You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
310 lines
9.4 KiB
310 lines
9.4 KiB
1 year ago
|
from __future__ import annotations
|
||
|
|
||
|
import decimal
|
||
|
import numbers
|
||
|
import sys
|
||
|
from typing import TYPE_CHECKING
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas.core.dtypes.base import ExtensionDtype
|
||
|
from pandas.core.dtypes.common import (
|
||
|
is_dtype_equal,
|
||
|
is_float,
|
||
|
is_integer,
|
||
|
pandas_dtype,
|
||
|
)
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas.api.extensions import (
|
||
|
no_default,
|
||
|
register_extension_dtype,
|
||
|
)
|
||
|
from pandas.api.types import (
|
||
|
is_list_like,
|
||
|
is_scalar,
|
||
|
)
|
||
|
from pandas.core import arraylike
|
||
|
from pandas.core.algorithms import value_counts_internal as value_counts
|
||
|
from pandas.core.arraylike import OpsMixin
|
||
|
from pandas.core.arrays import (
|
||
|
ExtensionArray,
|
||
|
ExtensionScalarOpsMixin,
|
||
|
)
|
||
|
from pandas.core.indexers import check_array_indexer
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
from pandas._typing import type_t
|
||
|
|
||
|
|
||
|
@register_extension_dtype
|
||
|
class DecimalDtype(ExtensionDtype):
|
||
|
type = decimal.Decimal
|
||
|
name = "decimal"
|
||
|
na_value = decimal.Decimal("NaN")
|
||
|
_metadata = ("context",)
|
||
|
|
||
|
def __init__(self, context=None) -> None:
|
||
|
self.context = context or decimal.getcontext()
|
||
|
|
||
|
def __repr__(self) -> str:
|
||
|
return f"DecimalDtype(context={self.context})"
|
||
|
|
||
|
@classmethod
|
||
|
def construct_array_type(cls) -> type_t[DecimalArray]:
|
||
|
"""
|
||
|
Return the array type associated with this dtype.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
type
|
||
|
"""
|
||
|
return DecimalArray
|
||
|
|
||
|
@property
|
||
|
def _is_numeric(self) -> bool:
|
||
|
return True
|
||
|
|
||
|
|
||
|
class DecimalArray(OpsMixin, ExtensionScalarOpsMixin, ExtensionArray):
|
||
|
__array_priority__ = 1000
|
||
|
|
||
|
def __init__(self, values, dtype=None, copy=False, context=None) -> None:
|
||
|
for i, val in enumerate(values):
|
||
|
if is_float(val) or is_integer(val):
|
||
|
if np.isnan(val):
|
||
|
values[i] = DecimalDtype.na_value
|
||
|
else:
|
||
|
# error: Argument 1 has incompatible type "float | int |
|
||
|
# integer[Any]"; expected "Decimal | float | str | tuple[int,
|
||
|
# Sequence[int], int]"
|
||
|
values[i] = DecimalDtype.type(val) # type: ignore[arg-type]
|
||
|
elif not isinstance(val, decimal.Decimal):
|
||
|
raise TypeError("All values must be of type " + str(decimal.Decimal))
|
||
|
values = np.asarray(values, dtype=object)
|
||
|
|
||
|
self._data = values
|
||
|
# Some aliases for common attribute names to ensure pandas supports
|
||
|
# these
|
||
|
self._items = self.data = self._data
|
||
|
# those aliases are currently not working due to assumptions
|
||
|
# in internal code (GH-20735)
|
||
|
# self._values = self.values = self.data
|
||
|
self._dtype = DecimalDtype(context)
|
||
|
|
||
|
@property
|
||
|
def dtype(self):
|
||
|
return self._dtype
|
||
|
|
||
|
@classmethod
|
||
|
def _from_sequence(cls, scalars, dtype=None, copy=False):
|
||
|
return cls(scalars)
