You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1491 lines
52 KiB
1491 lines
52 KiB
1 year ago
|
# Arithmetic tests for DataFrame/Series/Index/Array classes that should
|
||
|
# behave identically.
|
||
|
# Specifically for numeric dtypes
|
||
|
from __future__ import annotations
|
||
|
|
||
|
from collections import abc
|
||
|
from datetime import timedelta
|
||
|
from decimal import Decimal
|
||
|
import operator
|
||
|
|
||
|
import numpy as np
|
||
|
import pytest
|
||
|
|
||
|
import pandas as pd
|
||
|
from pandas import (
|
||
|
Index,
|
||
|
RangeIndex,
|
||
|
Series,
|
||
|
Timedelta,
|
||
|
TimedeltaIndex,
|
||
|
array,
|
||
|
)
|
||
|
import pandas._testing as tm
|
||
|
from pandas.core import ops
|
||
|
from pandas.core.computation import expressions as expr
|
||
|
from pandas.tests.arithmetic.common import (
|
||
|
assert_invalid_addsub_type,
|
||
|
assert_invalid_comparison,
|
||
|
)
|
||
|
|
||
|
|
||
|
@pytest.fixture(params=[Index, Series, tm.to_array])
|
||
|
def box_pandas_1d_array(request):
|
||
|
"""
|
||
|
Fixture to test behavior for Index, Series and tm.to_array classes
|
||
|
"""
|
||
|
return request.param
|
||
|
|
||
|
|
||
|
def adjust_negative_zero(zero, expected):
|
||
|
"""
|
||
|
Helper to adjust the expected result if we are dividing by -0.0
|
||
|
as opposed to 0.0
|
||
|
"""
|
||
|
if np.signbit(np.array(zero)).any():
|
||
|
# All entries in the `zero` fixture should be either
|
||
|
# all-negative or no-negative.
|
||
|
assert np.signbit(np.array(zero)).all()
|
||
|
|
||
|
expected *= -1
|
||
|
|
||
|
return expected
|
||
|
|
||
|
|
||
|
def compare_op(series, other, op):
|
||
|
left = np.abs(series) if op in (ops.rpow, operator.pow) else series
|
||
|
right = np.abs(other) if op in (ops.rpow, operator.pow) else other
|
||
|
|
||
|
cython_or_numpy = op(left, right)
|
||
|
python = left.combine(right, op)
|
||
|
if isinstance(other, Series) and not other.index.equals(series.index):
|
||
|
python.index = python.index._with_freq(None)
|
||
|
tm.assert_series_equal(cython_or_numpy, python)
|
||
|
|
||
|
|
||
|
# TODO: remove this kludge once mypy stops giving false positives here
|
||
|
# List comprehension has incompatible type List[PandasObject]; expected List[RangeIndex]
|
||
|
# See GH#29725
|
||
|
_ldtypes = ["i1", "i2", "i4", "i8", "u1", "u2", "u4", "u8", "f2", "f4", "f8"]
|
||
|
lefts: list[Index | Series] = [RangeIndex(10, 40, 10)]
|
||
|
lefts.extend([Series([10, 20, 30], dtype=dtype) for dtype in _ldtypes])
|
||
|
lefts.extend([Index([10, 20, 30], dtype=dtype) for dtype in _ldtypes if dtype != "f2"])
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Comparisons
|
||
|
|
||
|
|
||
|
class TestNumericComparisons:
|
||
|
def test_operator_series_comparison_zerorank(self):
|
||
|
# GH#13006
|
||
|
result = np.float64(0) > Series([1, 2, 3])
|
||
|
expected = 0.0 > Series([1, 2, 3])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = Series([1, 2, 3]) < np.float64(0)
|
||
|
expected = Series([1, 2, 3]) < 0.0
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
result = np.array([0, 1, 2])[0] > Series([0, 1, 2])
|
||
|
expected = 0.0 > Series([1, 2, 3])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_df_numeric_cmp_dt64_raises(self, box_with_array, fixed_now_ts):
|
||
|
# GH#8932, GH#22163
|
||
|
ts = fixed_now_ts
|
||
|
obj = np.array(range(5))
|
||
|
obj = tm.box_expected(obj, box_with_array)
|
||
|
|
||
|
assert_invalid_comparison(obj, ts, box_with_array)
|
||
|
|
||
|
def test_compare_invalid(self):
|
||
|
# GH#8058
|
||
|
# ops testing
|
||
|
a = Series(np.random.default_rng(2).standard_normal(5), name=0)
|
||
|
b = Series(np.random.default_rng(2).standard_normal(5))
|
||
|
b.name = pd.Timestamp("2000-01-01")
|
||
|
tm.assert_series_equal(a / b, 1 / (b / a))
|
||
|
|
||
|
def test_numeric_cmp_string_numexpr_path(self, box_with_array, monkeypatch):
|
||
|
# GH#36377, GH#35700
|
||
|
box = box_with_array
|
||
|
xbox = box if box is not Index else np.ndarray
|
||
|
|
||
|
obj = Series(np.random.default_rng(2).standard_normal(51))
|
||
