Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

140 lines
4.2 KiB

from __future__ import annotations
from typing import TYPE_CHECKING
import numpy as np
from pandas.core.dtypes.missing import remove_na_arraylike
from pandas import (
DataFrame,
MultiIndex,
Series,
concat,
)
from pandas.plotting._matplotlib.misc import unpack_single_str_list
if TYPE_CHECKING:
from pandas._typing import IndexLabel
def create_iter_data_given_by(
data: DataFrame, kind: str = "hist"
) -> dict[str, DataFrame | Series]:
"""
Create data for iteration given `by` is assigned or not, and it is only
used in both hist and boxplot.
If `by` is assigned, return a dictionary of DataFrames in which the key of
dictionary is the values in groups.
If `by` is not assigned, return input as is, and this preserves current
status of iter_data.
Parameters
----------
data : reformatted grouped data from `_compute_plot_data` method.
kind : str, plot kind. This function is only used for `hist` and `box` plots.
Returns
-------
iter_data : DataFrame or Dictionary of DataFrames
Examples
--------
If `by` is assigned:
>>> import numpy as np
>>> tuples = [('h1', 'a'), ('h1', 'b'), ('h2', 'a'), ('h2', 'b')]
>>> mi = MultiIndex.from_tuples(tuples)
>>> value = [[1, 3, np.nan, np.nan],
... [3, 4, np.nan, np.nan], [np.nan, np.nan, 5, 6]]
>>> data = DataFrame(value, columns=mi)
>>> create_iter_data_given_by(data)
{'h1': h1
a b
0 1.0 3.0
1 3.0 4.0
2 NaN NaN, 'h2': h2
a b
0 NaN NaN
1 NaN NaN
2 5.0 6.0}
"""
# For `hist` plot, before transformation, the values in level 0 are values
# in groups and subplot titles, and later used for column subselection and
# iteration; For `box` plot, values in level 1 are column names to show,
# and are used for iteration and as subplots titles.
if kind == "hist":
level = 0
else:
level = 1
# Select sub-columns based on the value of level of MI, and if `by` is
# assigned, data must be a MI DataFrame
assert isinstance(data.columns, MultiIndex)
return {
col: data.loc[:, data.columns.get_level_values(level) == col]
for col in data.columns.levels[level]
}
def reconstruct_data_with_by(
data: DataFrame, by: IndexLabel, cols: IndexLabel
) -> DataFrame:
"""
Internal function to group data, and reassign multiindex column names onto the
result in order to let grouped data be used in _compute_plot_data method.
Parameters
----------
data : Original DataFrame to plot
by : grouped `by` parameter selected by users
cols : columns of data set (excluding columns used in `by`)
Returns
-------
Output is the reconstructed DataFrame with MultiIndex columns. The first level
of MI is unique values of groups, and second level of MI is the columns
selected by users.
Examples
--------
>>> d = {'h': ['h1', 'h1', 'h2'], 'a': [1, 3, 5], 'b': [3, 4, 6]}
>>> df = DataFrame(d)
>>> reconstruct_data_with_by(df, by='h', cols=['a', 'b'])
h1 h2
a b a b
0 1.0 3.0 NaN NaN
1 3.0 4.0 NaN NaN
2 NaN NaN 5.0 6.0
"""
by_modified = unpack_single_str_list(by)
grouped = data.groupby(by_modified)
data_list = []
for key, group in grouped:
# error: List item 1 has incompatible type "Union[Hashable,
# Sequence[Hashable]]"; expected "Iterable[Hashable]"
columns = MultiIndex.from_product([[key], cols]) # type: ignore[list-item]
sub_group = group[cols]
sub_group.columns = columns
data_list.append(sub_group)
data = concat(data_list, axis=1)
return data
def reformat_hist_y_given_by(
y: Series | np.ndarray, by: IndexLabel | None
) -> Series | np.ndarray:
"""Internal function to reformat y given `by` is applied or not for hist plot.
If by is None, input y is 1-d with NaN removed; and if by is not None, groupby
will take place and input y is multi-dimensional array.
"""
if by is not None and len(y.shape) > 1:
return np.array([remove_na_arraylike(col) for col in y.T]).T
return remove_na_arraylike(y)