Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1427 lines
47 KiB

from __future__ import annotations
from collections import defaultdict
from copy import copy
import csv
import datetime
from enum import Enum
import itertools
from typing import (
TYPE_CHECKING,
Any,
Callable,
cast,
final,
overload,
)
import warnings
import numpy as np
from pandas._libs import (
lib,
parsers,
)
import pandas._libs.ops as libops
from pandas._libs.parsers import STR_NA_VALUES
from pandas._libs.tslibs import parsing
from pandas.compat._optional import import_optional_dependency
from pandas.errors import (
ParserError,
ParserWarning,
)
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.astype import astype_array
from pandas.core.dtypes.common import (
ensure_object,
is_bool_dtype,
is_dict_like,
is_extension_array_dtype,
is_float_dtype,
is_integer,
is_integer_dtype,
is_list_like,
is_object_dtype,
is_scalar,
is_string_dtype,
pandas_dtype,
)
from pandas.core.dtypes.dtypes import (
CategoricalDtype,
ExtensionDtype,
)
from pandas.core.dtypes.missing import isna
from pandas import (
ArrowDtype,
DataFrame,
DatetimeIndex,
StringDtype,
concat,
)
from pandas.core import algorithms
from pandas.core.arrays import (
ArrowExtensionArray,
BooleanArray,
Categorical,
ExtensionArray,
FloatingArray,
IntegerArray,
)
from pandas.core.arrays.boolean import BooleanDtype
from pandas.core.indexes.api import (
Index,
MultiIndex,
default_index,
ensure_index_from_sequences,
)
from pandas.core.series import Series
from pandas.core.tools import datetimes as tools
from pandas.io.common import is_potential_multi_index
if TYPE_CHECKING:
from collections.abc import (
Hashable,
Iterable,
Mapping,
Sequence,
)
from pandas._typing import (
ArrayLike,
DtypeArg,
DtypeObj,
Scalar,
)
class ParserBase:
class BadLineHandleMethod(Enum):
ERROR = 0
WARN = 1
SKIP = 2
_implicit_index: bool
_first_chunk: bool
keep_default_na: bool
dayfirst: bool
cache_dates: bool
keep_date_col: bool
usecols_dtype: str | None
def __init__(self, kwds) -> None:
self._implicit_index = False
self.names = kwds.get("names")
self.orig_names: Sequence[Hashable] | None = None
self.index_col = kwds.get("index_col", None)
self.unnamed_cols: set = set()
self.index_names: Sequence[Hashable] | None = None
self.col_names: Sequence[Hashable] | None = None
self.parse_dates = _validate_parse_dates_arg(kwds.pop("parse_dates", False))
self._parse_date_cols: Iterable = []
self.date_parser = kwds.pop("date_parser", lib.no_default)
self.date_format = kwds.pop("date_format", None)
self.dayfirst = kwds.pop("dayfirst", False)
self.keep_date_col = kwds.pop("keep_date_col", False)
self.na_values = kwds.get("na_values")
self.na_fvalues = kwds.get("na_fvalues")
self.na_filter = kwds.get("na_filter", False)
self.keep_default_na = kwds.get("keep_default_na", True)
self.dtype = copy(kwds.get("dtype", None))
self.converters = kwds.get("converters")
self.dtype_backend = kwds.get("dtype_backend")
self.true_values = kwds.get("true_values")
self.false_values = kwds.get("false_values")
self.cache_dates = kwds.pop("cache_dates", True)
self._date_conv = _make_date_converter(
date_parser=self.date_parser,
date_format=self.date_format,
dayfirst=self.dayfirst,
cache_dates=self.cache_dates,
)
# validate header options for mi
self.header = kwds.get("header")
if is_list_like(self.header, allow_sets=False):
if kwds.get("usecols"):
raise ValueError(
"cannot specify usecols when specifying a multi-index header"
)
if kwds.get("names"):
raise ValueError(
"cannot specify names when specifying a multi-index header"
)
# validate index_col that only contains integers
if self.index_col is not None:
# In this case we can pin down index_col as list[int]
if is_integer(self.index_col):
self.index_col = [self.index_col]
elif not (
is_list_like(self.index_col, allow_sets=False)
and all(map(is_integer, self.index_col))
):
raise ValueError(
"index_col must only contain row numbers "
"when specifying a multi-index header"
)
else:
self.index_col = list(self.index_col)
self._name_processed = False
self._first_chunk = True
self.usecols, self.usecols_dtype = self._validate_usecols_arg(kwds["usecols"])
# Fallback to error to pass a sketchy test(test_override_set_noconvert_columns)
# Normally, this arg would get pre-processed earlier on
self.on_bad_lines = kwds.get("on_bad_lines", self.BadLineHandleMethod.ERROR)
def _validate_parse_dates_presence(self, columns: Sequence[Hashable]) -> Iterable:
"""
Check if parse_dates are in columns.
