Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

163 lines
5.8 KiB

import re
import pytest
from pandas.core.dtypes.common import (
is_bool_dtype,
is_numeric_dtype,
is_object_dtype,
is_string_dtype,
)
import pandas as pd
import pandas._testing as tm
class BaseGroupbyTests:
"""Groupby-specific tests."""
def test_grouping_grouper(self, data_for_grouping):
df = pd.DataFrame(
{"A": ["B", "B", None, None, "A", "A", "B", "C"], "B": data_for_grouping}
)
gr1 = df.groupby("A").grouper.groupings[0]
gr2 = df.groupby("B").grouper.groupings[0]
tm.assert_numpy_array_equal(gr1.grouping_vector, df.A.values)
tm.assert_extension_array_equal(gr2.grouping_vector, data_for_grouping)
@pytest.mark.parametrize("as_index", [True, False])
def test_groupby_extension_agg(self, as_index, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
is_bool = data_for_grouping.dtype._is_boolean
if is_bool:
# only 2 unique values, and the final entry has c==b
# (see data_for_grouping docstring)
df = df.iloc[:-1]
result = df.groupby("B", as_index=as_index).A.mean()
_, uniques = pd.factorize(data_for_grouping, sort=True)
exp_vals = [3.0, 1.0, 4.0]
if is_bool:
exp_vals = exp_vals[:-1]
if as_index:
index = pd.Index(uniques, name="B")
expected = pd.Series(exp_vals, index=index, name="A")
tm.assert_series_equal(result, expected)
else:
expected = pd.DataFrame({"B": uniques, "A": exp_vals})
tm.assert_frame_equal(result, expected)
def test_groupby_agg_extension(self, data_for_grouping):
# GH#38980 groupby agg on extension type fails for non-numeric types
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
expected = df.iloc[[0, 2, 4, 7]]
expected = expected.set_index("A")
result = df.groupby("A").agg({"B": "first"})
tm.assert_frame_equal(result, expected)
result = df.groupby("A").agg("first")
tm.assert_frame_equal(result, expected)
result = df.groupby("A").first()
tm.assert_frame_equal(result, expected)
def test_groupby_extension_no_sort(self, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
is_bool = data_for_grouping.dtype._is_boolean
if is_bool:
# only 2 unique values, and the final entry has c==b
# (see data_for_grouping docstring)
df = df.iloc[:-1]
result = df.groupby("B", sort=False).A.mean()
_, index = pd.factorize(data_for_grouping, sort=False)
index = pd.Index(index, name="B")
exp_vals = [1.0, 3.0, 4.0]
if is_bool:
exp_vals = exp_vals[:-1]
expected = pd.Series(exp_vals, index=index, name="A")
tm.assert_series_equal(result, expected)
def test_groupby_extension_transform(self, data_for_grouping):
is_bool = data_for_grouping.dtype._is_boolean
valid = data_for_grouping[~data_for_grouping.isna()]
df = pd.DataFrame({"A": [1, 1, 3, 3, 1, 4], "B": valid})
is_bool = data_for_grouping.dtype._is_boolean
if is_bool:
# only 2 unique values, and the final entry has c==b
# (see data_for_grouping docstring)
df = df.iloc[:-1]
result = df.groupby("B").A.transform(len)
expected = pd.Series([3, 3, 2, 2, 3, 1], name="A")
if is_bool:
expected = expected[:-1]
tm.assert_series_equal(result, expected)
def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
df.groupby("B", group_keys=False).apply(groupby_apply_op)
df.groupby("B", group_keys=False).A.apply(groupby_apply_op)
df.groupby("A", group_keys=False).apply(groupby_apply_op)
df.groupby("A", group_keys=False).B.apply(groupby_apply_op)
def test_groupby_apply_identity(self, data_for_grouping):
df = pd.DataFrame({"A": [1, 1, 2, 2, 3, 3, 1, 4], "B": data_for_grouping})
result = df.groupby("A").B.apply(lambda x: x.array)
expected = pd.Series(
[
df.B.iloc[[0, 1, 6]].array,
df.B.iloc[[2, 3]].array,
df.B.iloc[[4, 5]].array,
df.B.iloc[[7]].array,
],
index=pd.Index([1, 2, 3, 4], name="A"),
name="B",
)
tm.assert_series_equal(result, expected)
def test_in_numeric_groupby(self, data_for_grouping):
df = pd.DataFrame(
{
"A": [1, 1, 2, 2, 3, 3, 1, 4],
"B": data_for_grouping,
"C": [1, 1, 1, 1, 1, 1, 1, 1],
}
)
dtype = data_for_grouping.dtype
if (
is_numeric_dtype(dtype)
or is_bool_dtype(dtype)
or dtype.name == "decimal"
or is_string_dtype(dtype)
or is_object_dtype(dtype)
or dtype.kind == "m" # in particular duration[*][pyarrow]
):
expected = pd.Index(["B", "C"])
result = df.groupby("A").sum().columns
else:
expected = pd.Index(["C"])
msg = "|".join(
[
# period/datetime
"does not support sum operations",
# all others
re.escape(f"agg function failed [how->sum,dtype->{dtype}"),
]
)
with pytest.raises(TypeError, match=msg):
df.groupby("A").sum()
result = df.groupby("A").sum(numeric_only=True).columns
tm.assert_index_equal(result, expected)