|
obj = tm.box_expected(obj, box, transpose=False)
|
||
|
with monkeypatch.context() as m:
|
||
|
m.setattr(expr, "_MIN_ELEMENTS", 50)
|
||
|
result = obj == "a"
|
||
|
|
||
|
expected = Series(np.zeros(51, dtype=bool))
|
||
|
expected = tm.box_expected(expected, xbox, transpose=False)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
with monkeypatch.context() as m:
|
||
|
m.setattr(expr, "_MIN_ELEMENTS", 50)
|
||
|
result = obj != "a"
|
||
|
tm.assert_equal(result, ~expected)
|
||
|
|
||
|
msg = "Invalid comparison between dtype=float64 and str"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
obj < "a"
|
||
|
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Numeric dtypes Arithmetic with Datetime/Timedelta Scalar
|
||
|
|
||
|
|
||
|
class TestNumericArraylikeArithmeticWithDatetimeLike:
|
||
|
@pytest.mark.parametrize("box_cls", [np.array, Index, Series])
|
||
|
@pytest.mark.parametrize(
|
||
|
"left", lefts, ids=lambda x: type(x).__name__ + str(x.dtype)
|
||
|
)
|
||
|
def test_mul_td64arr(self, left, box_cls):
|
||
|
# GH#22390
|
||
|
right = np.array([1, 2, 3], dtype="m8[s]")
|
||
|
right = box_cls(right)
|
||
|
|
||
|
expected = TimedeltaIndex(["10s", "40s", "90s"], dtype=right.dtype)
|
||
|
|
||
|
if isinstance(left, Series) or box_cls is Series:
|
||
|
expected = Series(expected)
|
||
|
assert expected.dtype == right.dtype
|
||
|
|
||
|
result = left * right
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = right * left
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("box_cls", [np.array, Index, Series])
|
||
|
@pytest.mark.parametrize(
|
||
|
"left", lefts, ids=lambda x: type(x).__name__ + str(x.dtype)
|
||
|
)
|
||
|
def test_div_td64arr(self, left, box_cls):
|
||
|
# GH#22390
|
||
|
right = np.array([10, 40, 90], dtype="m8[s]")
|
||
|
right = box_cls(right)
|
||
|
|
||
|
expected = TimedeltaIndex(["1s", "2s", "3s"], dtype=right.dtype)
|
||
|
if isinstance(left, Series) or box_cls is Series:
|
||
|
expected = Series(expected)
|
||
|
assert expected.dtype == right.dtype
|
||
|
|
||
|
result = right / left
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = right // left
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
# (true_) needed for min-versions build 2022-12-26
|
||
|
msg = "ufunc '(true_)?divide' cannot use operands with types"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
left / right
|
||
|
|
||
|
msg = "ufunc 'floor_divide' cannot use operands with types"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
left // right
|
||
|
|
||
|
# TODO: also test Tick objects;
|
||
|
# see test_numeric_arr_rdiv_tdscalar for note on these failing
|
||
|
@pytest.mark.parametrize(
|
||
|
"scalar_td",
|
||
|
[
|
||
|
Timedelta(days=1),
|
||
|
Timedelta(days=1).to_timedelta64(),
|
||
|
Timedelta(days=1).to_pytimedelta(),
|
||
|
Timedelta(days=1).to_timedelta64().astype("timedelta64[s]"),
|
||
|
Timedelta(days=1).to_timedelta64().astype("timedelta64[ms]"),
|
||
|
],
|
||
|
ids=lambda x: type(x).__name__,
|
||
|
)
|
||
|
def test_numeric_arr_mul_tdscalar(self, scalar_td, numeric_idx, box_with_array):
|
||
|
# GH#19333
|
||
|
box = box_with_array
|
||
|
index = numeric_idx
|
||
|
expected = TimedeltaIndex([Timedelta(days=n) for n in range(len(index))])
|
||
|
if isinstance(scalar_td, np.timedelta64):
|
||
|
dtype = scalar_td.dtype
|
||
|
expected = expected.astype(dtype)
|
||
|
elif type(scalar_td) is timedelta:
|
||
|
expected = expected.astype("m8[us]")
|
||
|
|
||
|
index = tm.box_expected(index, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = index * scalar_td
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
commute = scalar_td * index
|
||
|
tm.assert_equal(commute, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"scalar_td",
|
||
|
[
|
||
|
Timedelta(days=1),
|
||
|
Timedelta(days=1).to_timedelta64(),
|
||
|
Timedelta(days=1).to_pytimedelta(),
|
||
|
],
|
||
|
ids=lambda x: type(x).__name__,
|
||
|
)
|
||
|
@pytest.mark.parametrize("dtype", [np.int64, np.float64])
|
||
|
def test_numeric_arr_mul_tdscalar_numexpr_path(
|
||
|
