You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
198 lines
6.2 KiB
198 lines
6.2 KiB
1 year ago
|
""" io on the clipboard """
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from io import StringIO
|
||
|
from typing import TYPE_CHECKING
|
||
|
import warnings
|
||
|
|
||
|
from pandas._libs import lib
|
||
|
from pandas.util._exceptions import find_stack_level
|
||
|
from pandas.util._validators import check_dtype_backend
|
||
|
|
||
|
from pandas.core.dtypes.generic import ABCDataFrame
|
||
|
|
||
|
from pandas import (
|
||
|
get_option,
|
||
|
option_context,
|
||
|
)
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from pandas._typing import DtypeBackend
|
||
|
|
||
|
|
||
|
def read_clipboard(
|
||
|
sep: str = r"\s+",
|
||
|
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
||
|
**kwargs,
|
||
|
): # pragma: no cover
|
||
|
r"""
|
||
|
Read text from clipboard and pass to :func:`~pandas.read_csv`.
|
||
|
|
||
|
Parses clipboard contents similar to how CSV files are parsed
|
||
|
using :func:`~pandas.read_csv`.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sep : str, default '\\s+'
|
||
|
A string or regex delimiter. The default of ``'\\s+'`` denotes
|
||
|
one or more whitespace characters.
|
||
|
|
||
|
dtype_backend : {'numpy_nullable', 'pyarrow'}, default 'numpy_nullable'
|
||
|
Back-end data type applied to the resultant :class:`DataFrame`
|
||
|
(still experimental). Behaviour is as follows:
|
||
|
|
||
|
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
|
||
|
(default).
|
||
|
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
|
||
|
DataFrame.
|
||
|
|
||
|
.. versionadded:: 2.0
|
||
|
|
||
|
**kwargs
|
||
|
See :func:`~pandas.read_csv` for the full argument list.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
DataFrame
|
||
|
A parsed :class:`~pandas.DataFrame` object.
|
||
|
|
||
|
See Also
|
||
|
--------
|
||
|
DataFrame.to_clipboard : Copy object to the system clipboard.
|
||
|
read_csv : Read a comma-separated values (csv) file into DataFrame.
|
||
|
read_fwf : Read a table of fixed-width formatted lines into DataFrame.
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
|
||
|
>>> df.to_clipboard() # doctest: +SKIP
|
||
|
>>> pd.read_clipboard() # doctest: +SKIP
|
||
|
A B C
|
||
|
0 1 2 3
|
||
|
1 4 5 6
|
||
|
"""
|
||
|
encoding = kwargs.pop("encoding", "utf-8")
|
||
|
|
||
|
# only utf-8 is valid for passed value because that's what clipboard
|
||
|
# supports
|
||
|
if encoding is not None and encoding.lower().replace("-", "") != "utf8":
|
||
|
raise NotImplementedError("reading from clipboard only supports utf-8 encoding")
|
||
|
|
||
|
check_dtype_backend(dtype_backend)
|
||
|
|
||
|
from pandas.io.clipboard import clipboard_get
|
||
|
from pandas.io.parsers import read_csv
|
||
|
|
||
|
text = clipboard_get()
