1e9?
|
||
|
return self.days * 24 * 3600 + self.seconds + self.microseconds / 1_000_000
|
||
|
|
||
|
@property
|
||
|
def unit(self) -> str:
|
||
|
return npy_unit_to_abbrev(self._creso)
|
||
|
|
||
|
def __hash__(_Timedelta self):
|
||
|
if self._has_ns():
|
||
|
# Note: this does *not* satisfy the invariance
|
||
|
# td1 == td2 \\Rightarrow hash(td1) == hash(td2)
|
||
|
# if td1 and td2 have different _resos. timedelta64 also has this
|
||
|
# non-invariant behavior.
|
||
|
# see GH#44504
|
||
|
return hash(self._value)
|
||
|
elif self._is_in_pytimedelta_bounds() and (
|
||
|
self._creso == NPY_FR_ns or self._creso == NPY_DATETIMEUNIT.NPY_FR_us
|
||
|
):
|
||
|
# If we can defer to timedelta.__hash__, do so, as that
|
||
|
# ensures the hash is invariant to our _reso.
|
||
|
# We can only defer for ns and us, as for these two resos we
|
||
|
# call _Timedelta.__new__ with the correct input in
|
||
|
# _timedelta_from_value_and_reso; so timedelta.__hash__
|
||
|
# will be correct
|
||
|
return timedelta.__hash__(self)
|
||
|
else:
|
||
|
# We want to ensure that two equivalent Timedelta objects
|
||
|
# have the same hash. So we try downcasting to the next-lowest
|
||
|
# resolution.
|
||
|
try:
|
||
|
obj = (<_Timedelta>self)._as_creso(<NPY_DATETIMEUNIT>(self._creso + 1))
|
||
|
except OutOfBoundsTimedelta:
|
||
|
# Doesn't fit, so we're off the hook
|
||
|
return hash(self._value)
|
||
|
else:
|
||
|
return hash(obj)
|
||
|
|
||
|
def __richcmp__(_Timedelta self, object other, int op):
|
||
|
cdef:
|
||
|
_Timedelta ots
|
||
|
|
||
|
if isinstance(other, _Timedelta):
|
||
|
ots = other
|
||
|
elif is_any_td_scalar(other):
|
||
|
try:
|
||
|
ots = Timedelta(other)
|
||
|
except OutOfBoundsTimedelta as err:
|
||
|
# GH#49021 pytimedelta.max overflows
|
||
|
if not PyDelta_Check(other):
|
||
|
# TODO: handle this case
|
||
|
raise
|
||
|
ltup = (self.days, self.seconds, self.microseconds, self.nanoseconds)
|
||
|
rtup = (other.days, other.seconds, other.microseconds, 0)
|
||
|
if op == Py_EQ:
|
||
|
return ltup == rtup
|
||
|
elif op == Py_NE:
|
||
|
return ltup != rtup
|
||
|
elif op == Py_LT:
|
||
|
return ltup < rtup
|
||
|
elif op == Py_LE:
|
||
|
return ltup <= rtup
|
||
|
elif op == Py_GT:
|
||
|
return ltup > rtup
|
||
|
elif op == Py_GE:
|
||
|
return ltup >= rtup
|
||
|
|
||
|
elif other is NaT:
|
||
|
return op == Py_NE
|
||
|
|
||
|
elif util.is_array(other):
|
||
|
if other.dtype.kind == "m":
|
||
|
return PyObject_RichCompare(self.asm8, other, op)
|
||
|
elif other.dtype.kind == "O":
|
||
|
# operate element-wise
|
||
|
return np.array(
|
||
|
[PyObject_RichCompare(self, x, op) for x in other],
|
||
|
dtype=bool,
|
||
|
)
|
||
|
if op == Py_EQ:
|
||
|
return np.zeros(other.shape, dtype=bool)
|
||
|
elif op == Py_NE:
|
||
|
return np.ones(other.shape, dtype=bool)
|
||
|
return NotImplemented # let other raise TypeError
|
||
|
|
||
|
else:
|
||
|
return NotImplemented
|
||
|
|
||
|
if self._creso == ots._creso:
|
||
|
return cmp_scalar(self._value, ots._value, op)
|
||
|
return self._compare_mismatched_resos(ots, op)
|
||
|
|
||
|
# TODO: re-use/share with Timestamp
|
||
|
cdef bint _compare_mismatched_resos(self, _Timedelta other, op):
|
||
|
# Can't just dispatch to numpy as they silently overflow and get it wrong
|
||
|
cdef:
|
||
|
npy_datetimestruct dts_self
|
||
|
npy_datetimestruct dts_other
|
||
|
|
||
|
# dispatch to the datetimestruct utils instead of writing new ones!
|
||
|
pandas_datetime_to_datetimestruct(self._value, self._creso, &dts_self)
|
||
|
pandas_datetime_to_datetimestruct(other._value, other._creso, &dts_other)
|
||
|
return cmp_dtstructs(&dts_self, &dts_other, op)
|
||
|
|
||
|
cdef bint _has_ns(self):
|
||
|
if self._creso == NPY_FR_ns:
|
||
|
return self._value % 1000 != 0
|
||
|
elif self._creso < NPY_FR_ns:
|
||
|
# i.e. seconds, millisecond, microsecond
|
||
|
return False
|
||
|
else:
|
||
|
raise NotImplementedError(self._creso)
|
||
|
|
||
|
cdef bint _is_in_pytimedelta_bounds(self):
|
||
|
"""
|
||
|
Check if we are within the bounds of datetime.timedelta.