self, dtype, scalar_td, box_with_array
|
||
|
):
|
||
|
# GH#44772 for the float64 case
|
||
|
box = box_with_array
|
||
|
|
||
|
arr_i8 = np.arange(2 * 10**4).astype(np.int64, copy=False)
|
||
|
arr = arr_i8.astype(dtype, copy=False)
|
||
|
obj = tm.box_expected(arr, box, transpose=False)
|
||
|
|
||
|
expected = arr_i8.view("timedelta64[D]").astype("timedelta64[ns]")
|
||
|
if type(scalar_td) is timedelta:
|
||
|
expected = expected.astype("timedelta64[us]")
|
||
|
|
||
|
expected = tm.box_expected(expected, box, transpose=False)
|
||
|
|
||
|
result = obj * scalar_td
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = scalar_td * obj
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_numeric_arr_rdiv_tdscalar(self, three_days, numeric_idx, box_with_array):
|
||
|
box = box_with_array
|
||
|
|
||
|
index = numeric_idx[1:3]
|
||
|
|
||
|
expected = TimedeltaIndex(["3 Days", "36 Hours"])
|
||
|
if isinstance(three_days, np.timedelta64):
|
||
|
dtype = three_days.dtype
|
||
|
if dtype < np.dtype("m8[s]"):
|
||
|
# i.e. resolution is lower -> use lowest supported resolution
|
||
|
dtype = np.dtype("m8[s]")
|
||
|
expected = expected.astype(dtype)
|
||
|
elif type(three_days) is timedelta:
|
||
|
expected = expected.astype("m8[us]")
|
||
|
|
||
|
index = tm.box_expected(index, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = three_days / index
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
msg = "cannot use operands with types dtype"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
index / three_days
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"other",
|
||
|
[
|
||
|
Timedelta(hours=31),
|
||
|
Timedelta(hours=31).to_pytimedelta(),
|
||
|
Timedelta(hours=31).to_timedelta64(),
|
||
|
Timedelta(hours=31).to_timedelta64().astype("m8[h]"),
|
||
|
np.timedelta64("NaT"),
|
||
|
np.timedelta64("NaT", "D"),
|
||
|
pd.offsets.Minute(3),
|
||
|
pd.offsets.Second(0),
|
||
|
# GH#28080 numeric+datetimelike should raise; Timestamp used
|
||
|
# to raise NullFrequencyError but that behavior was removed in 1.0
|
||
|
pd.Timestamp("2021-01-01", tz="Asia/Tokyo"),
|
||
|
pd.Timestamp("2021-01-01"),
|
||
|
pd.Timestamp("2021-01-01").to_pydatetime(),
|
||
|
pd.Timestamp("2021-01-01", tz="UTC").to_pydatetime(),
|
||
|
pd.Timestamp("2021-01-01").to_datetime64(),
|
||
|
np.datetime64("NaT", "ns"),
|
||
|
pd.NaT,
|
||
|
],
|
||
|
ids=repr,
|
||
|
)
|
||
|
def test_add_sub_datetimedeltalike_invalid(
|
||
|
self, numeric_idx, other, box_with_array
|
||
|
):
|
||
|
box = box_with_array
|
||
|
|
||
|
left = tm.box_expected(numeric_idx, box)
|
||
|
msg = "|".join(
|
||
|
[
|
||
|
"unsupported operand type",
|
||
|
"Addition/subtraction of integers and integer-arrays",
|
||
|
"Instead of adding/subtracting",
|
||
|
"cannot use operands with types dtype",
|
||
|
"Concatenation operation is not implemented for NumPy arrays",
|
||
|
"Cannot (add|subtract) NaT (to|from) ndarray",
|
||
|
# pd.array vs np.datetime64 case
|
||
|
r"operand type\(s\) all returned NotImplemented from __array_ufunc__",
|
||
|
"can only perform ops with numeric values",
|
||
|
"cannot subtract DatetimeArray from ndarray",
|
||
|
# pd.Timedelta(1) + Index([0, 1, 2])
|
||
|
"Cannot add or subtract Timedelta from integers",
|
||
|
]
|
||
|
)
|
||
|
assert_invalid_addsub_type(left, other, msg)
|
||
|
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Arithmetic
|
||
|
|
||
|
|
||
|
class TestDivisionByZero:
|
||
|
def test_div_zero(self, zero, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
|
||
|
expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
|
||
|
# We only adjust for Index, because Series does not yet apply
|
||
|
# the adjustment correctly.
|
||
|
expected2 = adjust_negative_zero(zero, expected)
|
||
|
|
||
|
result = idx / zero
|
||
|
tm.assert_index_equal(result, expected2)
|
||
|
ser_compat = Series(idx).astype("i8") / np.array(zero).astype("i8")
|
||
|
tm.assert_series_equal(ser_compat, Series(expected))
|
||
|
|
||
|
def test_floordiv_zero(self, zero, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
