You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
335 lines
11 KiB
335 lines
11 KiB
1 year ago
|
"""
|
||
|
Tests for 2D compatibility.
|
||
|
"""
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
from pandas._libs.missing import is_matching_na
|
||
|
|
||
|
from pandas.core.dtypes.common import (
|
||
|
is_bool_dtype,
|
||
|
is_integer_dtype,
|
||
|
)
|
||
|
|
||
|
import pandas as pd
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core.arrays.integer import NUMPY_INT_TO_DTYPE
|
||
|
|
||
|
|
||
|
class Dim2CompatTests:
|
||
|
# Note: these are ONLY for ExtensionArray subclasses that support 2D arrays.
|
||
|
# i.e. not for pyarrow-backed EAs.
|
||
|
|
||
|
def test_transpose(self, data):
|
||
|
arr2d = data.repeat(2).reshape(-1, 2)
|
||
|
shape = arr2d.shape
|
||
|
assert shape[0] != shape[-1] # otherwise the rest of the test is useless
|
||
|
|
||
|
assert arr2d.T.shape == shape[::-1]
|
||
|
|
||
|
def test_frame_from_2d_array(self, data):
|
||
|
arr2d = data.repeat(2).reshape(-1, 2)
|
||
|
|
||
|
df = pd.DataFrame(arr2d)
|
||
|
expected = pd.DataFrame({0: arr2d[:, 0], 1: arr2d[:, 1]})
|
||
|
tm.assert_frame_equal(df, expected)
|
||
|
|
||
|
def test_swapaxes(self, data):
|
||
|
arr2d = data.repeat(2).reshape(-1, 2)
|
||
|
|
||
|
result = arr2d.swapaxes(0, 1)
|
||
|
expected = arr2d.T
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
def test_delete_2d(self, data):
|
||
|
arr2d = data.repeat(3).reshape(-1, 3)
|
||
|
|
||
|
# axis = 0
|
||
|
result = arr2d.delete(1, axis=0)
|
||
|
expected = data.delete(1).repeat(3).reshape(-1, 3)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
# axis = 1
|
||
|
result = arr2d.delete(1, axis=1)
|
||
|
expected = data.repeat(2).reshape(-1, 2)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
def test_take_2d(self, data):
|
||
|
arr2d = data.reshape(-1, 1)
|
||
|
|
||
|
result = arr2d.take([0, 0, -1], axis=0)
|
||
|
|
||
|
expected = data.take([0, 0, -1]).reshape(-1, 1)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
def test_repr_2d(self, data):
|
||
|
# this could fail in a corner case where an element contained the name
|
||
|
res = repr(data.reshape(1, -1))
|
||
|
assert res.count(f"<{type(data).__name__}") == 1
|
||
|
|
||
|
res = repr(data.reshape(-1, 1))
|
||
|
assert res.count(f"<{type(data).__name__}") == 1
|
||
|
|
||
|
def test_reshape(self, data):
|
||
|
arr2d = data.reshape(-1, 1)
|
||
|
assert arr2d.shape == (data.size, 1)
|
||
|
assert len(arr2d) == len(data)
|
||
|
|
||
|
arr2d = data.reshape((-1, 1))
|
||
|
assert arr2d.shape == (data.size, 1)
|
||
|
assert len(arr2d) == len(data)
|
||
|
|
||
|
with pytest.raises(ValueError):
|
||
|
data.reshape((data.size, 2))
|
||
|
with pytest.raises(ValueError):
|
||
|
data.reshape(data.size, 2)
|
||
|
|
||
|
def test_getitem_2d(self, data):
|
||
|
arr2d = data.reshape(1, -1)
|
||
|
|
||
|
result = arr2d[0]
|
||
|
tm.assert_extension_array_equal(result, data)
|
||
|
|
||
|
with pytest.raises(IndexError):
|
||
|
arr2d[1]
|
||
|
|
||
|
with pytest.raises(IndexError):
|
||
|
arr2d[-2]
|
||
|
|
||
|
result = arr2d[:]
|
||
|
tm.assert_extension_array_equal(result, arr2d)
|
||
|
|
||
|
result = arr2d[:, :]
|
||
|
tm.assert_extension_array_equal(result, arr2d)
|
||
|
|
||
|
result = arr2d[:, 0]
|
||
|
expected = data[[0]]
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
# dimension-expanding getitem on 1D
|
||
|
result = data[:, np.newaxis]
|
||
|
tm.assert_extension_array_equal(result, arr2d.T)
|
||
|
|
||
|
def test_iter_2d(self, data):
|
||
|
arr2d = data.reshape(1, -1)
|
||
|
|
||
|
objs = list(iter(arr2d))
|
||
|
assert len(objs) == arr2d.shape[0]
|
||
|
|
||
|
for obj in objs:
|
||
|
assert isinstance(obj, type(data))
|
||
|
assert obj.dtype == data.dtype
|
||
|
assert obj.ndim == 1
|
||
|
