You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
328 lines
9.6 KiB
328 lines
9.6 KiB
1 year ago
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas import (
|
||
|
DataFrame,
|
||
|
Index,
|
||
|
MultiIndex,
|
||
|
Series,
|
||
|
Timestamp,
|
||
|
concat,
|
||
|
date_range,
|
||
|
isna,
|
||
|
notna,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
|
||
|
from pandas.tseries import offsets
|
||
|
|
||
|
# suppress warnings about empty slices, as we are deliberately testing
|
||
|
# with a 0-length Series
|
||
|
pytestmark = pytest.mark.filterwarnings(
|
||
|
"ignore:.*(empty slice|0 for slice).*:RuntimeWarning"
|
||
|
)
|
||
|
|
||
|
|
||
|
def f(x):
|
||
|
return x[np.isfinite(x)].mean()
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("bad_raw", [None, 1, 0])
|
||
|
def test_rolling_apply_invalid_raw(bad_raw):
|
||
|
with pytest.raises(ValueError, match="raw parameter must be `True` or `False`"):
|
||
|
Series(range(3)).rolling(1).apply(len, raw=bad_raw)
|
||
|
|
||
|
|
||
|
def test_rolling_apply_out_of_bounds(engine_and_raw):
|
||
|
# gh-1850
|
||
|
engine, raw = engine_and_raw
|
||
|
|
||
|
vals = Series([1, 2, 3, 4])
|
||
|
|
||
|
result = vals.rolling(10).apply(np.sum, engine=engine, raw=raw)
|
||
|
assert result.isna().all()
|
||
|
|
||
|
result = vals.rolling(10, min_periods=1).apply(np.sum, engine=engine, raw=raw)
|
||
|
expected = Series([1, 3, 6, 10], dtype=float)
|
||
|
tm.assert_almost_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("window", [2, "2s"])
|
||
|
def test_rolling_apply_with_pandas_objects(window):
|
||
|
# 5071
|
||
|
df = DataFrame(
|
||
|
{
|
||
|
"A": np.random.default_rng(2).standard_normal(5),
|
||
|
"B": np.random.default_rng(2).integers(0, 10, size=5),
|
||
|
},
|
||
|
index=date_range("20130101", periods=5, freq="s"),
|
||
|
)
|
||
|
|
||
|
# we have an equal spaced timeseries index
|
||
|
# so simulate removing the first period
|
||
|
def f(x):
|
||
|
if x.index[0] == df.index[0]:
|
||
|
return np.nan
|
||
|
return x.iloc[-1]
|
||
|
|
||
|
result = df.rolling(window).apply(f, raw=False)
|
||
|
expected = df.iloc[2:].reindex_like(df)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
with tm.external_error_raised(AttributeError):
|
||
|
df.rolling(window).apply(f, raw=True)
|
||
|
|
||
|
|
||
|
def test_rolling_apply(engine_and_raw, step):
|
||
|
engine, raw = engine_and_raw
|
||
|
|
||
|
expected = Series([], dtype="float64")
|
||
|
result = expected.rolling(10, step=step).apply(
|
||
|
lambda x: x.mean(), engine=engine, raw=raw
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# gh-8080
|
||
|
s = Series([None, None, None])
|
||
|
result = s.rolling(2, min_periods=0, step=step).apply(
|
||
|
lambda x: len(x), engine=engine, raw=raw
|
||
|
)
|
||
|
expected = Series([1.0, 2.0, 2.0])[::step]
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = s.rolling(2, min_periods=0, step=step).apply(len, engine=engine, raw=raw)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_all_apply(engine_and_raw):
|
||
|
engine, raw = engine_and_raw
|
||
|
|
||
|
df = (
|
||
|
DataFrame(
|
||
|
{"A": date_range("20130101", periods=5, freq="s"), "B": range(5)}
|
||
|
).set_index("A")
|
||
|
* 2
|
||
|
)
|
||
|
er = df.rolling(window=1)
|
||
|
r = df.rolling(window="1s")
|
||
|
|
||
|
result = r.apply(lambda x: 1, engine=engine, raw=raw)
|
||
|
expected = er.apply(lambda x: 1, engine=engine, raw=raw)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_ragged_apply(engine_and_raw):
|
||
|
engine, raw = engine_and_raw
|
||
|
|
||
|
df = DataFrame({"B": range(5)})
|
||
|
df.index = [
|
||
|