|
||
|
"""
|
||
|
self._ensure_components()
|
||
|
return -999999999 <= self._d and self._d <= 999999999
|
||
|
|
||
|
cdef _ensure_components(_Timedelta self):
|
||
|
"""
|
||
|
compute the components
|
||
|
"""
|
||
|
if self._is_populated:
|
||
|
return
|
||
|
|
||
|
cdef:
|
||
|
pandas_timedeltastruct tds
|
||
|
|
||
|
pandas_timedelta_to_timedeltastruct(self._value, self._creso, &tds)
|
||
|
self._d = tds.days
|
||
|
self._h = tds.hrs
|
||
|
self._m = tds.min
|
||
|
self._s = tds.sec
|
||
|
self._ms = tds.ms
|
||
|
self._us = tds.us
|
||
|
self._ns = tds.ns
|
||
|
self._seconds = tds.seconds
|
||
|
self._microseconds = tds.microseconds
|
||
|
|
||
|
self._is_populated = 1
|
||
|
|
||
|
cpdef timedelta to_pytimedelta(_Timedelta self):
|
||
|
"""
|
||
|
Convert a pandas Timedelta object into a python ``datetime.timedelta`` object.
|
||
|
|
||
|
Timedelta objects are internally saved as numpy datetime64[ns] dtype.
|
||
|
Use to_pytimedelta() to convert to object dtype.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
datetime.timedelta or numpy.array of datetime.timedelta
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
to_timedelta : Convert argument to Timedelta type.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Any nanosecond resolution will be lost.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('3D')
|
||
|
>>> td
|
||
|
Timedelta('3 days 00:00:00')
|
||
|
>>> td.to_pytimedelta()
|
||
|
datetime.timedelta(days=3)
|
||
|
"""
|
||
|
if self._creso == NPY_FR_ns:
|
||
|
return timedelta(microseconds=int(self._value) / 1000)
|
||
|
|
||
|
# TODO(@WillAyd): is this the right way to use components?
|
||
|
self._ensure_components()
|
||
|
return timedelta(
|
||
|
days=self._d, seconds=self._seconds, microseconds=self._microseconds
|
||
|
)
|
||
|
|
||
|
def to_timedelta64(self) -> np.timedelta64:
|
||
|
"""
|
||
|
Return a numpy.timedelta64 object with 'ns' precision.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('3D')
|
||
|
>>> td
|
||
|
Timedelta('3 days 00:00:00')
|
||
|
>>> td.to_timedelta64()
|
||
|
numpy.timedelta64(259200000000000,'ns')
|
||
|
"""
|
||
|
cdef:
|
||
|
str abbrev = npy_unit_to_abbrev(self._creso)
|
||
|
# TODO: way to create a np.timedelta64 obj with the reso directly
|
||
|
# instead of having to get the abbrev?
|
||
|
return np.timedelta64(self._value, abbrev)
|
||
|
|
||
|
def to_numpy(self, dtype=None, copy=False) -> np.timedelta64:
|
||
|
"""
|
||
|
Convert the Timedelta to a NumPy timedelta64.
|
||
|
|
||
|
This is an alias method for `Timedelta.to_timedelta64()`. The dtype and
|
||
|
copy parameters are available here only for compatibility. Their values
|
||
|
will not affect the return value.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
numpy.timedelta64
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Series.to_numpy : Similar method for Series.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('3D')
|
||
|
>>> td
|
||
|
Timedelta('3 days 00:00:00')
|
||
|
>>> td.to_numpy()
|
||
|
numpy.timedelta64(259200000000000,'ns')
|
||
|
"""
|
||
|
if dtype is not None or copy is not False:
|
||
|
raise ValueError(
|
||
|
"Timedelta.to_numpy dtype and copy arguments are ignored"
|
||
|
)
|
||
|
return self.to_timedelta64()
|
||
|
|
||
|
def view(self, dtype):
|
||
|
"""
|
||
|
Array view compatibility.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
dtype : str or dtype
|
||
|
The dtype to view the underlying data as.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('3D')
|
||
|
>>> td
|
||
|
Timedelta('3 days 00:00:00')
|
||
|
>>> td.view(int)
|
||
|
259200000000000
|
||
|
"""
|
||
|
return np.timedelta64(self._value).view(dtype)
|
||
|
|
||
|
@property
|
||
|
def components(self):
|
||
|
"""
|
||
|
Return a components namedtuple-like.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('2 day 4 min 3 us 42 ns')
|
||
|
>>> td.components
|
||
|
Components(days=2, hours=0, minutes=4, seconds=0, milliseconds=0,
|
||
|
microseconds=3, nanoseconds=42)
|
||
|
"""
|
||
|
self._ensure_components()
|
||
|
# return the named tuple
|
||
|
return Components(self._d, self._h, self._m, self._s,
|
||
|
self._ms, self._us, self._ns)
|
||
|
|
||
|
@property
|
||
|
def asm8(self) -> np.timedelta64:
|
||
|
"""
|
||
|
Return a numpy timedelta64 array scalar view.
|
||
|
|
||
|
Provides access to the array scalar view (i.e. a combination of the
|
||
|
value and the units) associated with the numpy.timedelta64().view(),
|
||
|
including a 64-bit integer representation of the timedelta in
|
||
|
nanoseconds (Python int compatible).
