You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
463 lines
16 KiB
463 lines
16 KiB
1 year ago
|
from copy import (
|
||
|
copy,
|
||
|
deepcopy,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas.core.dtypes.common import is_scalar
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Series,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
# ----------------------------------------------------------------------
|
||
|
# Generic types test cases
|
||
|
|
||
|
|
||
|
def construct(box, shape, value=None, dtype=None, **kwargs):
|
||
|
"""
|
||
|
construct an object for the given shape
|
||
|
if value is specified use that if its a scalar
|
||
|
if value is an array, repeat it as needed
|
||
|
"""
|
||
|
if isinstance(shape, int):
|
||
|
shape = tuple([shape] * box._AXIS_LEN)
|
||
|
if value is not None:
|
||
|
if is_scalar(value):
|
||
|
if value == "empty":
|
||
|
arr = None
|
||
|
dtype = np.float64
|
||
|
|
||
|
# remove the info axis
|
||
|
kwargs.pop(box._info_axis_name, None)
|
||
|
else:
|
||
|
arr = np.empty(shape, dtype=dtype)
|
||
|
arr.fill(value)
|
||
|
else:
|
||
|
fshape = np.prod(shape)
|
||
|
arr = value.ravel()
|
||
|
new_shape = fshape / arr.shape[0]
|
||
|
if fshape % arr.shape[0] != 0:
|
||
|
raise Exception("invalid value passed in construct")
|
||
|
|
||
|
arr = np.repeat(arr, new_shape).reshape(shape)
|
||
|
else:
|
||
|
arr = np.random.default_rng(2).standard_normal(shape)
|
||
|
return box(arr, dtype=dtype, **kwargs)
|
||
|
|
||
|
|
||
|
class TestGeneric:
|
||
|
@pytest.mark.parametrize(
|
||
|
"func",
|
||
|
[
|
||
|
str.lower,
|
||
|
{x: x.lower() for x in list("ABCD")},
|
||
|
Series({x: x.lower() for x in list("ABCD")}),
|
||
|
],
|
||
|
)
|
||
|
def test_rename(self, frame_or_series, func):
|
||
|
# single axis
|
||
|
idx = list("ABCD")
|
||
|
|
||
|
for axis in frame_or_series._AXIS_ORDERS:
|
||
|
kwargs = {axis: idx}
|
||
|
obj = construct(frame_or_series, 4, **kwargs)
|
||
|
|
||
|
# rename a single axis
|
||
|
result = obj.rename(**{axis: func})
|
||
|
expected = obj.copy()
|
||
|
setattr(expected, axis, list("abcd"))
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_get_numeric_data(self, frame_or_series):
|
||
|
n = 4
|
||
|
kwargs = {
|
||
|
frame_or_series._get_axis_name(i): list(range(n))
|
||
|
for i in range(frame_or_series._AXIS_LEN)
|
||
|
}
|
||
|
|
||
|
# get the numeric data
|
||
|
o = construct(frame_or_series, n, **kwargs)
|
||
|
result = o._get_numeric_data()
|
||
|
tm.assert_equal(result, o)
|
||
|
|
||
|
# non-inclusion
|
||
|
result = o._get_bool_data()
|
||
|
expected = construct(frame_or_series, n, value="empty", **kwargs)
|
||
|
if isinstance(o, DataFrame):
|
||
|
# preserve columns dtype
|
||
|
expected.columns = o.columns[:0]
|
||
|
# https://github.com/pandas-dev/pandas/issues/50862
|
||
|
tm.assert_equal(result.reset_index(drop=True), expected)
|
||
|
|
||
|
# get the bool data
|
||
|
arr = np.array([True, True, False, True])
|
||
|
o = construct(frame_or_series, n, value=arr, **kwargs)
|
||
|
result = o._get_numeric_data()
|
||
|
tm.assert_equal(result, o)
|
||
|
|
||
|
def test_nonzero(self, frame_or_series):
|
||
|
# GH 4633
|
||
|