|
||
|
expected = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
|
||
|
# We only adjust for Index, because Series does not yet apply
|
||
|
# the adjustment correctly.
|
||
|
expected2 = adjust_negative_zero(zero, expected)
|
||
|
|
||
|
result = idx // zero
|
||
|
tm.assert_index_equal(result, expected2)
|
||
|
ser_compat = Series(idx).astype("i8") // np.array(zero).astype("i8")
|
||
|
tm.assert_series_equal(ser_compat, Series(expected))
|
||
|
|
||
|
def test_mod_zero(self, zero, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
|
||
|
expected = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64)
|
||
|
result = idx % zero
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
ser_compat = Series(idx).astype("i8") % np.array(zero).astype("i8")
|
||
|
tm.assert_series_equal(ser_compat, Series(result))
|
||
|
|
||
|
def test_divmod_zero(self, zero, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
|
||
|
exleft = Index([np.nan, np.inf, np.inf, np.inf, np.inf], dtype=np.float64)
|
||
|
exright = Index([np.nan, np.nan, np.nan, np.nan, np.nan], dtype=np.float64)
|
||
|
exleft = adjust_negative_zero(zero, exleft)
|
||
|
|
||
|
result = divmod(idx, zero)
|
||
|
tm.assert_index_equal(result[0], exleft)
|
||
|
tm.assert_index_equal(result[1], exright)
|
||
|
|
||
|
@pytest.mark.parametrize("op", [operator.truediv, operator.floordiv])
|
||
|
def test_div_negative_zero(self, zero, numeric_idx, op):
|
||
|
# Check that -1 / -0.0 returns np.inf, not -np.inf
|
||
|
if numeric_idx.dtype == np.uint64:
|
||
|
pytest.skip(f"Not relevant for {numeric_idx.dtype}")
|
||
|
idx = numeric_idx - 3
|
||
|
|
||
|
expected = Index([-np.inf, -np.inf, -np.inf, np.nan, np.inf], dtype=np.float64)
|
||
|
expected = adjust_negative_zero(zero, expected)
|
||
|
|
||
|
result = op(idx, zero)
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
|
||
|
@pytest.mark.parametrize("dtype1", [np.int64, np.float64, np.uint64])
|
||
|
def test_ser_div_ser(
|
||
|
self,
|
||
|
switch_numexpr_min_elements,
|
||
|
dtype1,
|
||
|
any_real_numpy_dtype,
|
||
|
):
|
||
|
# no longer do integer div for any ops, but deal with the 0's
|
||
|
dtype2 = any_real_numpy_dtype
|
||
|
|
||
|
first = Series([3, 4, 5, 8], name="first").astype(dtype1)
|
||
|
second = Series([0, 0, 0, 3], name="second").astype(dtype2)
|
||
|
|
||
|
with np.errstate(all="ignore"):
|
||
|
expected = Series(
|
||
|
first.values.astype(np.float64) / second.values,
|
||
|
dtype="float64",
|
||
|
name=None,
|
||
|
)
|
||
|
expected.iloc[0:3] = np.inf
|
||
|
if first.dtype == "int64" and second.dtype == "float32":
|
||
|
# when using numexpr, the casting rules are slightly different
|
||
|
# and int64/float32 combo results in float32 instead of float64
|
||
|
if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0:
|
||
|
expected = expected.astype("float32")
|
||
|
|
||
|
result = first / second
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
assert not result.equals(second / first)
|
||
|
|
||
|
@pytest.mark.parametrize("dtype1", [np.int64, np.float64, np.uint64])
|
||
|
def test_ser_divmod_zero(self, dtype1, any_real_numpy_dtype):
|
||
|
# GH#26987
|
||
|
dtype2 = any_real_numpy_dtype
|
||
|
left = Series([1, 1]).astype(dtype1)
|
||
|
right = Series([0, 2]).astype(dtype2)
|
||
|
|
||
|
# GH#27321 pandas convention is to set 1 // 0 to np.inf, as opposed
|
||
|
# to numpy which sets to np.nan; patch `expected[0]` below
|
||
|
expected = left // right, left % right
|
||
|
expected = list(expected)
|
||
|
expected[0] = expected[0].astype(np.float64)
|
||
|
expected[0][0] = np.inf
|
||
|
result = divmod(left, right)
|
||
|
|
||
|
tm.assert_series_equal(result[0], expected[0])
|
||
|
tm.assert_series_equal(result[1], expected[1])
|
||
|
|
||
|
# rdivmod case
|
||
|
result = divmod(left.values, right)
|
||
|
tm.assert_series_equal(result[0], expected[0])
|
||
|
tm.assert_series_equal(result[1], expected[1])
|
||
|
|
||
|
def test_ser_divmod_inf(self):
|
||
|
left = Series([np.inf, 1.0])
|
||
|
right = Series([np.inf, 2.0])
|
||
|
|
||
|
expected = left // right, left % right
|
||
|
result = divmod(left, right)
|
||
|
|
||
|
tm.assert_series_equal(result[0], expected[0])
|
||
|
tm.assert_series_equal(result[1], expected[1])
|
||
|
|
||
|
# rdivmod case
|
||
|
result = divmod(left.values, right)
|
||
|
tm.assert_series_equal(result[0], expected[0])
|
||
|
tm.assert_series_equal(result[1], expected[1])
|
||
|
|
||
|
def test_rdiv_zero_compat(self):
|
||