If user has provided names for parse_dates, check if those columns
are available.
Parameters
----------
columns : list
List of names of the dataframe.
Returns
-------
The names of the columns which will get parsed later if a dict or list
is given as specification.
Raises
------
ValueError
If column to parse_date is not in dataframe.
"""
cols_needed: Iterable
if is_dict_like(self.parse_dates):
cols_needed = itertools.chain(*self.parse_dates.values())
elif is_list_like(self.parse_dates):
# a column in parse_dates could be represented
# ColReference = Union[int, str]
# DateGroups = List[ColReference]
# ParseDates = Union[DateGroups, List[DateGroups],
# Dict[ColReference, DateGroups]]
cols_needed = itertools.chain.from_iterable(
col if is_list_like(col) and not isinstance(col, tuple) else [col]
for col in self.parse_dates
)
else:
cols_needed = []
cols_needed = list(cols_needed)
# get only columns that are references using names (str), not by index
missing_cols = ", ".join(
sorted(
{
col
for col in cols_needed
if isinstance(col, str) and col not in columns
}
)
)
if missing_cols:
raise ValueError(
f"Missing column provided to 'parse_dates': '{missing_cols}'"
)
# Convert positions to actual column names
return [
col if (isinstance(col, str) or col in columns) else columns[col]
for col in cols_needed
]
def close(self) -> None:
pass
@final
@property
def _has_complex_date_col(self) -> bool:
return isinstance(self.parse_dates, dict) or (
isinstance(self.parse_dates, list)
and len(self.parse_dates) > 0
and isinstance(self.parse_dates[0], list)
)
@final
def _should_parse_dates(self, i: int) -> bool:
if lib.is_bool(self.parse_dates):
return bool(self.parse_dates)
else:
if self.index_names is not None:
name = self.index_names[i]
else:
name = None
j = i if self.index_col is None else self.index_col[i]
return (j in self.parse_dates) or (
name is not None and name in self.parse_dates
)
@final
def _extract_multi_indexer_columns(
self,
header,
index_names: Sequence[Hashable] | None,
passed_names: bool = False,
) -> tuple[
Sequence[Hashable], Sequence[Hashable] | None, Sequence[Hashable] | None, bool
]:
"""
Extract and return the names, index_names, col_names if the column
names are a MultiIndex.
Parameters
----------
header: list of lists
The header rows
index_names: list, optional
The names of the future index
passed_names: bool, default False
A flag specifying if names where passed
"""
if len(header) < 2:
return header[0], index_names, None, passed_names
# the names are the tuples of the header that are not the index cols
# 0 is the name of the index, assuming index_col is a list of column
# numbers
ic = self.index_col
if ic is None:
ic = []
if not isinstance(ic, (list, tuple, np.ndarray)):
ic = [ic]
sic = set(ic)
# clean the index_names
index_names = header.pop(-1)
index_names, _, _ = self._clean_index_names(index_names, self.index_col)
# extract the columns
field_count = len(header[0])
# check if header lengths are equal
if not all(len(header_iter) == field_count for header_iter in header[1:]):
raise ParserError("Header rows must have an equal number of columns.")
def extract(r):
return tuple(r[i] for i in range(field_count) if i not in sic)
columns = list(zip(*(extract(r) for r in header)))
names = columns.copy()
for single_ic in sorted(ic):
names.insert(single_ic, single_ic)