# look at the boolean/nonzero behavior for objects
|
||
|
obj = construct(frame_or_series, shape=4)
|
||
|
msg = f"The truth value of a {frame_or_series.__name__} is ambiguous"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
bool(obj == 0)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
bool(obj == 1)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
bool(obj)
|
||
|
|
||
|
obj = construct(frame_or_series, shape=4, value=1)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
bool(obj == 0)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
bool(obj == 1)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
bool(obj)
|
||
|
|
||
|
obj = construct(frame_or_series, shape=4, value=np.nan)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
bool(obj == 0)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
bool(obj == 1)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
bool(obj)
|
||
|
|
||
|
# empty
|
||
|
obj = construct(frame_or_series, shape=0)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
bool(obj)
|
||
|
|
||
|
# invalid behaviors
|
||
|
|
||
|
obj1 = construct(frame_or_series, shape=4, value=1)
|
||
|
obj2 = construct(frame_or_series, shape=4, value=1)
|
||
|
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
if obj1:
|
||
|
pass
|
||
|
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
obj1 and obj2
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
obj1 or obj2
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
not obj1
|
||
|
|
||
|
def test_frame_or_series_compound_dtypes(self, frame_or_series):
|
||
|
# see gh-5191
|
||
|
# Compound dtypes should raise NotImplementedError.
|
||
|
|
||
|
def f(dtype):
|
||
|
return construct(frame_or_series, shape=3, value=1, dtype=dtype)
|
||
|
|
||
|
msg = (
|
||
|
"compound dtypes are not implemented "
|
||
|
f"in the {frame_or_series.__name__} constructor"
|
||
|
)
|
||
|
|
||
|
with pytest.raises(NotImplementedError, match=msg):
|
||
|
f([("A", "datetime64[h]"), ("B", "str"), ("C", "int32")])
|
||
|
|
||
|
# these work (though results may be unexpected)
|
||
|
f("int64")
|
||
|
f("float64")
|
||
|
f("M8[ns]")
|
||
|
|
||
|
def test_metadata_propagation(self, frame_or_series):
|
||
|
# check that the metadata matches up on the resulting ops
|
||
|
|
||
|
o = construct(frame_or_series, shape=3)
|
||
|
o.name = "foo"
|
||
|
o2 = construct(frame_or_series, shape=3)
|
||
|
o2.name = "bar"
|
||
|
|
||
|
# ----------
|
||
|
# preserving
|
||
|
# ----------
|
||
|
|
||
|
# simple ops with scalars
|
||
|
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]:
|
||
|
result = getattr(o, op)(1)
|
||
|
tm.assert_metadata_equivalent(o, result)
|
||
|
|
||
|
# ops with like
|
||
|
for op in ["__add__", "__sub__", "__truediv__", "__mul__"]:
|
||
|
result = getattr(o, op)(o)
|
||
|
tm.assert_metadata_equivalent(o, result)
|
||
|
|
||
|
# simple boolean
|
||
|
for op in ["__eq__", "__le__", "__ge__"]:
|
||
|
v1 = getattr(o, op)(o)
|
||
|
tm.assert_metadata_equivalent(o, v1)
|
||
|
tm.assert_metadata_equivalent(o, v1 & v1)
|
||
|
tm.assert_metadata_equivalent(o, v1 | v1)
|
||
|
|
||
|
# combine_first
|
||
|
result = o.combine_first(o2)
|
||
|
tm.assert_metadata_equivalent(o, result)