|
||
|
|
||
|
# Try to decode (if needed, as "text" might already be a string here).
|
||
|
try:
|
||
|
text = text.decode(kwargs.get("encoding") or get_option("display.encoding"))
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
|
||
|
# Excel copies into clipboard with \t separation
|
||
|
# inspect no more then the 10 first lines, if they
|
||
|
# all contain an equal number (>0) of tabs, infer
|
||
|
# that this came from excel and set 'sep' accordingly
|
||
|
lines = text[:10000].split("\n")[:-1][:10]
|
||
|
|
||
|
# Need to remove leading white space, since read_csv
|
||
|
# accepts:
|
||
|
# a b
|
||
|
# 0 1 2
|
||
|
# 1 3 4
|
||
|
|
||
|
counts = {x.lstrip(" ").count("\t") for x in lines}
|
||
|
if len(lines) > 1 and len(counts) == 1 and counts.pop() != 0:
|
||
|
sep = "\t"
|
||
|
# check the number of leading tabs in the first line
|
||
|
# to account for index columns
|
||
|
index_length = len(lines[0]) - len(lines[0].lstrip(" \t"))
|
||
|
if index_length != 0:
|
||
|
kwargs.setdefault("index_col", list(range(index_length)))
|
||
|
|
||
|
# Edge case where sep is specified to be None, return to default
|
||
|
if sep is None and kwargs.get("delim_whitespace") is None:
|
||
|
sep = r"\s+"
|
||
|
|
||
|
# Regex separator currently only works with python engine.
|
||
|
# Default to python if separator is multi-character (regex)
|
||
|
if len(sep) > 1 and kwargs.get("engine") is None:
|
||
|
kwargs["engine"] = "python"
|
||
|
elif len(sep) > 1 and kwargs.get("engine") == "c":
|
||
|
warnings.warn(
|
||
|
"read_clipboard with regex separator does not work properly with c engine.",
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
|
||
|
return read_csv(StringIO(text), sep=sep, dtype_backend=dtype_backend, **kwargs)
|
||
|
|
||
|
|
||
|
def to_clipboard(
|
||
|
obj, excel: bool | None = True, sep: str | None = None, **kwargs
|
||
|
) -> None: # pragma: no cover
|
||
|
"""
|
||
|
Attempt to write text representation of object to the system clipboard
|
||
|
The clipboard can be then pasted into Excel for example.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
obj : the object to write to the clipboard
|
||
|
excel : bool, defaults to True
|
||
|
if True, use the provided separator, writing in a csv
|
||
|
format for allowing easy pasting into excel.
|
||
|
if False, write a string representation of the object
|
||
|
to the clipboard
|
||
|
sep : optional, defaults to tab
|
||
|
other keywords are passed to to_csv
|
||
|
|
||
|
Notes
|
||
|
-----
|
||
|
Requirements for your platform
|
||
|
- Linux: xclip, or xsel (with PyQt4 modules)
|
||
|
- Windows:
|
||
|
- OS X:
|
||
|
"""
|
||
|
encoding = kwargs.pop("encoding", "utf-8")
|
||
|
|
||
|
# testing if an invalid encoding is passed to clipboard
|
||
|
if encoding is not None and encoding.lower().replace("-", "") != "utf8":
|
||
|
raise ValueError("clipboard only supports utf-8 encoding")
|
||
|
|
||
|
from pandas.io.clipboard import clipboard_set
|
||
|
|
||
|
if excel is None:
|
||
|
excel = True
|
||
|
|
||
|
if excel:
|
||
|
try:
|
||
|
if sep is None:
|
||
|
sep = "\t"
|
||
|
buf = StringIO()
|
||
|
|
||
|
# clipboard_set (pyperclip) expects unicode
|
||
|
obj.to_csv(buf, sep=sep, encoding="utf-8", **kwargs)
|
||
|
text = buf.getvalue()
|
||
|
|
||
|
clipboard_set(text)
|
||
|
return
|
||
|
except TypeError:
|
||
|
warnings.warn(
|
||
|
"to_clipboard in excel mode requires a single character separator.",
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
elif sep is not None:
|
||
|
warnings.warn(
|
||
|
"to_clipboard with excel=False ignores the sep argument.",
|
||
|
stacklevel=find_stack_level(),
|
||
|
)
|
||
|
|
||
|
if isinstance(obj, ABCDataFrame):
|
||
|
# str(df) has various unhelpful defaults, like truncation
|
||
|
with option_context("display.max_colwidth", None):
|
||
|
objstr = obj.to_string(**kwargs)
|
||
|
else:
|
||
|
objstr = str(obj)
|
||
|
clipboard_set(objstr)
|