Timestamp("20130101 09:00:00"),
|
||
|
Timestamp("20130101 09:00:02"),
|
||
|
Timestamp("20130101 09:00:03"),
|
||
|
Timestamp("20130101 09:00:05"),
|
||
|
Timestamp("20130101 09:00:06"),
|
||
|
]
|
||
|
|
||
|
f = lambda x: 1
|
||
|
result = df.rolling(window="1s", min_periods=1).apply(f, engine=engine, raw=raw)
|
||
|
expected = df.copy()
|
||
|
expected["B"] = 1.0
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
result = df.rolling(window="2s", min_periods=1).apply(f, engine=engine, raw=raw)
|
||
|
expected = df.copy()
|
||
|
expected["B"] = 1.0
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
result = df.rolling(window="5s", min_periods=1).apply(f, engine=engine, raw=raw)
|
||
|
expected = df.copy()
|
||
|
expected["B"] = 1.0
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_invalid_engine():
|
||
|
with pytest.raises(ValueError, match="engine must be either 'numba' or 'cython'"):
|
||
|
Series(range(1)).rolling(1).apply(lambda x: x, engine="foo")
|
||
|
|
||
|
|
||
|
def test_invalid_engine_kwargs_cython():
|
||
|
with pytest.raises(ValueError, match="cython engine does not accept engine_kwargs"):
|
||
|
Series(range(1)).rolling(1).apply(
|
||
|
lambda x: x, engine="cython", engine_kwargs={"nopython": False}
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_invalid_raw_numba():
|
||
|
with pytest.raises(
|
||
|
ValueError, match="raw must be `True` when using the numba engine"
|
||
|
):
|
||
|
Series(range(1)).rolling(1).apply(lambda x: x, raw=False, engine="numba")
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("args_kwargs", [[None, {"par": 10}], [(10,), None]])
|
||
|
def test_rolling_apply_args_kwargs(args_kwargs):
|
||
|
# GH 33433
|
||
|
def numpysum(x, par):
|
||
|
return np.sum(x + par)
|
||
|
|
||
|
df = DataFrame({"gr": [1, 1], "a": [1, 2]})
|
||
|
|
||
|
idx = Index(["gr", "a"])
|
||
|
expected = DataFrame([[11.0, 11.0], [11.0, 12.0]], columns=idx)
|
||
|
|
||
|
result = df.rolling(1).apply(numpysum, args=args_kwargs[0], kwargs=args_kwargs[1])
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
midx = MultiIndex.from_tuples([(1, 0), (1, 1)], names=["gr", None])
|
||
|
expected = Series([11.0, 12.0], index=midx, name="a")
|
||
|
|
||
|
gb_rolling = df.groupby("gr")["a"].rolling(1)
|
||
|
|
||
|
result = gb_rolling.apply(numpysum, args=args_kwargs[0], kwargs=args_kwargs[1])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_nans(raw):
|
||
|
obj = Series(np.random.default_rng(2).standard_normal(50))
|
||
|
obj[:10] = np.nan
|
||
|
obj[-10:] = np.nan
|
||
|
|
||
|
result = obj.rolling(50, min_periods=30).apply(f, raw=raw)
|
||
|
tm.assert_almost_equal(result.iloc[-1], np.mean(obj[10:-10]))
|
||
|
|
||
|
# min_periods is working correctly
|
||
|
result = obj.rolling(20, min_periods=15).apply(f, raw=raw)
|
||
|
assert isna(result.iloc[23])
|
||
|
assert not isna(result.iloc[24])
|
||
|
|
||
|
assert not isna(result.iloc[-6])
|
||
|
assert isna(result.iloc[-5])
|
||
|
|
||
|
obj2 = Series(np.random.default_rng(2).standard_normal(20))
|
||
|
result = obj2.rolling(10, min_periods=5).apply(f, raw=raw)
|
||
|
assert isna(result.iloc[3])
|
||
|
assert notna(result.iloc[4])
|
||
|
|
||
|
result0 = obj.rolling(20, min_periods=0).apply(f, raw=raw)
|
||
|
result1 = obj.rolling(20, min_periods=1).apply(f, raw=raw)
|
||
|
tm.assert_almost_equal(result0, result1)
|
||
|
|
||
|
|
||
|
def test_center(raw):
|
||
|
obj = Series(np.random.default_rng(2).standard_normal(50))
|
||
|
obj[:10] = np.nan
|
||
|
obj[-10:] = np.nan
|
||
|
|
||
|
result = obj.rolling(20, min_periods=15, center=True).apply(f, raw=raw)
|
||
|
expected = (