|
||
|
|
||
|
# ---------------------------
|
||
|
# non-preserving (by default)
|
||
|
# ---------------------------
|
||
|
|
||
|
# add non-like
|
||
|
result = o + o2
|
||
|
tm.assert_metadata_equivalent(result)
|
||
|
|
||
|
# simple boolean
|
||
|
for op in ["__eq__", "__le__", "__ge__"]:
|
||
|
# this is a name matching op
|
||
|
v1 = getattr(o, op)(o)
|
||
|
v2 = getattr(o, op)(o2)
|
||
|
tm.assert_metadata_equivalent(v2)
|
||
|
tm.assert_metadata_equivalent(v1 & v2)
|
||
|
tm.assert_metadata_equivalent(v1 | v2)
|
||
|
|
||
|
def test_size_compat(self, frame_or_series):
|
||
|
# GH8846
|
||
|
# size property should be defined
|
||
|
|
||
|
o = construct(frame_or_series, shape=10)
|
||
|
assert o.size == np.prod(o.shape)
|
||
|
assert o.size == 10 ** len(o.axes)
|
||
|
|
||
|
def test_split_compat(self, frame_or_series):
|
||
|
# xref GH8846
|
||
|
o = construct(frame_or_series, shape=10)
|
||
|
with tm.assert_produces_warning(
|
||
|
FutureWarning, match=".swapaxes' is deprecated", check_stacklevel=False
|
||
|
):
|
||
|
assert len(np.array_split(o, 5)) == 5
|
||
|
assert len(np.array_split(o, 2)) == 2
|
||
|
|
||
|
# See gh-12301
|
||
|
def test_stat_unexpected_keyword(self, frame_or_series):
|
||
|
obj = construct(frame_or_series, 5)
|
||
|
starwars = "Star Wars"
|
||
|
errmsg = "unexpected keyword"
|
||
|
|
||
|
with pytest.raises(TypeError, match=errmsg):
|
||
|
obj.max(epic=starwars) # stat_function
|
||
|
with pytest.raises(TypeError, match=errmsg):
|
||
|
obj.var(epic=starwars) # stat_function_ddof
|
||
|
with pytest.raises(TypeError, match=errmsg):
|
||
|
obj.sum(epic=starwars) # cum_function
|
||
|
with pytest.raises(TypeError, match=errmsg):
|
||
|
obj.any(epic=starwars) # logical_function
|
||
|
|
||
|
@pytest.mark.parametrize("func", ["sum", "cumsum", "any", "var"])
|
||
|
def test_api_compat(self, func, frame_or_series):
|
||
|
# GH 12021
|
||
|
# compat for __name__, __qualname__
|
||
|
|
||
|
obj = construct(frame_or_series, 5)
|
||
|
f = getattr(obj, func)
|
||
|
assert f.__name__ == func
|
||
|
assert f.__qualname__.endswith(func)
|
||
|
|
||
|
def test_stat_non_defaults_args(self, frame_or_series):
|
||
|
obj = construct(frame_or_series, 5)
|
||
|
out = np.array([0])
|
||
|
errmsg = "the 'out' parameter is not supported"
|
||
|
|
||
|
with pytest.raises(ValueError, match=errmsg):
|
||
|
obj.max(out=out) # stat_function
|
||
|
with pytest.raises(ValueError, match=errmsg):
|
||
|
obj.var(out=out) # stat_function_ddof
|
||
|
with pytest.raises(ValueError, match=errmsg):
|
||
|
obj.sum(out=out) # cum_function
|
||
|
with pytest.raises(ValueError, match=errmsg):
|
||
|
obj.any(out=out) # logical_function
|
||
|
|
||
|
def test_truncate_out_of_bounds(self, frame_or_series):
|
||
|
# GH11382
|
||
|
|
||
|
# small
|
||
|
shape = [2000] + ([1] * (frame_or_series._AXIS_LEN - 1))
|
||
|
small = construct(frame_or_series, shape, dtype="int8", value=1)
|
||
|
tm.assert_equal(small.truncate(), small)
|
||
|
tm.assert_equal(small.truncate(before=0, after=3e3), small)
|
||
|
tm.assert_equal(small.truncate(before=-1, after=2e3), small)
|
||
|
|
||
|
# big
|
||
|
shape = [2_000_000] + ([1] * (frame_or_series._AXIS_LEN - 1))
