Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

78 lines
2.1 KiB

import numpy as np
import pytest
import pandas as pd
from pandas import (
Index,
MultiIndex,
)
# Note: identical the "multi" entry in the top-level "index" fixture
@pytest.fixture
def idx():
# a MultiIndex used to test the general functionality of the
# general functionality of this object
major_axis = Index(["foo", "bar", "baz", "qux"])
minor_axis = Index(["one", "two"])
major_codes = np.array([0, 0, 1, 2, 3, 3])
minor_codes = np.array([0, 1, 0, 1, 0, 1])
index_names = ["first", "second"]
mi = MultiIndex(
levels=[major_axis, minor_axis],
codes=[major_codes, minor_codes],
names=index_names,
verify_integrity=False,
)
return mi
@pytest.fixture
def idx_dup():
# compare tests/indexes/multi/conftest.py
major_axis = Index(["foo", "bar", "baz", "qux"])
minor_axis = Index(["one", "two"])
major_codes = np.array([0, 0, 1, 0, 1, 1])
minor_codes = np.array([0, 1, 0, 1, 0, 1])
index_names = ["first", "second"]
mi = MultiIndex(
levels=[major_axis, minor_axis],
codes=[major_codes, minor_codes],
names=index_names,
verify_integrity=False,
)
return mi
@pytest.fixture
def index_names():
# names that match those in the idx fixture for testing equality of
# names assigned to the idx
return ["first", "second"]
@pytest.fixture
def narrow_multi_index():
"""
Return a MultiIndex that is narrower than the display (<80 characters).
"""
n = 1000
ci = pd.CategoricalIndex(list("a" * n) + (["abc"] * n))
dti = pd.date_range("2000-01-01", freq="s", periods=n * 2)
return MultiIndex.from_arrays([ci, ci.codes + 9, dti], names=["a", "b", "dti"])
@pytest.fixture
def wide_multi_index():
"""
Return a MultiIndex that is wider than the display (>80 characters).
"""
n = 1000
ci = pd.CategoricalIndex(list("a" * n) + (["abc"] * n))
dti = pd.date_range("2000-01-01", freq="s", periods=n * 2)
levels = [ci, ci.codes + 9, dti, dti, dti]
names = ["a", "b", "dti_1", "dti_2", "dti_3"]
return MultiIndex.from_arrays(levels, names=names)