# Clean the column names (if we have an index_col).
if len(ic):
col_names = [
r[ic[0]]
if ((r[ic[0]] is not None) and r[ic[0]] not in self.unnamed_cols)
else None
for r in header
]
else:
col_names = [None] * len(header)
passed_names = True
return names, index_names, col_names, passed_names
@final
def _maybe_make_multi_index_columns(
self,
columns: Sequence[Hashable],
col_names: Sequence[Hashable] | None = None,
) -> Sequence[Hashable] | MultiIndex:
# possibly create a column mi here
if is_potential_multi_index(columns):
list_columns = cast(list[tuple], columns)
return MultiIndex.from_tuples(list_columns, names=col_names)
return columns
@final
def _make_index(
self, data, alldata, columns, indexnamerow: list[Scalar] | None = None
) -> tuple[Index | None, Sequence[Hashable] | MultiIndex]:
index: Index | None
if not is_index_col(self.index_col) or not self.index_col:
index = None
elif not self._has_complex_date_col:
simple_index = self._get_simple_index(alldata, columns)
index = self._agg_index(simple_index)
elif self._has_complex_date_col:
if not self._name_processed:
(self.index_names, _, self.index_col) = self._clean_index_names(
list(columns), self.index_col
)
self._name_processed = True
date_index = self._get_complex_date_index(data, columns)
index = self._agg_index(date_index, try_parse_dates=False)
# add names for the index
if indexnamerow:
coffset = len(indexnamerow) - len(columns)
assert index is not None
index = index.set_names(indexnamerow[:coffset])
# maybe create a mi on the columns
columns = self._maybe_make_multi_index_columns(columns, self.col_names)
return index, columns
@final
def _get_simple_index(self, data, columns):
def ix(col):
if not isinstance(col, str):
return col
raise ValueError(f"Index {col} invalid")
to_remove = []
index = []
for idx in self.index_col:
i = ix(idx)
to_remove.append(i)
index.append(data[i])
# remove index items from content and columns, don't pop in
# loop
for i in sorted(to_remove, reverse=True):
data.pop(i)
if not self._implicit_index:
columns.pop(i)
return index
@final
def _get_complex_date_index(self, data, col_names):
def _get_name(icol):
if isinstance(icol, str):
return icol
if col_names is None:
raise ValueError(f"Must supply column order to use {icol!s} as index")
for i, c in enumerate(col_names):
if i == icol:
return c
to_remove = []
index = []
for idx in self.index_col:
name = _get_name(idx)
to_remove.append(name)
index.append(data[name])
# remove index items from content and columns, don't pop in
# loop
for c in sorted(to_remove, reverse=True):
data.pop(c)
col_names.remove(c)
return index
@final
def _clean_mapping(self, mapping):
"""converts col numbers to names"""
if not isinstance(mapping, dict):
return mapping
clean = {}
# for mypy
assert self.orig_names is not None
for col, v in mapping.items():
if isinstance(col, int) and col not in self.orig_names:
col = self.orig_names[col]
clean[col] = v
if isinstance(mapping, defaultdict):
remaining_cols = set(self.orig_names) - set(clean.keys())
clean.update({col: mapping[col] for col in remaining_cols})
return clean
@final
def _agg_index(self, index, try_parse_dates: bool = True) -> Index:
arrays = []
converters = self._clean_mapping(self.converters)
for i, arr in enumerate(index):
if try_parse_dates and self._should_parse_dates(i):
arr = self._date_conv(
arr,
col=self.index_names[i] if self.index_names is not None else None,
)
if self.na_filter:
col_na_values = self.na_values
col_na_fvalues = self.na_fvalues
else:
col_na_values = set()
col_na_fvalues = set()
if isinstance(self.na_values, dict):
assert self.index_names is not None
col_name = self.index_names[i]
if col_name is not None:
col_na_values, col_na_fvalues = _get_na_values(
col_name, self.na_values, self.na_fvalues, self.keep_default_na
)
clean_dtypes = self._clean_mapping(self.dtype)
cast_type = None
index_converter = False
if self.index_names is not None:
if isinstance(clean_dtypes, dict):
cast_type = clean_dtypes.get(self.index_names[i], None)
if isinstance(converters, dict):
index_converter = converters.get(self.index_names[i]) is not None
try_num_bool = not (
cast_type and is_string_dtype(cast_type) or index_converter
)
arr, _ = self._infer_types(
arr, col_na_values | col_na_fvalues, cast_type is None, try_num_bool
)
arrays.append(arr)
names = self.index_names
index = ensure_index_from_sequences(arrays, names)
return index
@final
def _convert_to_ndarrays(
self,
dct: Mapping,
na_values,
na_fvalues,
verbose: bool = False,
converters=None,
dtypes=None,
):
result = {}
for c, values in dct.items():
conv_f = None if converters is None else converters.get(c, None)
if isinstance(dtypes, dict):
cast_type = dtypes.get(c, None)
else:
# single dtype or None
cast_type = dtypes
if self.na_filter:
col_na_values, col_na_fvalues = _get_na_values(
c, na_values, na_fvalues, self.keep_default_na
)
else:
col_na_values, col_na_fvalues = set(), set()
if c in self._parse_date_cols:
# GH#26203 Do not convert columns which get converted to dates
# but replace nans to ensure to_datetime works
mask = algorithms.isin(values, set(col_na_values) | col_na_fvalues)
np.putmask(values, mask, np.nan)
result[c] = values
continue
if conv_f is not None:
# conv_f applied to data before inference
if cast_type is not None:
warnings.warn(
(
"Both a converter and dtype were specified "
f"for column {c} - only the converter will be used."