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
numpy timedelta64 array scalar view
|
||
|
Array scalar view of the timedelta in nanoseconds.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('1 days 2 min 3 us 42 ns')
|
||
|
>>> td.asm8
|
||
|
numpy.timedelta64(86520000003042,'ns')
|
||
|
|
||
|
>>> td = pd.Timedelta('2 min 3 s')
|
||
|
>>> td.asm8
|
||
|
numpy.timedelta64(123000000000,'ns')
|
||
|
|
||
|
>>> td = pd.Timedelta('3 ms 5 us')
|
||
|
>>> td.asm8
|
||
|
numpy.timedelta64(3005000,'ns')
|
||
|
|
||
|
>>> td = pd.Timedelta(42, unit='ns')
|
||
|
>>> td.asm8
|
||
|
numpy.timedelta64(42,'ns')
|
||
|
"""
|
||
|
return self.to_timedelta64()
|
||
|
|
||
|
@property
|
||
|
def resolution_string(self) -> str:
|
||
|
"""
|
||
|
Return a string representing the lowest timedelta resolution.
|
||
|
|
||
|
Each timedelta has a defined resolution that represents the lowest OR
|
||
|
most granular level of precision. Each level of resolution is
|
||
|
represented by a short string as defined below:
|
||
|
|
||
|
Resolution: Return value
|
||
|
|
||
|
* Days: 'D'
|
||
|
* Hours: 'H'
|
||
|
* Minutes: 'T'
|
||
|
* Seconds: 'S'
|
||
|
* Milliseconds: 'L'
|
||
|
* Microseconds: 'U'
|
||
|
* Nanoseconds: 'N'
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
str
|
||
|
Timedelta resolution.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('1 days 2 min 3 us 42 ns')
|
||
|
>>> td.resolution_string
|
||
|
'N'
|
||
|
|
||
|
>>> td = pd.Timedelta('1 days 2 min 3 us')
|
||
|
>>> td.resolution_string
|
||
|
'U'
|
||
|
|
||
|
>>> td = pd.Timedelta('2 min 3 s')
|
||
|
>>> td.resolution_string
|
||
|
'S'
|
||
|
|
||
|
>>> td = pd.Timedelta(36, unit='us')
|
||
|
>>> td.resolution_string
|
||
|
'U'
|
||
|
"""
|
||
|
self._ensure_components()
|
||
|
if self._ns:
|
||
|
return "N"
|
||
|
elif self._us:
|
||
|
return "U"
|
||
|
elif self._ms:
|
||
|
return "L"
|
||
|
elif self._s:
|
||
|
return "S"
|
||
|
elif self._m:
|
||
|
return "T"
|
||
|
elif self._h:
|
||
|
return "H"
|
||
|
else:
|
||
|
return "D"
|
||
|
|
||
|
@property
|
||
|
def nanoseconds(self):
|
||
|
"""
|
||
|
Return the number of nanoseconds (n), where 0 <= n < 1 microsecond.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
int
|
||
|
Number of nanoseconds.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Timedelta.components : Return all attributes with assigned values
|
||
|
(i.e. days, hours, minutes, seconds, milliseconds, microseconds,
|
||
|
nanoseconds).
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
**Using string input**
|
||
|
|
||
|
>>> td = pd.Timedelta('1 days 2 min 3 us 42 ns')
|
||
|
|
||
|
>>> td.nanoseconds
|
||
|
42
|
||
|
|
||
|
**Using integer input**
|
||
|
|
||
|
>>> td = pd.Timedelta(42, unit='ns')
|
||
|
>>> td.nanoseconds
|
||
|
42
|
||
|
"""
|
||
|
self._ensure_components()
|
||
|
return self._ns
|
||
|
|
||
|
def _repr_base(self, format=None) -> str:
|
||
|
"""
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
format : None|all|sub_day|long
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
converted : string of a Timedelta
|
||
|
|
||
|
"""
|
||
|
cdef:
|
||
|
str sign, fmt
|
||
|
dict comp_dict
|
||
|
object subs
|
||
|
|
||
|
self._ensure_components()
|
||
|
|
||
|
if self._d < 0:
|
||
|
sign = " +"
|
||
|
else:
|
||
|
sign = " "
|
||
|
|
||
|
if format == "all":
|
||
|
fmt = ("{days} days{sign}{hours:02}:{minutes:02}:{seconds:02}."
|
||
|
"{milliseconds:03}{microseconds:03}{nanoseconds:03}")
|
||
|
else:
|
||
|
# if we have a partial day
|
||
|
subs = (self._h or self._m or self._s or
|
||
|
self._ms or self._us or self._ns)
|
||
|
|
||
|
if self._ms or self._us or self._ns:
|
||
|
seconds_fmt = "{seconds:02}.{milliseconds:03}{microseconds:03}"
|
||
|
if self._ns:
|
||
|
# GH#9309
|
||
|
seconds_fmt += "{nanoseconds:03}"
|
||
|
else:
|
||
|
seconds_fmt = "{seconds:02}"
|
||
|
|
||
|
if format == "sub_day" and not self._d:
|
||
|
fmt = "{hours:02}:{minutes:02}:" + seconds_fmt
|
||
|
elif subs or format == "long":
|
||
|
fmt = "{days} days{sign}{hours:02}:{minutes:02}:" + seconds_fmt
|
||
|
else:
|
||
|
fmt = "{days} days"
|
||
|
|
||
|
comp_dict = self.components._asdict()
|
||
|
comp_dict["sign"] = sign
|
||
|
|
||
|
return fmt.format(**comp_dict)
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
repr_based = self._repr_base(format="long")
|
||
|
return f"Timedelta('{repr_based}')"
|
||
|
|
||
|
def __str__(self) -> str:
|
||
|
return self._repr_base(format="long")
|
||
|
|
||
|
def __bool__(self) -> bool:
|
||
|
return self._value!= 0
|
||
|
|
||
|
def isoformat(self) -> str:
|
||
|
"""
|
||
|
Format the Timedelta as ISO 8601 Duration.