|
# GH#8674
|
||
|
zero_array = np.array([0] * 5)
|
||
|
data = np.random.default_rng(2).standard_normal(5)
|
||
|
expected = Series([0.0] * 5)
|
||
|
|
||
|
result = zero_array / Series(data)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = Series(zero_array) / data
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = Series(zero_array) / Series(data)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_div_zero_inf_signs(self):
|
||
|
# GH#9144, inf signing
|
||
|
ser = Series([-1, 0, 1], name="first")
|
||
|
expected = Series([-np.inf, np.nan, np.inf], name="first")
|
||
|
|
||
|
result = ser / 0
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_rdiv_zero(self):
|
||
|
# GH#9144
|
||
|
ser = Series([-1, 0, 1], name="first")
|
||
|
expected = Series([0.0, np.nan, 0.0], name="first")
|
||
|
|
||
|
result = 0 / ser
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_floordiv_div(self):
|
||
|
# GH#9144
|
||
|
ser = Series([-1, 0, 1], name="first")
|
||
|
|
||
|
result = ser // 0
|
||
|
expected = Series([-np.inf, np.nan, np.inf], name="first")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_df_div_zero_df(self):
|
||
|
# integer div, but deal with the 0's (GH#9144)
|
||
|
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
||
|
result = df / df
|
||
|
|
||
|
first = Series([1.0, 1.0, 1.0, 1.0])
|
||
|
second = Series([np.nan, np.nan, np.nan, 1])
|
||
|
expected = pd.DataFrame({"first": first, "second": second})
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_df_div_zero_array(self):
|
||
|
# integer div, but deal with the 0's (GH#9144)
|
||
|
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
||
|
|
||
|
first = Series([1.0, 1.0, 1.0, 1.0])
|
||
|
second = Series([np.nan, np.nan, np.nan, 1])
|
||
|
expected = pd.DataFrame({"first": first, "second": second})
|
||
|
|
||
|
with np.errstate(all="ignore"):
|
||
|
arr = df.values.astype("float") / df.values
|
||
|
result = pd.DataFrame(arr, index=df.index, columns=df.columns)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_df_div_zero_int(self):
|
||
|
# integer div, but deal with the 0's (GH#9144)
|
||
|
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
||
|
|
||
|
result = df / 0
|
||
|
expected = pd.DataFrame(np.inf, index=df.index, columns=df.columns)
|
||
|
expected.iloc[0:3, 1] = np.nan
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
# numpy has a slightly different (wrong) treatment
|
||
|
with np.errstate(all="ignore"):
|
||
|
arr = df.values.astype("float64") / 0
|
||
|
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns)
|
||
|
tm.assert_frame_equal(result2, expected)
|
||
|
|
||
|
def test_df_div_zero_series_does_not_commute(self):
|
||
|
# integer div, but deal with the 0's (GH#9144)
|
||
|
df = pd.DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
|
||
|
ser = df[0]
|
||
|
res = ser / df
|
||
|
res2 = df / ser
|
||
|
assert not res.fillna(0).equals(res2.fillna(0))
|
||
|
|
||
|
# ------------------------------------------------------------------
|
||
|
# Mod By Zero
|
||
|
|
||
|
def test_df_mod_zero_df(self, using_array_manager):
|
||
|
# GH#3590, modulo as ints
|
||
|
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
||
|
# this is technically wrong, as the integer portion is coerced to float
|
||
|
first = Series([0, 0, 0, 0])
|
||
|
if not using_array_manager:
|
||
|
# INFO(ArrayManager) BlockManager doesn't preserve dtype per column
|
||
|
# while ArrayManager performs op column-wisedoes and thus preserves
|
||
|
# dtype if possible
|
||
|
first = first.astype("float64")
|
||
|
second = Series([np.nan, np.nan, np.nan, 0])
|
||
|
expected = pd.DataFrame({"first": first, "second": second})
|
||
|
result = df % df
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
# GH#38939 If we dont pass copy=False, df is consolidated and
|
||
|
# result["first"] is float64 instead of int64
|
||
|
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]}, copy=False)
|
||
|
first = Series([0, 0, 0, 0], dtype="int64")
|
||
|
second = Series([np.nan, np.nan, np.nan, 0])
|
||
|
expected = pd.DataFrame({"first": first, "second": second})
|
||
|
result = df % df
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_df_mod_zero_array(self):
|
||
|
# GH#3590, modulo as ints
|
||
|
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
||
|
|
||
|
# this is technically wrong, as the integer portion is coerced to float
|
||
|
# ###
|
||
|
first = Series([0, 0, 0, 0], dtype="float64")
|
||