),
ParserWarning,
stacklevel=find_stack_level(),
)
try:
values = lib.map_infer(values, conv_f)
except ValueError:
mask = algorithms.isin(values, list(na_values)).view(np.uint8)
values = lib.map_infer_mask(values, conv_f, mask)
cvals, na_count = self._infer_types(
values,
set(col_na_values) | col_na_fvalues,
cast_type is None,
try_num_bool=False,
)
else:
is_ea = is_extension_array_dtype(cast_type)
is_str_or_ea_dtype = is_ea or is_string_dtype(cast_type)
# skip inference if specified dtype is object
# or casting to an EA
try_num_bool = not (cast_type and is_str_or_ea_dtype)
# general type inference and conversion
cvals, na_count = self._infer_types(
values,
set(col_na_values) | col_na_fvalues,
cast_type is None,
try_num_bool,
)
# type specified in dtype param or cast_type is an EA
if cast_type is not None:
cast_type = pandas_dtype(cast_type)
if cast_type and (cvals.dtype != cast_type or is_ea):
if not is_ea and na_count > 0:
if is_bool_dtype(cast_type):
raise ValueError(f"Bool column has NA values in column {c}")
cvals = self._cast_types(cvals, cast_type, c)
result[c] = cvals
if verbose and na_count:
print(f"Filled {na_count} NA values in column {c!s}")
return result
@final
def _set_noconvert_dtype_columns(
self, col_indices: list[int], names: Sequence[Hashable]
) -> set[int]:
"""
Set the columns that should not undergo dtype conversions.
Currently, any column that is involved with date parsing will not
undergo such conversions. If usecols is specified, the positions of the columns
not to cast is relative to the usecols not to all columns.
Parameters
----------
col_indices: The indices specifying order and positions of the columns
names: The column names which order is corresponding with the order
of col_indices
Returns
-------
A set of integers containing the positions of the columns not to convert.
"""
usecols: list[int] | list[str] | None
noconvert_columns = set()
if self.usecols_dtype == "integer":
# A set of integers will be converted to a list in
# the correct order every single time.
usecols = sorted(self.usecols)
elif callable(self.usecols) or self.usecols_dtype not in ("empty", None):
# The names attribute should have the correct columns
# in the proper order for indexing with parse_dates.
usecols = col_indices
else:
# Usecols is empty.
usecols = None
def _set(x) -> int:
if usecols is not None and is_integer(x):
x = usecols[x]
if not is_integer(x):
x = col_indices[names.index(x)]
return x
if isinstance(self.parse_dates, list):
for val in self.parse_dates:
if isinstance(val, list):
for k in val:
noconvert_columns.add(_set(k))
else:
noconvert_columns.add(_set(val))
elif isinstance(self.parse_dates, dict):
for val in self.parse_dates.values():
if isinstance(val, list):
for k in val:
noconvert_columns.add(_set(k))
else:
noconvert_columns.add(_set(val))
elif self.parse_dates:
if isinstance(self.index_col, list):
for k in self.index_col:
noconvert_columns.add(_set(k))
elif self.index_col is not None:
noconvert_columns.add(_set(self.index_col))
return noconvert_columns
@final
def _infer_types(
self, values, na_values, no_dtype_specified, try_num_bool: bool = True
) -> tuple[ArrayLike, int]:
"""
Infer types of values, possibly casting
Parameters
----------
values : ndarray
na_values : set
no_dtype_specified: Specifies if we want to cast explicitly
try_num_bool : bool, default try
try to cast values to numeric (first preference) or boolean
Returns
-------
converted : ndarray or ExtensionArray
na_count : int
"""
na_count = 0
if issubclass(values.dtype.type, (np.number, np.bool_)):
# If our array has numeric dtype, we don't have to check for strings in isin
na_values = np.array([val for val in na_values if not isinstance(val, str)])
mask = algorithms.isin(values, na_values)
na_count = mask.astype("uint8", copy=False).sum()
if na_count > 0:
if is_integer_dtype(values):
values = values.astype(np.float64)
np.putmask(values, mask, np.nan)
return values, na_count
dtype_backend = self.dtype_backend
non_default_dtype_backend = (
no_dtype_specified and dtype_backend is not lib.no_default
)
result: ArrayLike
if try_num_bool and is_object_dtype(values.dtype):
# exclude e.g DatetimeIndex here
try:
result, result_mask = lib.maybe_convert_numeric(
values,
na_values,
False,
convert_to_masked_nullable=non_default_dtype_backend, # type: ignore[arg-type] # noqa: E501
)
except (ValueError, TypeError):
# e.g. encountering datetime string gets ValueError
# TypeError can be raised in floatify
na_count = parsers.sanitize_objects(values, na_values)
result = values
else:
if non_default_dtype_backend:
if result_mask is None:
result_mask = np.zeros(result.shape, dtype=np.bool_)
if result_mask.all():
result = IntegerArray(
np.ones(result_mask.shape, dtype=np.int64), result_mask
)
elif is_integer_dtype(result):
result = IntegerArray(result, result_mask)
elif is_bool_dtype(result):
result = BooleanArray(result, result_mask)
elif is_float_dtype(result):
result = FloatingArray(result, result_mask)
na_count = result_mask.sum()
else:
na_count = isna(result).sum()
else:
result = values
if values.dtype == np.object_:
na_count = parsers.sanitize_objects(values, na_values)
if result.dtype == np.object_ and try_num_bool:
result, bool_mask = libops.maybe_convert_bool(
np.asarray(values),
true_values=self.true_values,
false_values=self.false_values,
convert_to_masked_nullable=non_default_dtype_backend, # type: ignore[arg-type] # noqa: E501
)
if result.dtype == np.bool_ and non_default_dtype_backend:
if bool_mask is None:
bool_mask = np.zeros(result.shape, dtype=np.bool_)
result = BooleanArray(result, bool_mask)
elif result.dtype == np.object_ and non_default_dtype_backend:
# read_excel sends array of datetime objects
if not lib.is_datetime_array(result, skipna=True):
result = StringDtype().construct_array_type()._from_sequence(values)
if dtype_backend == "pyarrow":
pa = import_optional_dependency("pyarrow")
if isinstance(result, np.ndarray):
result = ArrowExtensionArray(pa.array(result, from_pandas=True))
else:
# ExtensionArray
result = ArrowExtensionArray(
pa.array(result.to_numpy(), from_pandas=True)
)
return result, na_count
@final
def _cast_types(self, values: ArrayLike, cast_type: DtypeObj, column) -> ArrayLike:
"""
Cast values to specified type
Parameters
----------
values : ndarray or ExtensionArray
cast_type : np.dtype or ExtensionDtype
dtype to cast values to
column : string
column name - used only for error reporting
Returns
-------
converted : ndarray or ExtensionArray
"""
if isinstance(cast_type, CategoricalDtype):
known_cats = cast_type.categories is not None
if not is_object_dtype(values.dtype) and not known_cats:
# TODO: this is for consistency with
# c-parser which parses all categories
# as strings
values = lib.ensure_string_array(
values, skipna=False, convert_na_value=False
)
cats = Index(values).unique().dropna()
values = Categorical._from_inferred_categories(
cats, cats.get_indexer(values), cast_type, true_values=self.true_values
)
# use the EA's implementation of casting
elif isinstance(cast_type, ExtensionDtype):
array_type = cast_type.construct_array_type()
try:
if isinstance(cast_type, BooleanDtype):
# error: Unexpected keyword argument "true_values" for
# "_from_sequence_of_strings" of "ExtensionArray"
return array_type._from_sequence_of_strings( # type: ignore[call-arg] # noqa: E501
values,
dtype=cast_type,
true_values=self.true_values,
false_values=self.false_values,
)
else:
return array_type._from_sequence_of_strings(values, dtype=cast_type)
except NotImplementedError as err:
raise NotImplementedError(
f"Extension Array: {array_type} must implement "
"_from_sequence_of_strings in order to be used in parser methods"
) from err
elif isinstance(values, ExtensionArray):
values = values.astype(cast_type, copy=False)
elif issubclass(cast_type.type, str):
# TODO: why skipna=True here and False above? some tests depend
# on it here, but nothing fails if we change it above
# (as no tests get there as of 2022-12-06)
values = lib.ensure_string_array(
values, skipna=True, convert_na_value=False
)
else:
try:
values = astype_array(values, cast_type, copy=True)
except ValueError as err:
raise ValueError(
f"Unable to convert column {column} to type {cast_type}"
) from err
return values
@overload
def _do_date_conversions(
self,
names: Index,
data: DataFrame,
) -> tuple[Sequence[Hashable] | Index, DataFrame]:
...
@overload
def _do_date_conversions(
self,
names: Sequence[Hashable],
data: Mapping[Hashable, ArrayLike],
) -> tuple[Sequence[Hashable], Mapping[Hashable, ArrayLike]]:
...
@final
def _do_date_conversions(
self,
names: Sequence[Hashable] | Index,
data: Mapping[Hashable, ArrayLike] | DataFrame,
) -> tuple[Sequence[Hashable] | Index, Mapping[Hashable, ArrayLike] | DataFrame]:
# returns data, columns
if self.parse_dates is not None:
data, names = _process_date_conversion(
data,
self._date_conv,
self.parse_dates,
self.index_col,
self.index_names,
names,
keep_date_col=self.keep_date_col,
dtype_backend=self.dtype_backend,
)
return names, data
@final
def _check_data_length(
self,
columns: Sequence[Hashable],
data: Sequence[ArrayLike],
) -> None:
"""Checks if length of data is equal to length of column names.