|
||
|
concat([obj, Series([np.nan] * 9)])
|
||
|
.rolling(20, min_periods=15)
|
||
|
.apply(f, raw=raw)
|
||
|
.iloc[9:]
|
||
|
.reset_index(drop=True)
|
||
|
)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_series(raw, series):
|
||
|
result = series.rolling(50).apply(f, raw=raw)
|
||
|
assert isinstance(result, Series)
|
||
|
tm.assert_almost_equal(result.iloc[-1], np.mean(series[-50:]))
|
||
|
|
||
|
|
||
|
def test_frame(raw, frame):
|
||
|
result = frame.rolling(50).apply(f, raw=raw)
|
||
|
assert isinstance(result, DataFrame)
|
||
|
tm.assert_series_equal(
|
||
|
result.iloc[-1, :],
|
||
|
frame.iloc[-50:, :].apply(np.mean, axis=0, raw=raw),
|
||
|
check_names=False,
|
||
|
)
|
||
|
|
||
|
|
||
|
def test_time_rule_series(raw, series):
|
||
|
win = 25
|
||
|
minp = 10
|
||
|
ser = series[::2].resample("B").mean()
|
||
|
series_result = ser.rolling(window=win, min_periods=minp).apply(f, raw=raw)
|
||
|
last_date = series_result.index[-1]
|
||
|
prev_date = last_date - 24 * offsets.BDay()
|
||
|
|
||
|
trunc_series = series[::2].truncate(prev_date, last_date)
|
||
|
tm.assert_almost_equal(series_result.iloc[-1], np.mean(trunc_series))
|
||
|
|
||
|
|
||
|
def test_time_rule_frame(raw, frame):
|
||
|
win = 25
|
||
|
minp = 10
|
||
|
frm = frame[::2].resample("B").mean()
|
||
|
frame_result = frm.rolling(window=win, min_periods=minp).apply(f, raw=raw)
|
||
|
last_date = frame_result.index[-1]
|
||
|
prev_date = last_date - 24 * offsets.BDay()
|
||
|
|
||
|
trunc_frame = frame[::2].truncate(prev_date, last_date)
|
||
|
tm.assert_series_equal(
|
||
|
frame_result.xs(last_date),
|
||
|
trunc_frame.apply(np.mean, raw=raw),
|
||
|
check_names=False,
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("minp", [0, 99, 100])
|
||
|
def test_min_periods(raw, series, minp, step):
|
||
|
result = series.rolling(len(series) + 1, min_periods=minp, step=step).apply(
|
||
|
f, raw=raw
|
||
|
)
|
||
|
expected = series.rolling(len(series), min_periods=minp, step=step).apply(
|
||
|
f, raw=raw
|
||
|
)
|
||
|
nan_mask = isna(result)
|
||
|
tm.assert_series_equal(nan_mask, isna(expected))
|
||
|
|
||
|
nan_mask = ~nan_mask
|
||
|
tm.assert_almost_equal(result[nan_mask], expected[nan_mask])
|
||
|
|
||
|
|
||
|
def test_center_reindex_series(raw, series):
|
||
|
# shifter index
|
||
|
s = [f"x{x:d}" for x in range(12)]
|
||
|
minp = 10
|
||
|
|
||
|
series_xp = (
|
||
|
series.reindex(list(series.index) + s)
|
||
|
.rolling(window=25, min_periods=minp)
|
||
|
.apply(f, raw=raw)
|
||
|
.shift(-12)
|
||
|
.reindex(series.index)
|
||
|
)
|
||
|
series_rs = series.rolling(window=25, min_periods=minp, center=True).apply(
|
||
|
f, raw=raw
|
||
|
)
|
||
|
tm.assert_series_equal(series_xp, series_rs)
|
||
|
|
||
|
|
||
|
def test_center_reindex_frame(raw, frame):
|
||
|
# shifter index
|
||
|
s = [f"x{x:d}" for x in range(12)]
|
||
|
minp = 10
|
||
|
|
||
|
frame_xp = (
|
||
|
frame.reindex(list(frame.index) + s)
|
||
|
.rolling(window=25, min_periods=minp)
|
||
|
.apply(f, raw=raw)
|
||
|
.shift(-12)
|
||
|
.reindex(frame.index)
|
||
|
)
|
||
|
frame_rs = frame.rolling(window=25, min_periods=minp, center=True).apply(f, raw=raw)
|
||
|
tm.assert_frame_equal(frame_xp, frame_rs)
|
||
|
|
||
|
|
||
|
def test_axis1(raw):
|
||
|
# GH 45912
|
||
|
df = DataFrame([1, 2])
|
||
|
msg = "Support for axis=1 in DataFrame.rolling is deprecated"
|
||
|
with tm.assert_produces_warning(FutureWarning, match=msg):
|
||
|
result = df.rolling(window=1, axis=1).apply(np.sum, raw=raw)
|
||
|
expected = DataFrame([1.0, 2.0])
|
||
|
tm.assert_frame_equal(result, expected)
|