|
second = Series([np.nan, np.nan, np.nan, 0])
|
||
|
expected = pd.DataFrame({"first": first, "second": second})
|
||
|
|
||
|
# numpy has a slightly different (wrong) treatment
|
||
|
with np.errstate(all="ignore"):
|
||
|
arr = df.values % df.values
|
||
|
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns, dtype="float64")
|
||
|
result2.iloc[0:3, 1] = np.nan
|
||
|
tm.assert_frame_equal(result2, expected)
|
||
|
|
||
|
def test_df_mod_zero_int(self):
|
||
|
# GH#3590, modulo as ints
|
||
|
df = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
||
|
|
||
|
result = df % 0
|
||
|
expected = pd.DataFrame(np.nan, index=df.index, columns=df.columns)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
# numpy has a slightly different (wrong) treatment
|
||
|
with np.errstate(all="ignore"):
|
||
|
arr = df.values.astype("float64") % 0
|
||
|
result2 = pd.DataFrame(arr, index=df.index, columns=df.columns)
|
||
|
tm.assert_frame_equal(result2, expected)
|
||
|
|
||
|
def test_df_mod_zero_series_does_not_commute(self):
|
||
|
# GH#3590, modulo as ints
|
||
|
# not commutative with series
|
||
|
df = pd.DataFrame(np.random.default_rng(2).standard_normal((10, 5)))
|
||
|
ser = df[0]
|
||
|
res = ser % df
|
||
|
res2 = df % ser
|
||
|
assert not res.fillna(0).equals(res2.fillna(0))
|
||
|
|
||
|
|
||
|
class TestMultiplicationDivision:
|
||
|
# __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__
|
||
|
# for non-timestamp/timedelta/period dtypes
|
||
|
|
||
|
def test_divide_decimal(self, box_with_array):
|
||
|
# resolves issue GH#9787
|
||
|
box = box_with_array
|
||
|
ser = Series([Decimal(10)])
|
||
|
expected = Series([Decimal(5)])
|
||
|
|
||
|
ser = tm.box_expected(ser, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = ser / Decimal(2)
|
||
|
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = ser // Decimal(2)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_div_equiv_binop(self):
|
||
|
# Test Series.div as well as Series.__div__
|
||
|
# float/integer issue
|
||
|
# GH#7785
|
||
|
first = Series([1, 0], name="first")
|
||
|
second = Series([-0.01, -0.02], name="second")
|
||
|
expected = Series([-0.01, -np.inf])
|
||
|
|
||
|
result = second.div(first)
|
||
|
tm.assert_series_equal(result, expected, check_names=False)
|
||
|
|
||
|
result = second / first
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_div_int(self, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
result = idx / 1
|
||
|
expected = idx.astype("float64")
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
result = idx / 2
|
||
|
expected = Index(idx.values / 2)
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("op", [operator.mul, ops.rmul, operator.floordiv])
|
||
|
def test_mul_int_identity(self, op, numeric_idx, box_with_array):
|
||
|
idx = numeric_idx
|
||
|
idx = tm.box_expected(idx, box_with_array)
|
||
|
|
||
|
result = op(idx, 1)
|
||
|
tm.assert_equal(result, idx)
|
||
|
|
||
|
def test_mul_int_array(self, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
didx = idx * idx
|
||
|
|
||
|
result = idx * np.array(5, dtype="int64")
|
||
|
tm.assert_index_equal(result, idx * 5)
|
||
|
|
||
|
arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64"
|
||
|
result = idx * np.arange(5, dtype=arr_dtype)
|
||
|
tm.assert_index_equal(result, didx)
|
||
|
|
||
|
def test_mul_int_series(self, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
didx = idx * idx
|
||
|
|
||
|
arr_dtype = "uint64" if idx.dtype == np.uint64 else "int64"
|
||
|
result = idx * Series(np.arange(5, dtype=arr_dtype))
|
||
|
tm.assert_series_equal(result, Series(didx))
|
||
|
|
||
|
def test_mul_float_series(self, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
rng5 = np.arange(5, dtype="float64")
|
||
|
|
||
|
result = idx * Series(rng5 + 0.1)
|
||
|
expected = Series(rng5 * (rng5 + 0.1))
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
def test_mul_index(self, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
|
||
|
result = idx * idx
|
||
|
tm.assert_index_equal(result, idx**2)
|
||
|
|
||
|
def test_mul_datelike_raises(self, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
msg = "cannot perform __rmul__ with this index type"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
idx * pd.date_range("20130101", periods=5)
|
||
|
|
||
|
def test_mul_size_mismatch_raises(self, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
msg = "operands could not be broadcast together"