One set of trailing commas is allowed. self.index_col not False
results in a ParserError previously when lengths do not match.
Parameters
----------
columns: list of column names
data: list of array-likes containing the data column-wise.
"""
if not self.index_col and len(columns) != len(data) and columns:
empty_str = is_object_dtype(data[-1]) and data[-1] == ""
# error: No overload variant of "__ror__" of "ndarray" matches
# argument type "ExtensionArray"
empty_str_or_na = empty_str | isna(data[-1]) # type: ignore[operator]
if len(columns) == len(data) - 1 and np.all(empty_str_or_na):
return
warnings.warn(
"Length of header or names does not match length of data. This leads "
"to a loss of data with index_col=False.",
ParserWarning,
stacklevel=find_stack_level(),
)
@overload
def _evaluate_usecols(
self,
usecols: set[int] | Callable[[Hashable], object],
names: Sequence[Hashable],
) -> set[int]:
...
@overload
def _evaluate_usecols(
self, usecols: set[str], names: Sequence[Hashable]
) -> set[str]:
...
@final
def _evaluate_usecols(
self,
usecols: Callable[[Hashable], object] | set[str] | set[int],
names: Sequence[Hashable],
) -> set[str] | set[int]:
"""
Check whether or not the 'usecols' parameter
is a callable. If so, enumerates the 'names'
parameter and returns a set of indices for
each entry in 'names' that evaluates to True.
If not a callable, returns 'usecols'.
"""
if callable(usecols):
return {i for i, name in enumerate(names) if usecols(name)}
return usecols
@final
def _validate_usecols_names(self, usecols, names: Sequence):
"""
Validates that all usecols are present in a given
list of names. If not, raise a ValueError that
shows what usecols are missing.
Parameters
----------
usecols : iterable of usecols
The columns to validate are present in names.
names : iterable of names
The column names to check against.
Returns
-------
usecols : iterable of usecols
The `usecols` parameter if the validation succeeds.
Raises
------
ValueError : Columns were missing. Error message will list them.
"""
missing = [c for c in usecols if c not in names]
if len(missing) > 0:
raise ValueError(
f"Usecols do not match columns, columns expected but not found: "
f"{missing}"
)
return usecols
@final
def _validate_usecols_arg(self, usecols):
"""
Validate the 'usecols' parameter.
Checks whether or not the 'usecols' parameter contains all integers
(column selection by index), strings (column by name) or is a callable.
Raises a ValueError if that is not the case.
Parameters
----------
usecols : list-like, callable, or None
List of columns to use when parsing or a callable that can be used
to filter a list of table columns.
Returns
-------
usecols_tuple : tuple
A tuple of (verified_usecols, usecols_dtype).
'verified_usecols' is either a set if an array-like is passed in or
'usecols' if a callable or None is passed in.
'usecols_dtype` is the inferred dtype of 'usecols' if an array-like
is passed in or None if a callable or None is passed in.
"""
msg = (
"'usecols' must either be list-like of all strings, all unicode, "
"all integers or a callable."
)
if usecols is not None:
if callable(usecols):
return usecols, None
if not is_list_like(usecols):
# see gh-20529
#
# Ensure it is iterable container but not string.
raise ValueError(msg)
usecols_dtype = lib.infer_dtype(usecols, skipna=False)
if usecols_dtype not in ("empty", "integer", "string"):
raise ValueError(msg)
usecols = set(usecols)
return usecols, usecols_dtype
return usecols, None
@final
def _clean_index_names(self, columns, index_col) -> tuple[list | None, list, list]:
if not is_index_col(index_col):
return None, columns, index_col
columns = list(columns)
# In case of no rows and multiindex columns we have to set index_names to
# list of Nones GH#38292
if not columns:
return [None] * len(index_col), columns, index_col
cp_cols = list(columns)
index_names: list[str | int | None] = []
# don't mutate
index_col = list(index_col)
for i, c in enumerate(index_col):
if isinstance(c, str):
index_names.append(c)
for j, name in enumerate(cp_cols):
if name == c:
index_col[i] = j
columns.remove(name)
break
else:
name = cp_cols[c]
columns.remove(name)
index_names.append(name)
# Only clean index names that were placeholders.
for i, name in enumerate(index_names):
if isinstance(name, str) and name in self.unnamed_cols:
index_names[i] = None
return index_names, columns, index_col
@final
def _get_empty_meta(self, columns, dtype: DtypeArg | None = None):
columns = list(columns)
