You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
114 lines
4.0 KiB
114 lines
4.0 KiB
1 year ago
|
from pathlib import Path
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
pyreadstat = pytest.importorskip("pyreadstat")
|
||
|
|
||
|
|
||
|
# TODO(CoW) - detection of chained assignment in cython
|
||
|
# https://github.com/pandas-dev/pandas/issues/51315
|
||
|
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
|
||
|
@pytest.mark.parametrize("path_klass", [lambda p: p, Path])
|
||
|
def test_spss_labelled_num(path_klass, datapath):
|
||
|
# test file from the Haven project (https://haven.tidyverse.org/)
|
||
|
fname = path_klass(datapath("io", "data", "spss", "labelled-num.sav"))
|
||
|
|
||
|
df = pd.read_spss(fname, convert_categoricals=True)
|
||
|
expected = pd.DataFrame({"VAR00002": "This is one"}, index=[0])
|
||
|
expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
df = pd.read_spss(fname, convert_categoricals=False)
|
||
|
expected = pd.DataFrame({"VAR00002": 1.0}, index=[0])
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
|
||
|
def test_spss_labelled_num_na(datapath):
|
||
|
# test file from the Haven project (https://haven.tidyverse.org/)
|
||
|
fname = datapath("io", "data", "spss", "labelled-num-na.sav")
|
||
|
|
||
|
df = pd.read_spss(fname, convert_categoricals=True)
|
||
|
expected = pd.DataFrame({"VAR00002": ["This is one", None]})
|
||
|
expected["VAR00002"] = pd.Categorical(expected["VAR00002"])
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
df = pd.read_spss(fname, convert_categoricals=False)
|
||
|
expected = pd.DataFrame({"VAR00002": [1.0, np.nan]})
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
|
||
|
def test_spss_labelled_str(datapath):
|
||
|
# test file from the Haven project (https://haven.tidyverse.org/)
|
||
|
fname = datapath("io", "data", "spss", "labelled-str.sav")
|
||
|
|
||
|
df = pd.read_spss(fname, convert_categoricals=True)
|
||
|
expected = pd.DataFrame({"gender": ["Male", "Female"]})
|
||
|
expected["gender"] = pd.Categorical(expected["gender"])
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
df = pd.read_spss(fname, convert_categoricals=False)
|
||
|
expected = pd.DataFrame({"gender": ["M", "F"]})
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.filterwarnings("ignore::pandas.errors.ChainedAssignmentError")
|
||
|
def test_spss_umlauts(datapath):
|
||
|
# test file from the Haven project (https://haven.tidyverse.org/)
|
||
|
fname = datapath("io", "data", "spss", "umlauts.sav")
|
||
|
|
||
|
df = pd.read_spss(fname, convert_categoricals=True)
|
||
|
expected = pd.DataFrame(
|
||
|
{"var1": ["the ä umlaut", "the ü umlaut", "the ä umlaut", "the ö umlaut"]}
|
||
|
)
|
||
|
expected["var1"] = pd.Categorical(expected["var1"])
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
df = pd.read_spss(fname, convert_categoricals=False)
|
||
|
expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]})
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
|
||
|
def test_spss_usecols(datapath):
|
||
|
# usecols must be list-like
|
||
|
fname = datapath("io", "data", "spss", "labelled-num.sav")
|
||
|
|
||
|
with pytest.raises(TypeError, match="usecols must be list-like."):
|
||
|
pd.read_spss(fname, usecols="VAR00002")
|
||
|
|
||
|
|
||
|
def test_spss_umlauts_dtype_backend(datapath, dtype_backend):
|
||
|
# test file from the Haven project (https://haven.tidyverse.org/)
|
||
|
fname = datapath("io", "data", "spss", "umlauts.sav")
|
||
|
|
||
|
df = pd.read_spss(fname, convert_categoricals=False, dtype_backend=dtype_backend)
|
||
|
expected = pd.DataFrame({"var1": [1.0, 2.0, 1.0, 3.0]}, dtype="Int64")
|
||
|
|
||
|
if dtype_backend == "pyarrow":
|
||
|
pa = pytest.importorskip("pyarrow")
|
||
|
|
||
|
from pandas.arrays import ArrowExtensionArray
|
||
|
|
||
|
expected = pd.DataFrame(
|
||
|
{
|
||
|
col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
|
||
|
for col in expected.columns
|
||
|
}
|
||
|
)
|
||
|
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
|
||
|
def test_invalid_dtype_backend():
|
||
|
msg = (
|
||
|
"dtype_backend numpy is invalid, only 'numpy_nullable' and "
|
||
|
"'pyarrow' are allowed."
|
||
|
)
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
pd.read_spss("test", dtype_backend="numpy")
|