|
||
|
big = construct(frame_or_series, shape, dtype="int8", value=1)
|
||
|
tm.assert_equal(big.truncate(), big)
|
||
|
tm.assert_equal(big.truncate(before=0, after=3e6), big)
|
||
|
tm.assert_equal(big.truncate(before=-1, after=2e6), big)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"func",
|
||
|
[copy, deepcopy, lambda x: x.copy(deep=False), lambda x: x.copy(deep=True)],
|
||
|
)
|
||
|
@pytest.mark.parametrize("shape", [0, 1, 2])
|
||
|
def test_copy_and_deepcopy(self, frame_or_series, shape, func):
|
||
|
# GH 15444
|
||
|
obj = construct(frame_or_series, shape)
|
||
|
obj_copy = func(obj)
|
||
|
assert obj_copy is not obj
|
||
|
tm.assert_equal(obj_copy, obj)
|
||
|
|
||
|
def test_data_deprecated(self, frame_or_series):
|
||
|
obj = frame_or_series()
|
||
|
msg = "(Series|DataFrame)._data is deprecated"
|
||
|
with tm.assert_produces_warning(DeprecationWarning, match=msg):
|
||
|
mgr = obj._data
|
||
|
assert mgr is obj._mgr
|
||
|
|
||
|
|
||
|
class TestNDFrame:
|
||
|
# tests that don't fit elsewhere
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"ser", [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]
|
||
|
)
|
||
|
def test_squeeze_series_noop(self, ser):
|
||
|
# noop
|
||
|
tm.assert_series_equal(ser.squeeze(), ser)
|
||
|
|
||
|
def test_squeeze_frame_noop(self):
|
||
|
# noop
|
||
|
df = tm.makeTimeDataFrame()
|
||
|
tm.assert_frame_equal(df.squeeze(), df)
|
||
|
|
||
|
def test_squeeze_frame_reindex(self):
|
||
|
# squeezing
|
||
|
df = tm.makeTimeDataFrame().reindex(columns=["A"])
|
||
|
tm.assert_series_equal(df.squeeze(), df["A"])
|
||
|
|
||
|
def test_squeeze_0_len_dim(self):
|
||
|
# don't fail with 0 length dimensions GH11229 & GH8999
|
||
|
empty_series = Series([], name="five", dtype=np.float64)
|
||
|
empty_frame = DataFrame([empty_series])
|
||
|
tm.assert_series_equal(empty_series, empty_series.squeeze())
|
||
|
tm.assert_series_equal(empty_series, empty_frame.squeeze())
|
||
|
|
||
|
def test_squeeze_axis(self):
|
||
|
# axis argument
|
||
|
df = tm.makeTimeDataFrame(nper=1).iloc[:, :1]
|
||
|
assert df.shape == (1, 1)
|
||
|
tm.assert_series_equal(df.squeeze(axis=0), df.iloc[0])
|
||
|
tm.assert_series_equal(df.squeeze(axis="index"), df.iloc[0])
|
||
|
tm.assert_series_equal(df.squeeze(axis=1), df.iloc[:, 0])
|
||
|
tm.assert_series_equal(df.squeeze(axis="columns"), df.iloc[:, 0])
|
||
|
assert df.squeeze() == df.iloc[0, 0]
|
||
|
msg = "No axis named 2 for object type DataFrame"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.squeeze(axis=2)
|
||
|
msg = "No axis named x for object type DataFrame"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
df.squeeze(axis="x")
|
||
|
|
||
|
def test_squeeze_axis_len_3(self):
|
||
|
df = tm.makeTimeDataFrame(3)
|
||
|
tm.assert_frame_equal(df.squeeze(axis=0), df)
|
||
|
|
||
|
def test_numpy_squeeze(self):
|
||
|
s = tm.makeFloatSeries()
|
||
|
tm.assert_series_equal(np.squeeze(s), s)
|
||
|
|
||
|
df = tm.makeTimeDataFrame().reindex(columns=["A"])
|
||
|
tm.assert_series_equal(np.squeeze(df), df["A"])
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"ser", [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]