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
idx * idx[0:3]
|
||
|
with pytest.raises(ValueError, match=msg):
|
||
|
idx * np.array([1, 2])
|
||
|
|
||
|
@pytest.mark.parametrize("op", [operator.pow, ops.rpow])
|
||
|
def test_pow_float(self, op, numeric_idx, box_with_array):
|
||
|
# test power calculations both ways, GH#14973
|
||
|
box = box_with_array
|
||
|
idx = numeric_idx
|
||
|
expected = Index(op(idx.values, 2.0))
|
||
|
|
||
|
idx = tm.box_expected(idx, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = op(idx, 2.0)
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_modulo(self, numeric_idx, box_with_array):
|
||
|
# GH#9244
|
||
|
box = box_with_array
|
||
|
idx = numeric_idx
|
||
|
expected = Index(idx.values % 2)
|
||
|
|
||
|
idx = tm.box_expected(idx, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = idx % 2
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
def test_divmod_scalar(self, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
|
||
|
result = divmod(idx, 2)
|
||
|
with np.errstate(all="ignore"):
|
||
|
div, mod = divmod(idx.values, 2)
|
||
|
|
||
|
expected = Index(div), Index(mod)
|
||
|
for r, e in zip(result, expected):
|
||
|
tm.assert_index_equal(r, e)
|
||
|
|
||
|
def test_divmod_ndarray(self, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
|
||
|
|
||
|
result = divmod(idx, other)
|
||
|
with np.errstate(all="ignore"):
|
||
|
div, mod = divmod(idx.values, other)
|
||
|
|
||
|
expected = Index(div), Index(mod)
|
||
|
for r, e in zip(result, expected):
|
||
|
tm.assert_index_equal(r, e)
|
||
|
|
||
|
def test_divmod_series(self, numeric_idx):
|
||
|
idx = numeric_idx
|
||
|
other = np.ones(idx.values.shape, dtype=idx.values.dtype) * 2
|
||
|
|
||
|
result = divmod(idx, Series(other))
|
||
|
with np.errstate(all="ignore"):
|
||
|
div, mod = divmod(idx.values, other)
|
||
|
|
||
|
expected = Series(div), Series(mod)
|
||
|
for r, e in zip(result, expected):
|
||
|
tm.assert_series_equal(r, e)
|
||
|
|
||
|
@pytest.mark.parametrize("other", [np.nan, 7, -23, 2.718, -3.14, np.inf])
|
||
|
def test_ops_np_scalar(self, other):
|
||
|
vals = np.random.default_rng(2).standard_normal((5, 3))
|
||
|
f = lambda x: pd.DataFrame(
|
||
|
x, index=list("ABCDE"), columns=["jim", "joe", "jolie"]
|
||
|
)
|
||
|
|
||
|
df = f(vals)
|
||
|
|
||
|
tm.assert_frame_equal(df / np.array(other), f(vals / other))
|
||
|
tm.assert_frame_equal(np.array(other) * df, f(vals * other))
|
||
|
tm.assert_frame_equal(df + np.array(other), f(vals + other))
|
||
|
tm.assert_frame_equal(np.array(other) - df, f(other - vals))
|
||
|
|
||
|
# TODO: This came from series.test.test_operators, needs cleanup
|
||
|
def test_operators_frame(self):
|
||
|
# rpow does not work with DataFrame
|
||
|
ts = tm.makeTimeSeries()
|
||
|
ts.name = "ts"
|
||
|
|
||
|
df = pd.DataFrame({"A": ts})
|
||
|
|
||
|
tm.assert_series_equal(ts + ts, ts + df["A"], check_names=False)
|
||
|
tm.assert_series_equal(ts**ts, ts ** df["A"], check_names=False)
|
||
|
tm.assert_series_equal(ts < ts, ts < df["A"], check_names=False)
|
||
|
tm.assert_series_equal(ts / ts, ts / df["A"], check_names=False)
|
||
|
|
||
|
# TODO: this came from tests.series.test_analytics, needs cleanup and
|
||
|
# de-duplication with test_modulo above
|
||
|
def test_modulo2(self):
|
||
|
with np.errstate(all="ignore"):
|
||
|
# GH#3590, modulo as ints
|
||
|
p = pd.DataFrame({"first": [3, 4, 5, 8], "second": [0, 0, 0, 3]})
|
||
|
result = p["first"] % p["second"]
|
||
|
expected = Series(p["first"].values % p["second"].values, dtype="float64")
|
||
|
expected.iloc[0:3] = np.nan
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = p["first"] % 0
|
||
|
expected = Series(np.nan, index=p.index, name="first")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
p = p.astype("float64")
|
||
|
result = p["first"] % p["second"]
|
||
|
expected = Series(p["first"].values % p["second"].values)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
p = p.astype("float64")
|
||
|
result = p["first"] % p["second"]
|
||
|
result2 = p["second"] % p["first"]
|
||
|
assert not result.equals(result2)
|
||
|
|
||
|
def test_modulo_zero_int(self):
|
||
|
# GH#9144
|
||
|
with np.errstate(all="ignore"):
|
||
|
s = Series([0, 1])
|
||
|
|
||
|
result = s % 0
|
||
|
expected = Series([np.nan, np.nan])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = 0 % s
|
||
|
expected = Series([np.nan, 0.0])
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