|
||
|
|
||
|
``P[n]Y[n]M[n]DT[n]H[n]M[n]S``, where the ``[n]`` s are replaced by the
|
||
|
values. See https://en.wikipedia.org/wiki/ISO_8601#Durations.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
str
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
Timestamp.isoformat : Function is used to convert the given
|
||
|
Timestamp object into the ISO format.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The longest component is days, whose value may be larger than
|
||
|
365.
|
||
|
Every component is always included, even if its value is 0.
|
||
|
Pandas uses nanosecond precision, so up to 9 decimal places may
|
||
|
be included in the seconds component.
|
||
|
Trailing 0's are removed from the seconds component after the decimal.
|
||
|
We do not 0 pad components, so it's `...T5H...`, not `...T05H...`
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta(days=6, minutes=50, seconds=3,
|
||
|
... milliseconds=10, microseconds=10, nanoseconds=12)
|
||
|
|
||
|
>>> td.isoformat()
|
||
|
'P6DT0H50M3.010010012S'
|
||
|
>>> pd.Timedelta(hours=1, seconds=10).isoformat()
|
||
|
'P0DT1H0M10S'
|
||
|
>>> pd.Timedelta(days=500.5).isoformat()
|
||
|
'P500DT12H0M0S'
|
||
|
"""
|
||
|
components = self.components
|
||
|
seconds = (f"{components.seconds}."
|
||
|
f"{components.milliseconds:0>3}"
|
||
|
f"{components.microseconds:0>3}"
|
||
|
f"{components.nanoseconds:0>3}")
|
||
|
# Trim unnecessary 0s, 1.000000000 -> 1
|
||
|
seconds = seconds.rstrip("0").rstrip(".")
|
||
|
tpl = (f"P{components.days}DT{components.hours}"
|
||
|
f"H{components.minutes}M{seconds}S")
|
||
|
return tpl
|
||
|
|
||
|
# ----------------------------------------------------------------
|
||
|
# Constructors
|
||
|
|
||
|
@classmethod
|
||
|
def _from_value_and_reso(cls, int64_t value, NPY_DATETIMEUNIT reso):
|
||
|
# exposing as classmethod for testing
|
||
|
return _timedelta_from_value_and_reso(cls, value, reso)
|
||
|
|
||
|
def as_unit(self, str unit, bint round_ok=True):
|
||
|
"""
|
||
|
Convert the underlying int64 representation to the given unit.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
unit : {"ns", "us", "ms", "s"}
|
||
|
round_ok : bool, default True
|
||
|
If False and the conversion requires rounding, raise.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
Timedelta
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('1001ms')
|
||
|
>>> td
|
||
|
Timedelta('0 days 00:00:01.001000')
|
||
|
>>> td.as_unit('s')
|
||
|
Timedelta('0 days 00:00:01')
|
||
|
"""
|
||
|
dtype = np.dtype(f"m8[{unit}]")
|
||
|
reso = get_unit_from_dtype(dtype)
|
||
|
return self._as_creso(reso, round_ok=round_ok)
|
||
|
|
||
|
@cython.cdivision(False)
|
||
|
cdef _Timedelta _as_creso(self, NPY_DATETIMEUNIT reso, bint round_ok=True):
|
||
|
cdef:
|
||
|
int64_t value
|
||
|
|
||
|
if reso == self._creso:
|
||
|
return self
|
||
|
|
||
|
try:
|
||
|
value = convert_reso(self._value, self._creso, reso, round_ok=round_ok)
|
||
|
except OverflowError as err:
|
||
|
unit = npy_unit_to_abbrev(reso)
|
||
|
raise OutOfBoundsTimedelta(
|
||
|
f"Cannot cast {self} to unit='{unit}' without overflow."
|
||
|
) from err
|
||
|
|
||
|
return type(self)._from_value_and_reso(value, reso=reso)
|
||
|
|
||
|
cpdef _maybe_cast_to_matching_resos(self, _Timedelta other):
|
||
|
"""
|
||
|
If _resos do not match, cast to the higher resolution, raising on overflow.
|
||
|
"""
|
||
|
if self._creso > other._creso:
|
||
|
other = other._as_creso(self._creso)
|
||
|
elif self._creso < other._creso:
|
||
|
self = self._as_creso(other._creso)
|
||
|
return self, other
|
||
|
|
||
|
|
||
|
# Python front end to C extension type _Timedelta
|
||
|
# This serves as the box for timedelta64
|
||
|
|
||
|
class Timedelta(_Timedelta):
|
||
|
"""
|
||
|
Represents a duration, the difference between two dates or times.
|
||
|
|
||
|
Timedelta is the pandas equivalent of python's ``datetime.timedelta``
|
||
|
and is interchangeable with it in most cases.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
value : Timedelta, timedelta, np.timedelta64, str, or int
|
||
|
unit : str, default 'ns'
|
||
|
Denote the unit of the input, if input is an integer.
|
||
|
|
||
|
Possible values:
|
||
|
|
||
|
* 'W', 'D', 'T', 'S', 'L', 'U', or 'N'
|
||
|
* 'days' or 'day'
|
||
|
* 'hours', 'hour', 'hr', or 'h'
|
||
|
* 'minutes', 'minute', 'min', or 'm'
|
||
|
* 'seconds', 'second', or 'sec'
|
||
|
* 'milliseconds', 'millisecond', 'millis', or 'milli'
|
||
|
* 'microseconds', 'microsecond', 'micros', or 'micro'
|
||
|
* 'nanoseconds', 'nanosecond', 'nanos', 'nano', or 'ns'.
|
||
|
|
||
|
**kwargs
|
||
|
Available kwargs: {days, seconds, microseconds,
|
||
|
milliseconds, minutes, hours, weeks}.
|
||
|
Values for construction in compat with datetime.timedelta.
|
||
|
Numpy ints and floats will be coerced to python ints and floats.