assert len(obj) == arr2d.shape[1]
|
||
|
|
||
|
def test_tolist_2d(self, data):
|
||
|
arr2d = data.reshape(1, -1)
|
||
|
|
||
|
result = arr2d.tolist()
|
||
|
expected = [data.tolist()]
|
||
|
|
||
|
assert isinstance(result, list)
|
||
|
assert all(isinstance(x, list) for x in result)
|
||
|
|
||
|
assert result == expected
|
||
|
|
||
|
def test_concat_2d(self, data):
|
||
|
left = type(data)._concat_same_type([data, data]).reshape(-1, 2)
|
||
|
right = left.copy()
|
||
|
|
||
|
# axis=0
|
||
|
result = left._concat_same_type([left, right], axis=0)
|
||
|
expected = data._concat_same_type([data] * 4).reshape(-1, 2)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
# axis=1
|
||
|
result = left._concat_same_type([left, right], axis=1)
|
||
|
assert result.shape == (len(data), 4)
|
||
|
tm.assert_extension_array_equal(result[:, :2], left)
|
||
|
tm.assert_extension_array_equal(result[:, 2:], right)
|
||
|
|
||
|
# axis > 1 -> invalid
|
||
|
msg = "axis 2 is out of bounds for array of dimension 2"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
left._concat_same_type([left, right], axis=2)
|
||
|
|
||
|
@pytest.mark.parametrize("method", ["backfill", "pad"])
|
||
|
def test_fillna_2d_method(self, data_missing, method):
|
||
|
# pad_or_backfill is always along axis=0
|
||
|
arr = data_missing.repeat(2).reshape(2, 2)
|
||
|
assert arr[0].isna().all()
|
||
|
assert not arr[1].isna().any()
|
||
|
|
||
|
result = arr._pad_or_backfill(method=method, limit=None)
|
||
|
|
||
|
expected = data_missing._pad_or_backfill(method=method).repeat(2).reshape(2, 2)
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
|
||
|
# Reverse so that backfill is not a no-op.
|
||
|
arr2 = arr[::-1]
|
||
|
assert not arr2[0].isna().any()
|
||
|
assert arr2[1].isna().all()
|
||
|
|
||
|
result2 = arr2._pad_or_backfill(method=method, limit=None)
|
||
|
|
||
|
expected2 = (
|
||
|
data_missing[::-1]._pad_or_backfill(method=method).repeat(2).reshape(2, 2)
|
||
|
)
|
||
|
tm.assert_extension_array_equal(result2, expected2)
|
||
|
|
||
|
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
|
||
|
def test_reductions_2d_axis_none(self, data, method):
|
||
|
arr2d = data.reshape(1, -1)
|
||
|
|
||
|
err_expected = None
|
||
|
err_result = None
|
||
|
try:
|
||
|
expected = getattr(data, method)()
|
||
|
except Exception as err:
|
||
|
# if the 1D reduction is invalid, the 2D reduction should be as well
|
||
|
err_expected = err
|
||
|
try:
|
||
|
result = getattr(arr2d, method)(axis=None)
|
||
|
except Exception as err2:
|
||
|
err_result = err2
|
||
|
|
||
|
else:
|
||
|
result = getattr(arr2d, method)(axis=None)
|
||
|
|
||
|
if err_result is not None or err_expected is not None:
|
||
|
assert type(err_result) == type(err_expected)
|
||
|
return
|
||
|
|
||
|
assert is_matching_na(result, expected) or result == expected
|
||
|
|
||
|
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
|
||
|
@pytest.mark.parametrize("min_count", [0, 1])
|
||
|
def test_reductions_2d_axis0(self, data, method, min_count):
|
||
|
if min_count == 1 and method not in ["sum", "prod"]:
|
||
|
pytest.skip(f"min_count not relevant for {method}")
|
||
|
|
||
|
arr2d = data.reshape(1, -1)
|
||
|
|
||
|
kwargs = {}
|
||
|
if method in ["std", "var"]:
|
||
|
# pass ddof=0 so we get all-zero std instead of all-NA std
|
||
|
kwargs["ddof"] = 0
|
||
|
elif method in ["prod", "sum"]:
|
||
|
kwargs["min_count"] = min_count
|
||
|
|
||
|
try:
|
||
|
result = getattr(arr2d, method)(axis=0, **kwargs)
|
||
|
except Exception as err:
|
||
|
try:
|
||
|
getattr(data, method)()
|
||
|
except Exception as err2:
|
||
|
assert type(err) == type(err2)
|
||
|
return
|
||
|
else:
|
||
|
raise AssertionError("Both reductions should raise or neither")
|
||
|
|
||
|
def get_reduction_result_dtype(dtype):