index_col = self.index_col
index_names = self.index_names
# Convert `dtype` to a defaultdict of some kind.
# This will enable us to write `dtype[col_name]`
# without worrying about KeyError issues later on.
dtype_dict: defaultdict[Hashable, Any]
if not is_dict_like(dtype):
# if dtype == None, default will be object.
default_dtype = dtype or object
dtype_dict = defaultdict(lambda: default_dtype)
else:
dtype = cast(dict, dtype)
dtype_dict = defaultdict(
lambda: object,
{columns[k] if is_integer(k) else k: v for k, v in dtype.items()},
)
# Even though we have no data, the "index" of the empty DataFrame
# could for example still be an empty MultiIndex. Thus, we need to
# check whether we have any index columns specified, via either:
#
# 1) index_col (column indices)
# 2) index_names (column names)
#
# Both must be non-null to ensure a successful construction. Otherwise,
# we have to create a generic empty Index.
index: Index
if (index_col is None or index_col is False) or index_names is None:
index = default_index(0)
else:
data = [Series([], dtype=dtype_dict[name]) for name in index_names]
index = ensure_index_from_sequences(data, names=index_names)
index_col.sort()
for i, n in enumerate(index_col):
columns.pop(n - i)
col_dict = {
col_name: Series([], dtype=dtype_dict[col_name]) for col_name in columns
}
return index, columns, col_dict
def _make_date_converter(
date_parser=lib.no_default,
dayfirst: bool = False,
cache_dates: bool = True,
date_format: dict[Hashable, str] | str | None = None,
):
if date_parser is not lib.no_default:
warnings.warn(
"The argument 'date_parser' is deprecated and will "
"be removed in a future version. "
"Please use 'date_format' instead, or read your data in as 'object' dtype "
"and then call 'to_datetime'.",
FutureWarning,
stacklevel=find_stack_level(),
)
if date_parser is not lib.no_default and date_format is not None:
raise TypeError("Cannot use both 'date_parser' and 'date_format'")
def unpack_if_single_element(arg):
# NumPy 1.25 deprecation: https://github.com/numpy/numpy/pull/10615
if isinstance(arg, np.ndarray) and arg.ndim == 1 and len(arg) == 1:
return arg[0]
return arg
def converter(*date_cols, col: Hashable):
if len(date_cols) == 1 and date_cols[0].dtype.kind in "Mm":
return date_cols[0]
if date_parser is lib.no_default:
strs = parsing.concat_date_cols(date_cols)
date_fmt = (
date_format.get(col) if isinstance(date_format, dict) else date_format
)
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
".*parsing datetimes with mixed time zones will raise a warning",
category=FutureWarning,
)
result = tools.to_datetime(
ensure_object(strs),
format=date_fmt,
utc=False,
dayfirst=dayfirst,
errors="ignore",
cache=cache_dates,
)
if isinstance(result, DatetimeIndex):
arr = result.to_numpy()
arr.flags.writeable = True
return arr
return result._values
else:
try:
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
".*parsing datetimes with mixed time zones "
"will raise a warning",
category=FutureWarning,
)
result = tools.to_datetime(
date_parser(
*(unpack_if_single_element(arg) for arg in date_cols)
),
errors="ignore",
cache=cache_dates,
)
if isinstance(result, datetime.datetime):
raise Exception("scalar parser")
return result
except Exception:
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
".*parsing datetimes with mixed time zones "
"will raise a warning",
category=FutureWarning,
)
return tools.to_datetime(
parsing.try_parse_dates(
parsing.concat_date_cols(date_cols),
parser=date_parser,
),
errors="ignore",
)
return converter
parser_defaults = {
"delimiter": None,
"escapechar": None,
"quotechar": '"',
"quoting": csv.QUOTE_MINIMAL,
"doublequote": True,
"skipinitialspace": False,
"lineterminator": None,
"header": "infer",
"index_col": None,
"names": None,
"skiprows": None,
"skipfooter": 0,
"nrows": None,
"na_values": None,
"keep_default_na": True,
"true_values": None,
"false_values": None,
"converters": None,
"dtype": None,
"cache_dates": True,
"thousands": None,
"comment": None,
"decimal": ".",
# 'engine': 'c',
"parse_dates": False,
"keep_date_col": False,
"dayfirst": False,
"date_parser": lib.no_default,
"date_format": None,
"usecols": None,
# 'iterator': False,
"chunksize": None,
"verbose": False,
"encoding": None,
"compression": None,
"skip_blank_lines": True,
"encoding_errors": "strict",