|
||
|
|
||
|
@classmethod
|
||
|
def _from_sequence_of_strings(cls, strings, dtype=None, copy=False):
|
||
|
return cls._from_sequence([decimal.Decimal(x) for x in strings], dtype, copy)
|
||
|
|
||
|
@classmethod
|
||
|
def _from_factorized(cls, values, original):
|
||
|
return cls(values)
|
||
|
|
||
|
_HANDLED_TYPES = (decimal.Decimal, numbers.Number, np.ndarray)
|
||
|
|
||
|
def to_numpy(
|
||
|
self,
|
||
|
dtype=None,
|
||
|
copy: bool = False,
|
||
|
na_value: object = no_default,
|
||
|
decimals=None,
|
||
|
) -> np.ndarray:
|
||
|
result = np.asarray(self, dtype=dtype)
|
||
|
if decimals is not None:
|
||
|
result = np.asarray([round(x, decimals) for x in result])
|
||
|
return result
|
||
|
|
||
|
def __array_ufunc__(self, ufunc: np.ufunc, method: str, *inputs, **kwargs):
|
||
|
#
|
||
|
if not all(
|
||
|
isinstance(t, self._HANDLED_TYPES + (DecimalArray,)) for t in inputs
|
||
|
):
|
||
|
return NotImplemented
|
||
|
|
||
|
result = arraylike.maybe_dispatch_ufunc_to_dunder_op(
|
||
|
self, ufunc, method, *inputs, **kwargs
|
||
|
)
|
||
|
if result is not NotImplemented:
|
||
|
# e.g. test_array_ufunc_series_scalar_other
|
||
|
return result
|
||
|
|
||
|
if "out" in kwargs:
|
||
|
return arraylike.dispatch_ufunc_with_out(
|
||
|
self, ufunc, method, *inputs, **kwargs
|
||
|
)
|
||
|
|
||
|
inputs = tuple(x._data if isinstance(x, DecimalArray) else x for x in inputs)
|
||
|
result = getattr(ufunc, method)(*inputs, **kwargs)
|
||
|
|
||
|
if method == "reduce":
|
||
|
result = arraylike.dispatch_reduction_ufunc(
|
||
|
self, ufunc, method, *inputs, **kwargs
|
||
|
)
|
||
|
if result is not NotImplemented:
|
||
|
return result
|
||
|
|
||
|
def reconstruct(x):
|
||
|
if isinstance(x, (decimal.Decimal, numbers.Number)):
|
||
|
return x
|
||
|
else:
|
||
|
return DecimalArray._from_sequence(x)
|
||
|
|
||
|
if ufunc.nout > 1:
|
||
|
return tuple(reconstruct(x) for x in result)
|
||
|
else:
|
||
|
return reconstruct(result)
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
if isinstance(item, numbers.Integral):
|
||
|
return self._data[item]
|
||
|
else:
|
||
|
# array, slice.
|
||
|
item = pd.api.indexers.check_array_indexer(self, item)
|
||
|
return type(self)(self._data[item])
|
||
|
|
||
|
def take(self, indexer, allow_fill=False, fill_value=None):
|
||
|
from pandas.api.extensions import take
|
||
|
|
||
|
data = self._data
|
||
|
if allow_fill and fill_value is None:
|
||
|
fill_value = self.dtype.na_value
|
||
|
|
||
|
result = take(data, indexer, fill_value=fill_value, allow_fill=allow_fill)
|
||
|
return self._from_sequence(result)
|
||
|
|
||
|
def copy(self):
|
||
|
return type(self)(self._data.copy(), dtype=self.dtype)
|
||
|
|
||
|
def astype(self, dtype, copy=True):
|
||
|
if is_dtype_equal(dtype, self._dtype):
|
||
|
if not copy:
|
||
|
return self
|
||
|
dtype = pandas_dtype(dtype)
|
||
|
if isinstance(dtype, type(self.dtype)):
|
||
|
return type(self)(self._data, copy=copy, context=dtype.context)
|
||
|
|
||
|
return super().astype(dtype, copy=copy)
|
||
|
|
||
|
def __setitem__(self, key, value) -> None:
|
||
|
if is_list_like(value):
|
||
|
if is_scalar(key):
|
||
|
raise ValueError("setting an array element with a sequence.")