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
The constructor may take in either both values of value and unit or
|
||
|
kwargs as above. Either one of them must be used during initialization
|
||
|
|
||
|
The ``.value`` attribute is always in ns.
|
||
|
|
||
|
If the precision is higher than nanoseconds, the precision of the duration is
|
||
|
truncated to nanoseconds.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
Here we initialize Timedelta object with both value and unit
|
||
|
|
||
|
>>> td = pd.Timedelta(1, "d")
|
||
|
>>> td
|
||
|
Timedelta('1 days 00:00:00')
|
||
|
|
||
|
Here we initialize the Timedelta object with kwargs
|
||
|
|
||
|
>>> td2 = pd.Timedelta(days=1)
|
||
|
>>> td2
|
||
|
Timedelta('1 days 00:00:00')
|
||
|
|
||
|
We see that either way we get the same result
|
||
|
"""
|
||
|
|
||
|
_req_any_kwargs_new = {"weeks", "days", "hours", "minutes", "seconds",
|
||
|
"milliseconds", "microseconds", "nanoseconds"}
|
||
|
|
||
|
def __new__(cls, object value=_no_input, unit=None, **kwargs):
|
||
|
if value is _no_input:
|
||
|
if not len(kwargs):
|
||
|
raise ValueError("cannot construct a Timedelta without a "
|
||
|
"value/unit or descriptive keywords "
|
||
|
"(days,seconds....)")
|
||
|
|
||
|
kwargs = {key: _to_py_int_float(kwargs[key]) for key in kwargs}
|
||
|
|
||
|
unsupported_kwargs = set(kwargs)
|
||
|
unsupported_kwargs.difference_update(cls._req_any_kwargs_new)
|
||
|
if unsupported_kwargs or not cls._req_any_kwargs_new.intersection(kwargs):
|
||
|
raise ValueError(
|
||
|
"cannot construct a Timedelta from the passed arguments, "
|
||
|
"allowed keywords are "
|
||
|
"[weeks, days, hours, minutes, seconds, "
|
||
|
"milliseconds, microseconds, nanoseconds]"
|
||
|
)
|
||
|
|
||
|
# GH43764, convert any input to nanoseconds first and then
|
||
|
# create the timestamp. This ensures that any potential
|
||
|
# nanosecond contributions from kwargs parsed as floats
|
||
|
# are taken into consideration.
|
||
|
seconds = int((
|
||
|
(
|
||
|
(kwargs.get("days", 0) + kwargs.get("weeks", 0) * 7) * 24
|
||
|
+ kwargs.get("hours", 0)
|
||
|
) * 3600
|
||
|
+ kwargs.get("minutes", 0) * 60
|
||
|
+ kwargs.get("seconds", 0)
|
||
|
) * 1_000_000_000
|
||
|
)
|
||
|
|
||
|
value = np.timedelta64(
|
||
|
int(kwargs.get("nanoseconds", 0))
|
||
|
+ int(kwargs.get("microseconds", 0) * 1_000)
|
||
|
+ int(kwargs.get("milliseconds", 0) * 1_000_000)
|
||
|
+ seconds
|
||
|
)
|
||
|
if unit in {"Y", "y", "M"}:
|
||
|
raise ValueError(
|
||
|
"Units 'M', 'Y', and 'y' are no longer supported, as they do not "
|
||
|
"represent unambiguous timedelta values durations."
|
||
|
)
|
||
|
|
||
|
# GH 30543 if pd.Timedelta already passed, return it
|
||
|
# check that only value is passed
|
||
|
if isinstance(value, _Timedelta):
|
||
|
# 'unit' is benign in this case, but e.g. days or seconds
|
||
|
# doesn't make sense here.
|
||
|
if len(kwargs):
|
||
|
# GH#48898
|
||
|
raise ValueError(
|
||
|
"Cannot pass both a Timedelta input and timedelta keyword "
|
||
|
"arguments, got "
|
||
|
f"{list(kwargs.keys())}"
|
||
|
)
|
||
|
return value
|
||
|
elif isinstance(value, str):
|
||
|
if unit is not None:
|
||
|
raise ValueError("unit must not be specified if the value is a str")
|
||
|
if (len(value) > 0 and value[0] == "P") or (
|
||
|
len(value) > 1 and value[:2] == "-P"
|
||
|
):
|
||
|
value = parse_iso_format_string(value)
|
||
|
else:
|
||
|
value = parse_timedelta_string(value)
|
||
|
value = np.timedelta64(value)
|
||
|
elif PyDelta_Check(value):
|
||
|
# pytimedelta object -> microsecond resolution
|
||
|
new_value = delta_to_nanoseconds(
|
||
|
value, reso=NPY_DATETIMEUNIT.NPY_FR_us
|
||
|
)
|
||
|
return cls._from_value_and_reso(
|
||
|
new_value, reso=NPY_DATETIMEUNIT.NPY_FR_us
|
||
|
)
|
||
|
elif is_timedelta64_object(value):