|
||
|
)
|
||
|
def test_transpose_series(self, ser):
|
||
|
# calls implementation in pandas/core/base.py
|
||
|
tm.assert_series_equal(ser.transpose(), ser)
|
||
|
|
||
|
def test_transpose_frame(self):
|
||
|
df = tm.makeTimeDataFrame()
|
||
|
tm.assert_frame_equal(df.transpose().transpose(), df)
|
||
|
|
||
|
def test_numpy_transpose(self, frame_or_series):
|
||
|
obj = tm.makeTimeDataFrame()
|
||
|
obj = tm.get_obj(obj, frame_or_series)
|
||
|
|
||
|
if frame_or_series is Series:
|
||
|
# 1D -> np.transpose is no-op
|
||
|
tm.assert_series_equal(np.transpose(obj), obj)
|
||
|
|
||
|
# round-trip preserved
|
||
|
tm.assert_equal(np.transpose(np.transpose(obj)), obj)
|
||
|
|
||
|
msg = "the 'axes' parameter is not supported"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
np.transpose(obj, axes=1)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"ser", [tm.makeFloatSeries(), tm.makeStringSeries(), tm.makeObjectSeries()]
|
||
|
)
|
||
|
def test_take_series(self, ser):
|
||
|
indices = [1, 5, -2, 6, 3, -1]
|
||
|
out = ser.take(indices)
|
||
|
expected = Series(
|
||
|
data=ser.values.take(indices),
|
||
|
index=ser.index.take(indices),
|
||
|
dtype=ser.dtype,
|
||
|
)
|
||
|
tm.assert_series_equal(out, expected)
|
||
|
|
||
|
def test_take_frame(self):
|
||
|
indices = [1, 5, -2, 6, 3, -1]
|
||
|
df = tm.makeTimeDataFrame()
|
||
|
out = df.take(indices)
|
||
|
expected = DataFrame(
|
||
|
data=df.values.take(indices, axis=0),
|
||
|
index=df.index.take(indices),
|
||
|
columns=df.columns,
|
||
|
)
|
||
|
tm.assert_frame_equal(out, expected)
|
||
|
|
||
|
def test_take_invalid_kwargs(self, frame_or_series):
|
||
|
indices = [-3, 2, 0, 1]
|
||
|
|
||
|
obj = tm.makeTimeDataFrame()
|
||
|
obj = tm.get_obj(obj, frame_or_series)
|
||
|
|
||
|
msg = r"take\(\) got an unexpected keyword argument 'foo'"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
obj.take(indices, foo=2)
|
||
|
|
||
|
msg = "the 'out' parameter is not supported"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
obj.take(indices, out=indices)
|
||
|
|
||
|
msg = "the 'mode' parameter is not supported"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
obj.take(indices, mode="clip")
|
||
|
|
||
|
def test_axis_classmethods(self, frame_or_series):
|
||
|
box = frame_or_series
|
||
|
obj = box(dtype=object)
|
||
|
values = box._AXIS_TO_AXIS_NUMBER.keys()
|
||
|
for v in values:
|
||
|
assert obj._get_axis_number(v) == box._get_axis_number(v)
|
||
|
assert obj._get_axis_name(v) == box._get_axis_name(v)
|
||
|
assert obj._get_block_manager_axis(v) == box._get_block_manager_axis(v)
|
||
|
|
||
|
def test_flags_identity(self, frame_or_series):
|
||
|
obj = Series([1, 2])
|
||
|
if frame_or_series is DataFrame:
|
||
|
obj = obj.to_frame()
|
||
|
|
||
|
assert obj.flags is obj.flags
|
||
|
obj2 = obj.copy()
|
||
|
assert obj2.flags is not obj.flags
|
||
|
|
||
|
def test_bool_dep(self) -> None:
|
||
|
# GH-51749
|
||
|
msg_warn = (
|
||
|
"DataFrame.bool is now deprecated and will be removed "
|
||
|
"in future version of pandas"
|
||
|
)
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg_warn):
|
||
|
DataFrame({"col": [False]}).bool()
|