"on_bad_lines": ParserBase.BadLineHandleMethod.ERROR,
"dtype_backend": lib.no_default,
}
def _process_date_conversion(
data_dict,
converter: Callable,
parse_spec,
index_col,
index_names,
columns,
keep_date_col: bool = False,
dtype_backend=lib.no_default,
):
def _isindex(colspec):
return (isinstance(index_col, list) and colspec in index_col) or (
isinstance(index_names, list) and colspec in index_names
)
new_cols = []
new_data = {}
orig_names = columns
columns = list(columns)
date_cols = set()
if parse_spec is None or isinstance(parse_spec, bool):
return data_dict, columns
if isinstance(parse_spec, list):
# list of column lists
for colspec in parse_spec:
if is_scalar(colspec) or isinstance(colspec, tuple):
if isinstance(colspec, int) and colspec not in data_dict:
colspec = orig_names[colspec]
if _isindex(colspec):
continue
elif dtype_backend == "pyarrow":
import pyarrow as pa
dtype = data_dict[colspec].dtype
if isinstance(dtype, ArrowDtype) and (
pa.types.is_timestamp(dtype.pyarrow_dtype)
or pa.types.is_date(dtype.pyarrow_dtype)
):
continue
# Pyarrow engine returns Series which we need to convert to
# numpy array before converter, its a no-op for other parsers
data_dict[colspec] = converter(
np.asarray(data_dict[colspec]), col=colspec
)
else:
new_name, col, old_names = _try_convert_dates(
converter, colspec, data_dict, orig_names
)
if new_name in data_dict:
raise ValueError(f"New date column already in dict {new_name}")
new_data[new_name] = col
new_cols.append(new_name)
date_cols.update(old_names)
elif isinstance(parse_spec, dict):
# dict of new name to column list
for new_name, colspec in parse_spec.items():
if new_name in data_dict:
raise ValueError(f"Date column {new_name} already in dict")
_, col, old_names = _try_convert_dates(
converter,
colspec,
data_dict,
orig_names,
target_name=new_name,
)
new_data[new_name] = col
# If original column can be converted to date we keep the converted values
# This can only happen if values are from single column
if len(colspec) == 1:
new_data[colspec[0]] = col
new_cols.append(new_name)
date_cols.update(old_names)
if isinstance(data_dict, DataFrame):
data_dict = concat([DataFrame(new_data), data_dict], axis=1, copy=False)
else:
data_dict.update(new_data)
new_cols.extend(columns)
if not keep_date_col:
for c in list(date_cols):
data_dict.pop(c)
new_cols.remove(c)
return data_dict, new_cols
def _try_convert_dates(
parser: Callable, colspec, data_dict, columns, target_name: str | None = None
):
colset = set(columns)
colnames = []
for c in colspec:
if c in colset:
colnames.append(c)
elif isinstance(c, int) and c not in columns:
colnames.append(columns[c])
else:
colnames.append(c)
new_name: tuple | str
if all(isinstance(x, tuple) for x in colnames):
new_name = tuple(map("_".join, zip(*colnames)))
else:
new_name = "_".join([str(x) for x in colnames])
to_parse = [np.asarray(data_dict[c]) for c in colnames if c in data_dict]
new_col = parser(*to_parse, col=new_name if target_name is None else target_name)
return new_name, new_col, colnames
def _get_na_values(col, na_values, na_fvalues, keep_default_na: bool):
"""
Get the NaN values for a given column.
Parameters
----------
col : str
The name of the column.
na_values : array-like, dict
The object listing the NaN values as strings.
na_fvalues : array-like, dict
The object listing the NaN values as floats.
keep_default_na : bool
If `na_values` is a dict, and the column is not mapped in the
dictionary, whether to return the default NaN values or the empty set.
Returns
-------
nan_tuple : A length-two tuple composed of
1) na_values : the string NaN values for that column.
2) na_fvalues : the float NaN values for that column.
"""
if isinstance(na_values, dict):
if col in na_values:
return na_values[col], na_fvalues[col]
else:
if keep_default_na:
return STR_NA_VALUES, set()
return set(), set()
else:
return na_values, na_fvalues
def _validate_parse_dates_arg(parse_dates):
"""
Check whether or not the 'parse_dates' parameter
is a non-boolean scalar. Raises a ValueError if
that is the case.
"""
msg = (
"Only booleans, lists, and dictionaries are accepted "
"for the 'parse_dates' parameter"
)
if not (
parse_dates is None
or lib.is_bool(parse_dates)
or isinstance(parse_dates, (list, dict))
):
raise TypeError(msg)
return parse_dates
def is_index_col(col) -> bool:
return col is not None and col is not False