|
||
|
# Retain the resolution if possible, otherwise cast to the nearest
|
||
|
# supported resolution.
|
||
|
new_value = get_timedelta64_value(value)
|
||
|
if new_value == NPY_NAT:
|
||
|
# i.e. np.timedelta64("NaT")
|
||
|
return NaT
|
||
|
|
||
|
reso = get_datetime64_unit(value)
|
||
|
if not (is_supported_unit(reso) or
|
||
|
reso in [NPY_DATETIMEUNIT.NPY_FR_m,
|
||
|
NPY_DATETIMEUNIT.NPY_FR_h,
|
||
|
NPY_DATETIMEUNIT.NPY_FR_D,
|
||
|
NPY_DATETIMEUNIT.NPY_FR_W,
|
||
|
NPY_DATETIMEUNIT.NPY_FR_GENERIC]):
|
||
|
err = npy_unit_to_abbrev(reso)
|
||
|
raise ValueError(
|
||
|
f"Unit {err} is not supported. "
|
||
|
"Only unambiguous timedelta values durations are supported. "
|
||
|
"Allowed units are 'W', 'D', 'h', 'm', 's', 'ms', 'us', 'ns'")
|
||
|
|
||
|
new_reso = get_supported_reso(reso)
|
||
|
if reso != NPY_DATETIMEUNIT.NPY_FR_GENERIC:
|
||
|
try:
|
||
|
new_value = convert_reso(
|
||
|
new_value,
|
||
|
reso,
|
||
|
new_reso,
|
||
|
round_ok=True,
|
||
|
)
|
||
|
except (OverflowError, OutOfBoundsDatetime) as err:
|
||
|
raise OutOfBoundsTimedelta(value) from err
|
||
|
return cls._from_value_and_reso(new_value, reso=new_reso)
|
||
|
|
||
|
elif is_tick_object(value):
|
||
|
new_reso = get_supported_reso(value._creso)
|
||
|
new_value = delta_to_nanoseconds(value, reso=new_reso)
|
||
|
return cls._from_value_and_reso(new_value, reso=new_reso)
|
||
|
|
||
|
elif is_integer_object(value) or is_float_object(value):
|
||
|
# unit=None is de-facto 'ns'
|
||
|
unit = parse_timedelta_unit(unit)
|
||
|
value = convert_to_timedelta64(value, unit)
|
||
|
elif checknull_with_nat_and_na(value):
|
||
|
return NaT
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
"Value must be Timedelta, string, integer, "
|
||
|
f"float, timedelta or convertible, not {type(value).__name__}"
|
||
|
)
|
||
|
|
||
|
if is_timedelta64_object(value):
|
||
|
value = value.view("i8")
|
||
|
|
||
|
# nat
|
||
|
if value == NPY_NAT:
|
||
|
return NaT
|
||
|
|
||
|
return _timedelta_from_value_and_reso(cls, value, NPY_FR_ns)
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
if len(state) == 1:
|
||
|
# older pickle, only supported nanosecond
|
||
|
value = state[0]
|
||
|
reso = NPY_FR_ns
|
||
|
else:
|
||
|
value, reso = state
|
||
|
self._value= value
|
||
|
self._creso = reso
|
||
|
|
||
|
def __reduce__(self):
|
||
|
object_state = self._value, self._creso
|
||
|
return (_timedelta_unpickle, object_state)
|
||
|
|
||
|
@cython.cdivision(True)
|
||
|
def _round(self, freq, mode):
|
||
|
cdef:
|
||
|
int64_t result, unit
|
||
|
ndarray[int64_t] arr
|
||
|
|
||
|
from pandas._libs.tslibs.offsets import to_offset
|
||
|
|
||
|
to_offset(freq).nanos # raises on non-fixed freq
|
||
|
unit = delta_to_nanoseconds(to_offset(freq), self._creso)
|
||
|
|
||
|
arr = np.array([self._value], dtype="i8")
|
||
|
try:
|
||
|
result = round_nsint64(arr, mode, unit)[0]
|
||
|
except OverflowError as err:
|
||
|
raise OutOfBoundsTimedelta(
|
||
|
f"Cannot round {self} to freq={freq} without overflow"
|
||
|
) from err
|
||
|
return Timedelta._from_value_and_reso(result, self._creso)
|
||
|
|
||
|
def round(self, freq):
|
||
|
"""
|
||
|
Round the Timedelta to the specified resolution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
freq : str
|
||
|
Frequency string indicating the rounding resolution.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
a new Timedelta rounded to the given resolution of `freq`
|
||
|
|
||
|
Raises
|
||
|
------
|
||
|
ValueError if the freq cannot be converted
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('1001ms')
|
||
|
>>> td
|
||
|
Timedelta('0 days 00:00:01.001000')
|
||
|
>>> td.round('s')
|
||
|
Timedelta('0 days 00:00:01')
|
||
|
"""
|
||
|
return self._round(freq, RoundTo.NEAREST_HALF_EVEN)
|
||
|
|
||
|
def floor(self, freq):
|
||
|
"""
|
||
|
Return a new Timedelta floored to this resolution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
freq : str
|
||
|
Frequency string indicating the flooring resolution.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('1001ms')
|
||
|
>>> td
|
||
|
Timedelta('0 days 00:00:01.001000')
|
||
|
>>> td.floor('s')
|
||
|
Timedelta('0 days 00:00:01')
|
||
|
"""
|
||
|
return self._round(freq, RoundTo.MINUS_INFTY)
|
||
|
|
||
|
def ceil(self, freq):
|
||
|
"""
|
||
|
Return a new Timedelta ceiled to this resolution.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
freq : str
|
||
|
Frequency string indicating the ceiling resolution.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> td = pd.Timedelta('1001ms')
|
||
|
>>> td
|
||
|
Timedelta('0 days 00:00:01.001000')
|
||
|
>>> td.ceil('s')
|
||
|
Timedelta('0 days 00:00:02')
|
||
|
"""
|
||
|
return self._round(freq, RoundTo.PLUS_INFTY)