|
||
|
value = [decimal.Decimal(v) for v in value]
|
||
|
else:
|
||
|
value = decimal.Decimal(value)
|
||
|
|
||
|
key = check_array_indexer(self, key)
|
||
|
self._data[key] = value
|
||
|
|
||
|
def __len__(self) -> int:
|
||
|
return len(self._data)
|
||
|
|
||
|
def __contains__(self, item) -> bool | np.bool_:
|
||
|
if not isinstance(item, decimal.Decimal):
|
||
|
return False
|
||
|
elif item.is_nan():
|
||
|
return self.isna().any()
|
||
|
else:
|
||
|
return super().__contains__(item)
|
||
|
|
||
|
@property
|
||
|
def nbytes(self) -> int:
|
||
|
n = len(self)
|
||
|
if n:
|
||
|
return n * sys.getsizeof(self[0])
|
||
|
return 0
|
||
|
|
||
|
def isna(self):
|
||
|
return np.array([x.is_nan() for x in self._data], dtype=bool)
|
||
|
|
||
|
@property
|
||
|
def _na_value(self):
|
||
|
return decimal.Decimal("NaN")
|
||
|
|
||
|
def _formatter(self, boxed=False):
|
||
|
if boxed:
|
||
|
return "Decimal: {}".format
|
||
|
return repr
|
||
|
|
||
|
@classmethod
|
||
|
def _concat_same_type(cls, to_concat):
|
||
|
return cls(np.concatenate([x._data for x in to_concat]))
|
||
|
|
||
|
def _reduce(
|
||
|
self, name: str, *, skipna: bool = True, keepdims: bool = False, **kwargs
|
||
|
):
|
||
|
if skipna and self.isna().any():
|
||
|
# If we don't have any NAs, we can ignore skipna
|
||
|
other = self[~self.isna()]
|
||
|
result = other._reduce(name, **kwargs)
|
||
|
elif name == "sum" and len(self) == 0:
|
||
|
# GH#29630 avoid returning int 0 or np.bool_(False) on old numpy
|
||
|
result = decimal.Decimal(0)
|
||
|
else:
|
||
|
try:
|
||
|
op = getattr(self.data, name)
|
||
|
except AttributeError as err:
|
||
|
raise NotImplementedError(
|
||
|
f"decimal does not support the {name} operation"
|
||
|
) from err
|
||
|
result = op(axis=0)
|
||
|
|
||
|
if keepdims:
|
||
|
return type(self)([result])
|
||
|
else:
|
||
|
return result
|
||
|
|
||
|
def _cmp_method(self, other, op):
|
||
|
# For use with OpsMixin
|
||
|
def convert_values(param):
|
||
|
if isinstance(param, ExtensionArray) or is_list_like(param):
|
||
|
ovalues = param
|
||
|
else:
|
||
|
# Assume it's an object
|
||
|
ovalues = [param] * len(self)
|
||
|
return ovalues
|
||
|
|
||
|
lvalues = self
|
||
|
rvalues = convert_values(other)
|
||
|
|
||
|
# If the operator is not defined for the underlying objects,
|
||
|
# a TypeError should be raised
|
||
|
res = [op(a, b) for (a, b) in zip(lvalues, rvalues)]
|
||
|
|
||
|
return np.asarray(res, dtype=bool)
|
||
|
|
||
|
def value_counts(self, dropna: bool = True):
|
||
|
return value_counts(self.to_numpy(), dropna=dropna)
|
||
|
|
||
|
# We override fillna here to simulate a 3rd party EA that has done so. This
|
||
|
# lets us test the deprecation telling authors to implement _pad_or_backfill
|
||
|
# Simulate a 3rd-party EA that has not yet updated to include a "copy"
|
||
|
# keyword in its fillna method.
|
||
|
# error: Signature of "fillna" incompatible with supertype "ExtensionArray"
|
||
|
def fillna( # type: ignore[override]
|
||
|
self,
|
||
|
value=None,
|
||
|
method=None,
|
||
|
limit: int | None = None,
|
||
|
):
|
||
|
return super().fillna(value=value, method=method, limit=limit, copy=True)
|
||
|
|
||
|
|
||
|
def to_decimal(values, context=None):
|
||
|
return DecimalArray([decimal.Decimal(x) for x in values], context=context)
|
||
|
|
||
|
|
||
|
def make_data():
|
||
|
return [decimal.Decimal(val) for val in np.random.default_rng(2).random(100)]
|
||
|
|
||
|
|
||
|
DecimalArray._add_arithmetic_ops()
|