|
||
|
# windows and 32bit builds will in some cases have int32/uint32
|
||
|
# where other builds will have int64/uint64.
|
||
|
if dtype.itemsize == 8:
|
||
|
return dtype
|
||
|
elif dtype.kind in "ib":
|
||
|
return NUMPY_INT_TO_DTYPE[np.dtype(int)]
|
||
|
else:
|
||
|
# i.e. dtype.kind == "u"
|
||
|
return NUMPY_INT_TO_DTYPE[np.dtype(np.uint)]
|
||
|
|
||
|
if method in ["sum", "prod"]:
|
||
|
# std and var are not dtype-preserving
|
||
|
expected = data
|
||
|
if data.dtype.kind in "iub":
|
||
|
dtype = get_reduction_result_dtype(data.dtype)
|
||
|
expected = data.astype(dtype)
|
||
|
assert dtype == expected.dtype
|
||
|
|
||
|
if min_count == 0:
|
||
|
fill_value = 1 if method == "prod" else 0
|
||
|
expected = expected.fillna(fill_value)
|
||
|
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
elif method == "median":
|
||
|
# std and var are not dtype-preserving
|
||
|
expected = data
|
||
|
tm.assert_extension_array_equal(result, expected)
|
||
|
elif method in ["mean", "std", "var"]:
|
||
|
if is_integer_dtype(data) or is_bool_dtype(data):
|
||
|
data = data.astype("Float64")
|
||
|
if method == "mean":
|
||
|
tm.assert_extension_array_equal(result, data)
|
||
|
else:
|
||
|
tm.assert_extension_array_equal(result, data - data)
|
||
|
|
||
|
@pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"])
|
||
|
def test_reductions_2d_axis1(self, data, method):
|
||
|
arr2d = data.reshape(1, -1)
|
||
|
|
||
|
try:
|
||
|
result = getattr(arr2d, method)(axis=1)
|
||
|
except Exception as err:
|
||
|
try:
|
||
|
getattr(data, method)()
|
||
|
except Exception as err2:
|
||
|
assert type(err) == type(err2)
|
||
|
return
|
||
|
else:
|
||
|
raise AssertionError("Both reductions should raise or neither")
|
||
|
|
||
|
# not necessarily type/dtype-preserving, so weaker assertions
|
||
|
assert result.shape == (1,)
|
||
|
expected_scalar = getattr(data, method)()
|
||
|
res = result[0]
|
||
|
assert is_matching_na(res, expected_scalar) or res == expected_scalar
|
||
|
|
||
|
|
||
|
class NDArrayBacked2DTests(Dim2CompatTests):
|
||
|
# More specific tests for NDArrayBackedExtensionArray subclasses
|
||
|
|
||
|
def test_copy_order(self, data):
|
||
|
# We should be matching numpy semantics for the "order" keyword in 'copy'
|
||
|
arr2d = data.repeat(2).reshape(-1, 2)
|
||
|
assert arr2d._ndarray.flags["C_CONTIGUOUS"]
|
||
|
|
||
|
res = arr2d.copy()
|
||
|
assert res._ndarray.flags["C_CONTIGUOUS"]
|
||
|
|
||
|
res = arr2d[::2, ::2].copy()
|
||
|
assert res._ndarray.flags["C_CONTIGUOUS"]
|
||
|
|
||
|
res = arr2d.copy("F")
|
||
|
assert not res._ndarray.flags["C_CONTIGUOUS"]
|
||
|
assert res._ndarray.flags["F_CONTIGUOUS"]
|
||
|
|
||
|
res = arr2d.copy("K")
|
||
|
assert res._ndarray.flags["C_CONTIGUOUS"]
|
||
|
|
||
|
res = arr2d.T.copy("K")
|
||
|
assert not res._ndarray.flags["C_CONTIGUOUS"]
|
||
|
assert res._ndarray.flags["F_CONTIGUOUS"]
|
||
|
|
||
|
# order not accepted by numpy
|
||
|
msg = r"order must be one of 'C', 'F', 'A', or 'K' \(got 'Q'\)"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
arr2d.copy("Q")
|
||
|
|
||
|
# neither contiguity
|
||
|
arr_nc = arr2d[::2]
|
||
|
assert not arr_nc._ndarray.flags["C_CONTIGUOUS"]
|
||
|
assert not arr_nc._ndarray.flags["F_CONTIGUOUS"]
|
||
|
|
||
|
assert arr_nc.copy()._ndarray.flags["C_CONTIGUOUS"]
|
||
|
assert not arr_nc.copy()._ndarray.flags["F_CONTIGUOUS"]
|
||
|
|
||
|
assert arr_nc.copy("C")._ndarray.flags["C_CONTIGUOUS"]
|
||
|
assert not arr_nc.copy("C")._ndarray.flags["F_CONTIGUOUS"]
|
||
|
|
||
|
assert not arr_nc.copy("F")._ndarray.flags["C_CONTIGUOUS"]
|
||
|
assert arr_nc.copy("F")._ndarray.flags["F_CONTIGUOUS"]
|
||
|
|
||
|
assert arr_nc.copy("K")._ndarray.flags["C_CONTIGUOUS"]
|
||
|
assert not arr_nc.copy("K")._ndarray.flags["F_CONTIGUOUS"]
|