|
||
|
|
||
|
# ----------------------------------------------------------------
|
||
|
# Arithmetic Methods
|
||
|
# TODO: Can some of these be defined in the cython class?
|
||
|
|
||
|
__neg__ = _op_unary_method(lambda x: -x, "__neg__")
|
||
|
__pos__ = _op_unary_method(lambda x: x, "__pos__")
|
||
|
__abs__ = _op_unary_method(lambda x: abs(x), "__abs__")
|
||
|
|
||
|
__add__ = _binary_op_method_timedeltalike(lambda x, y: x + y, "__add__")
|
||
|
__radd__ = _binary_op_method_timedeltalike(lambda x, y: x + y, "__radd__")
|
||
|
__sub__ = _binary_op_method_timedeltalike(lambda x, y: x - y, "__sub__")
|
||
|
__rsub__ = _binary_op_method_timedeltalike(lambda x, y: y - x, "__rsub__")
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
if is_integer_object(other) or is_float_object(other):
|
||
|
if util.is_nan(other):
|
||
|
# np.nan * timedelta -> np.timedelta64("NaT"), in this case NaT
|
||
|
return NaT
|
||
|
|
||
|
return _timedelta_from_value_and_reso(
|
||
|
Timedelta,
|
||
|
<int64_t>(other * self._value),
|
||
|
reso=self._creso,
|
||
|
)
|
||
|
|
||
|
elif is_array(other):
|
||
|
if other.ndim == 0:
|
||
|
# see also: item_from_zerodim
|
||
|
item = cnp.PyArray_ToScalar(cnp.PyArray_DATA(other), other)
|
||
|
return self.__mul__(item)
|
||
|
return other * self.to_timedelta64()
|
||
|
|
||
|
return NotImplemented
|
||
|
|
||
|
__rmul__ = __mul__
|
||
|
|
||
|
def __truediv__(self, other):
|
||
|
if _should_cast_to_timedelta(other):
|
||
|
# We interpret NaT as timedelta64("NaT")
|
||
|
other = Timedelta(other)
|
||
|
if other is NaT:
|
||
|
return np.nan
|
||
|
if other._creso != self._creso:
|
||
|
self, other = self._maybe_cast_to_matching_resos(other)
|
||
|
return self._value/ float(other._value)
|
||
|
|
||
|
elif is_integer_object(other) or is_float_object(other):
|
||
|
# integers or floats
|
||
|
if util.is_nan(other):
|
||
|
return NaT
|
||
|
return Timedelta._from_value_and_reso(
|
||
|
<int64_t>(self._value/ other), self._creso
|
||
|
)
|
||
|
|
||
|
elif is_array(other):
|
||
|
if other.ndim == 0:
|
||
|
# see also: item_from_zerodim
|
||
|
item = cnp.PyArray_ToScalar(cnp.PyArray_DATA(other), other)
|
||
|
return self.__truediv__(item)
|
||
|
return self.to_timedelta64() / other
|
||
|
|
||
|
return NotImplemented
|
||
|
|
||
|
def __rtruediv__(self, other):
|
||
|
if _should_cast_to_timedelta(other):
|
||
|
# We interpret NaT as timedelta64("NaT")
|
||
|
other = Timedelta(other)
|
||
|
if other is NaT:
|
||
|
return np.nan
|
||
|
if self._creso != other._creso:
|
||
|
self, other = self._maybe_cast_to_matching_resos(other)
|
||
|
return float(other._value) / self._value
|
||
|
|
||
|
elif is_array(other):
|
||
|
if other.ndim == 0:
|
||
|
# see also: item_from_zerodim
|
||
|
item = cnp.PyArray_ToScalar(cnp.PyArray_DATA(other), other)
|
||
|
return self.__rtruediv__(item)
|
||
|
elif other.dtype.kind == "O":
|
||
|
# GH#31869
|
||
|
return np.array([x / self for x in other])
|
||
|
|
||
|
# TODO: if other.dtype.kind == "m" and other.dtype != self.asm8.dtype
|
||
|
# then should disallow for consistency with scalar behavior; requires
|
||
|
# deprecation cycle. (or changing scalar behavior)
|
||
|
return other / self.to_timedelta64()
|
||
|
|
||
|
return NotImplemented
|
||
|
|
||
|
def __floordiv__(self, other):
|
||
|
# numpy does not implement floordiv for timedelta64 dtype, so we cannot
|
||
|
# just defer
|
||
|
if _should_cast_to_timedelta(other):
|
||
|
# We interpret NaT as timedelta64("NaT")
|
||
|
other = Timedelta(other)
|
||
|
if other is NaT:
|
||
|
return np.nan
|
||
|
if self._creso != other._creso:
|
||
|
self, other = self._maybe_cast_to_matching_resos(other)
|
||
|
return self._value// other._value
|
||
|
|
||
|
elif is_integer_object(other) or is_float_object(other):
|
||
|
if util.is_nan(other):
|
||
|
return NaT
|
||
|
return type(self)._from_value_and_reso(self._value// other, self._creso)
|
||
|
|
||
|
elif is_array(other):
|
||
|
if other.ndim == 0:
|
||
|
# see also: item_from_zerodim
|
||
|
item = cnp.PyArray_ToScalar(cnp.PyArray_DATA(other), other)
|
||
|
return self.__floordiv__(item)
|
||
|
|
||
|
if other.dtype.kind == "m":
|
||
|
# also timedelta-like
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.filterwarnings(
|
||
|
"ignore",
|
||
|
"invalid value encountered in floor_divide",
|
||
|
RuntimeWarning
|
||
|
)
|
||
|
result = self.asm8 // other
|
||
|
mask = other.view("i8") == NPY_NAT
|
||
|
if mask.any():
|
||
|
# We differ from numpy here
|
||
|
result = result.astype("f8")
|
||
|
result[mask] = np.nan
|
||
|
