You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
128 lines
3.9 KiB
128 lines
3.9 KiB
1 year ago
|
from typing import (
|
||
|
Any,
|
||
|
Callable,
|
||
|
Literal,
|
||
|
)
|
||
|
|
||
|
import numpy as np
|
||
|
|
||
|
from pandas._typing import (
|
||
|
WindowingRankType,
|
||
|
npt,
|
||
|
)
|
||
|
|
||
|
def roll_sum(
|
||
|
values: np.ndarray, # const float64_t[:]
|
||
|
start: np.ndarray, # np.ndarray[np.int64]
|
||
|
end: np.ndarray, # np.ndarray[np.int64]
|
||
|
minp: int, # int64_t
|
||
|
) -> np.ndarray: ... # np.ndarray[float]
|
||
|
def roll_mean(
|
||
|
values: np.ndarray, # const float64_t[:]
|
||
|
start: np.ndarray, # np.ndarray[np.int64]
|
||
|
end: np.ndarray, # np.ndarray[np.int64]
|
||
|
minp: int, # int64_t
|
||
|
) -> np.ndarray: ... # np.ndarray[float]
|
||
|
def roll_var(
|
||
|
values: np.ndarray, # const float64_t[:]
|
||
|
start: np.ndarray, # np.ndarray[np.int64]
|
||
|
end: np.ndarray, # np.ndarray[np.int64]
|
||
|
minp: int, # int64_t
|
||
|
ddof: int = ...,
|
||
|
) -> np.ndarray: ... # np.ndarray[float]
|
||
|
def roll_skew(
|
||
|
values: np.ndarray, # np.ndarray[np.float64]
|
||
|
start: np.ndarray, # np.ndarray[np.int64]
|
||
|
end: np.ndarray, # np.ndarray[np.int64]
|
||
|
minp: int, # int64_t
|
||
|
) -> np.ndarray: ... # np.ndarray[float]
|
||
|
def roll_kurt(
|
||
|
values: np.ndarray, # np.ndarray[np.float64]
|
||
|
start: np.ndarray, # np.ndarray[np.int64]
|
||
|
end: np.ndarray, # np.ndarray[np.int64]
|
||
|
minp: int, # int64_t
|
||
|
) -> np.ndarray: ... # np.ndarray[float]
|
||
|
def roll_median_c(
|
||
|
values: np.ndarray, # np.ndarray[np.float64]
|
||
|
start: np.ndarray, # np.ndarray[np.int64]
|
||
|
end: np.ndarray, # np.ndarray[np.int64]
|
||
|
minp: int, # int64_t
|
||
|
) -> np.ndarray: ... # np.ndarray[float]
|
||
|
def roll_max(
|
||
|
values: np.ndarray, # np.ndarray[np.float64]
|
||
|
start: np.ndarray, # np.ndarray[np.int64]
|
||
|
end: np.ndarray, # np.ndarray[np.int64]
|
||
|
minp: int, # int64_t
|
||
|
) -> np.ndarray: ... # np.ndarray[float]
|
||
|
def roll_min(
|
||
|
values: np.ndarray, # np.ndarray[np.float64]
|
||
|
start: np.ndarray, # np.ndarray[np.int64]
|
||
|
end: np.ndarray, # np.ndarray[np.int64]
|
||
|
minp: int, # int64_t
|
||
|
) -> np.ndarray: ... # np.ndarray[float]
|
||
|
def roll_quantile(
|
||
|
values: np.ndarray, # const float64_t[:]
|
||
|
start: np.ndarray, # np.ndarray[np.int64]
|
||
|
end: np.ndarray, # np.ndarray[np.int64]
|
||
|
minp: int, # int64_t
|
||
|
quantile: float, # float64_t
|
||
|
interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"],
|
||
|
) -> np.ndarray: ... # np.ndarray[float]
|
||
|
def roll_rank(
|
||
|
values: np.ndarray,
|
||
|
start: np.ndarray,
|
||
|
end: np.ndarray,
|
||
|
minp: int,
|
||
|
percentile: bool,
|
||
|
method: WindowingRankType,
|
||
|
ascending: bool,
|
||
|
) -> np.ndarray: ... # np.ndarray[float]
|
||
|
def roll_apply(
|
||
|
obj: object,
|
||
|
start: np.ndarray, # np.ndarray[np.int64]
|
||
|
end: np.ndarray, # np.ndarray[np.int64]
|
||
|
minp: int, # int64_t
|
||
|
function: Callable[..., Any],
|
||
|
raw: bool,
|
||
|
args: tuple[Any, ...],
|
||
|
kwargs: dict[str, Any],
|
||
|
) -> npt.NDArray[np.float64]: ...
|
||
|
def roll_weighted_sum(
|
||
|
values: np.ndarray, # const float64_t[:]
|
||
|
weights: np.ndarray, # const float64_t[:]
|
||
|
minp: int,
|
||
|
) -> np.ndarray: ... # np.ndarray[np.float64]
|
||
|
def roll_weighted_mean(
|
||
|
values: np.ndarray, # const float64_t[:]
|
||
|
weights: np.ndarray, # const float64_t[:]
|
||
|
minp: int,
|
||
|
) -> np.ndarray: ... # np.ndarray[np.float64]
|
||
|
def roll_weighted_var(
|
||
|
values: np.ndarray, # const float64_t[:]
|
||
|
weights: np.ndarray, # const float64_t[:]
|
||
|
minp: int, # int64_t
|
||
|
ddof: int, # unsigned int
|
||
|
) -> np.ndarray: ... # np.ndarray[np.float64]
|
||
|
def ewm(
|
||
|
vals: np.ndarray, # const float64_t[:]
|
||
|
start: np.ndarray, # const int64_t[:]
|
||
|
end: np.ndarray, # const int64_t[:]
|
||
|
minp: int,
|
||
|
com: float, # float64_t
|
||
|
adjust: bool,
|
||
|
ignore_na: bool,
|
||
|
deltas: np.ndarray, # const float64_t[:]
|
||
|
normalize: bool,
|
||
|
) -> np.ndarray: ... # np.ndarray[np.float64]
|
||
|
def ewmcov(
|
||
|
input_x: np.ndarray, # const float64_t[:]
|
||
|
start: np.ndarray, # const int64_t[:]
|
||
|
end: np.ndarray, # const int64_t[:]
|
||
|
minp: int,
|
||
|
input_y: np.ndarray, # const float64_t[:]
|
||
|
com: float, # float64_t
|
||
|
adjust: bool,
|
||
|
ignore_na: bool,
|
||
|
bias: bool,
|
||
|
) -> np.ndarray: ... # np.ndarray[np.float64]
|