return result
|
||
|
|
||
|
elif other.dtype.kind in "iuf":
|
||
|
if other.ndim == 0:
|
||
|
return self // other.item()
|
||
|
else:
|
||
|
return self.to_timedelta64() // other
|
||
|
|
||
|
raise TypeError(f"Invalid dtype {other.dtype} for __floordiv__")
|
||
|
|
||
|
return NotImplemented
|
||
|
|
||
|
def __rfloordiv__(self, other):
|
||
|
# numpy does not implement floordiv for timedelta64 dtype, so we cannot
|
||
|
# just defer
|
||
|
if _should_cast_to_timedelta(other):
|
||
|
# We interpret NaT as timedelta64("NaT")
|
||
|
other = Timedelta(other)
|
||
|
if other is NaT:
|
||
|
return np.nan
|
||
|
if self._creso != other._creso:
|
||
|
self, other = self._maybe_cast_to_matching_resos(other)
|
||
|
return other._value// self._value
|
||
|
|
||
|
elif is_array(other):
|
||
|
if other.ndim == 0:
|
||
|
# see also: item_from_zerodim
|
||
|
item = cnp.PyArray_ToScalar(cnp.PyArray_DATA(other), other)
|
||
|
return self.__rfloordiv__(item)
|
||
|
|
||
|
if other.dtype.kind == "m":
|
||
|
# also timedelta-like
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.filterwarnings(
|
||
|
"ignore",
|
||
|
"invalid value encountered in floor_divide",
|
||
|
RuntimeWarning
|
||
|
)
|
||
|
result = other // self.asm8
|
||
|
mask = other.view("i8") == NPY_NAT
|
||
|
if mask.any():
|
||
|
# We differ from numpy here
|
||
|
result = result.astype("f8")
|
||
|
result[mask] = np.nan
|
||
|
return result
|
||
|
|
||
|
# Includes integer array // Timedelta, disallowed in GH#19761
|
||
|
raise TypeError(f"Invalid dtype {other.dtype} for __floordiv__")
|
||
|
|
||
|
return NotImplemented
|
||
|
|
||
|
def __mod__(self, other):
|
||
|
# Naive implementation, room for optimization
|
||
|
return self.__divmod__(other)[1]
|
||
|
|
||
|
def __rmod__(self, other):
|
||
|
# Naive implementation, room for optimization
|
||
|
return self.__rdivmod__(other)[1]
|
||
|
|
||
|
def __divmod__(self, other):
|
||
|
# Naive implementation, room for optimization
|
||
|
div = self // other
|
||
|
return div, self - div * other
|
||
|
|
||
|
def __rdivmod__(self, other):
|
||
|
# Naive implementation, room for optimization
|
||
|
div = other // self
|
||
|
return div, other - div * self
|
||
|
|
||
|
|
||
|
def truediv_object_array(ndarray left, ndarray right):
|
||
|
cdef:
|
||
|
ndarray[object] result = np.empty((<object>left).shape, dtype=object)
|
||
|
object td64 # really timedelta64 if we find a way to declare that
|
||
|
object obj, res_value
|
||
|
_Timedelta td
|
||
|
Py_ssize_t i
|
||
|
|
||
|
for i in range(len(left)):
|
||
|
td64 = left[i]
|
||
|
obj = right[i]
|
||
|
|
||
|
if get_timedelta64_value(td64) == NPY_NAT:
|
||
|
# td here should be interpreted as a td64 NaT
|
||
|
if _should_cast_to_timedelta(obj):
|
||
|
res_value = np.nan
|
||
|
else:
|
||
|
# if its a number then let numpy handle division, otherwise
|
||
|
# numpy will raise
|
||
|
res_value = td64 / obj
|
||
|
else:
|
||
|
td = Timedelta(td64)
|
||
|
res_value = td / obj
|
||
|
|
||
|
result[i] = res_value
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def floordiv_object_array(ndarray left, ndarray right):
|
||
|
cdef:
|
||
|
ndarray[object] result = np.empty((<object>left).shape, dtype=object)
|
||
|
object td64 # really timedelta64 if we find a way to declare that
|
||
|
object obj, res_value
|
||
|
_Timedelta td
|
||
|
Py_ssize_t i
|
||
|
|
||
|
for i in range(len(left)):
|
||
|
td64 = left[i]
|
||
|
obj = right[i]
|
||
|
|
||
|
if get_timedelta64_value(td64) == NPY_NAT:
|
||
|
# td here should be interpreted as a td64 NaT
|
||
|
if _should_cast_to_timedelta(obj):
|
||
|
res_value = np.nan
|
||
|
else:
|
||
|
# if its a number then let numpy handle division, otherwise
|
||
|
# numpy will raise
|
||
|
res_value = td64 // obj
|
||
|
else:
|
||
|
td = Timedelta(td64)
|
||
|
res_value = td // obj
|
||
|
|
||
|
result[i] = res_value
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
cdef bint is_any_td_scalar(object obj):
|
||
|
"""
|
||
|
Cython equivalent for `isinstance(obj, (timedelta, np.timedelta64, Tick))`
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
obj : object
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
bool
|
||
|
"""
|
||
|
return (
|
||
|
PyDelta_Check(obj) or is_timedelta64_object(obj) or is_tick_object(obj)
|
||
|
)
|
||
|
|
||
|
|
||
|
cdef bint _should_cast_to_timedelta(object obj):
|
||
|
"""
|
||
|
Should we treat this object as a Timedelta for the purpose of a binary op
|
||
|
"""
|
||
|
return (
|
||
|
is_any_td_scalar(obj) or obj is None or obj is NaT or isinstance(obj, str)
|
||
|
)
|