|
||
|
class TestAdditionSubtraction:
|
||
|
# __add__, __sub__, __radd__, __rsub__, __iadd__, __isub__
|
||
|
# for non-timestamp/timedelta/period dtypes
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"first, second, expected",
|
||
|
[
|
||
|
(
|
||
|
Series([1, 2, 3], index=list("ABC"), name="x"),
|
||
|
Series([2, 2, 2], index=list("ABD"), name="x"),
|
||
|
Series([3.0, 4.0, np.nan, np.nan], index=list("ABCD"), name="x"),
|
||
|
),
|
||
|
(
|
||
|
Series([1, 2, 3], index=list("ABC"), name="x"),
|
||
|
Series([2, 2, 2, 2], index=list("ABCD"), name="x"),
|
||
|
Series([3, 4, 5, np.nan], index=list("ABCD"), name="x"),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_add_series(self, first, second, expected):
|
||
|
# GH#1134
|
||
|
tm.assert_series_equal(first + second, expected)
|
||
|
tm.assert_series_equal(second + first, expected)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"first, second, expected",
|
||
|
[
|
||
|
(
|
||
|
pd.DataFrame({"x": [1, 2, 3]}, index=list("ABC")),
|
||
|
pd.DataFrame({"x": [2, 2, 2]}, index=list("ABD")),
|
||
|
pd.DataFrame({"x": [3.0, 4.0, np.nan, np.nan]}, index=list("ABCD")),
|
||
|
),
|
||
|
(
|
||
|
pd.DataFrame({"x": [1, 2, 3]}, index=list("ABC")),
|
||
|
pd.DataFrame({"x": [2, 2, 2, 2]}, index=list("ABCD")),
|
||
|
pd.DataFrame({"x": [3, 4, 5, np.nan]}, index=list("ABCD")),
|
||
|
),
|
||
|
],
|
||
|
)
|
||
|
def test_add_frames(self, first, second, expected):
|
||
|
# GH#1134
|
||
|
tm.assert_frame_equal(first + second, expected)
|
||
|
tm.assert_frame_equal(second + first, expected)
|
||
|
|
||
|
# TODO: This came from series.test.test_operators, needs cleanup
|
||
|
def test_series_frame_radd_bug(self, fixed_now_ts):
|
||
|
# GH#353
|
||
|
vals = Series(tm.makeStringIndex())
|
||
|
result = "foo_" + vals
|
||
|
expected = vals.map(lambda x: "foo_" + x)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
frame = pd.DataFrame({"vals": vals})
|
||
|
result = "foo_" + frame
|
||
|
expected = pd.DataFrame({"vals": vals.map(lambda x: "foo_" + x)})
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
ts = tm.makeTimeSeries()
|
||
|
ts.name = "ts"
|
||
|
|
||
|
# really raise this time
|
||
|
fix_now = fixed_now_ts.to_pydatetime()
|
||
|
msg = "|".join(
|
||
|
[
|
||
|
"unsupported operand type",
|
||
|
# wrong error message, see https://github.com/numpy/numpy/issues/18832
|
||
|
"Concatenation operation",
|
||
|
]
|
||
|
)
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
fix_now + ts
|
||
|
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
ts + fix_now
|
||
|
|
||
|
# TODO: This came from series.test.test_operators, needs cleanup
|
||
|
def test_datetime64_with_index(self):
|
||
|
# arithmetic integer ops with an index
|
||
|
ser = Series(np.random.default_rng(2).standard_normal(5))
|
||
|
expected = ser - ser.index.to_series()
|
||
|
result = ser - ser.index
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
# GH#4629
|
||
|
# arithmetic datetime64 ops with an index
|
||
|
ser = Series(
|
||
|
pd.date_range("20130101", periods=5),
|
||
|
index=pd.date_range("20130101", periods=5),
|
||
|
)
|
||
|
expected = ser - ser.index.to_series()
|
||
|
result = ser - ser.index
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
msg = "cannot subtract PeriodArray from DatetimeArray"
|
||
|
with pytest.raises(TypeError, match=msg):
|
||
|
# GH#18850
|
||
|
result = ser - ser.index.to_period()
|
||
|
|
||
|
df = pd.DataFrame(
|
||
|
np.random.default_rng(2).standard_normal((5, 2)),
|
||
|
index=pd.date_range("20130101", periods=5),
|
||
|
)
|
||
|
df["date"] = pd.Timestamp("20130102")
|
||
|
df["expected"] = df["date"] - df.index.to_series()
|
||
|
df["result"] = df["date"] - df.index
|
||
|
tm.assert_series_equal(df["result"], df["expected"], check_names=False)
|
||
|
|
||
|
# TODO: taken from tests.frame.test_operators, needs cleanup
|
||
|
def test_frame_operators(self, float_frame):
|
||
|
frame = float_frame
|
||
|
|
||
|
garbage = np.random.default_rng(2).random(4)
|
||
|
colSeries = Series(garbage, index=np.array(frame.columns))
|
||
|
|
||
|
idSum = frame + frame
|
||
|
seriesSum = frame + colSeries
|
||
|
|
||
|
for col, series in idSum.items():
|
||
|
for idx, val in series.items():
|
||
|
origVal = frame[col][idx] * 2
|
||
|
if not np.isnan(val):
|
||
|
assert val == origVal
|
||
|
else:
|
||
|
assert np.isnan(origVal)
|
||
|
|
||
|
for col, series in seriesSum.items():
|
||
|
for idx, val in series.items():
|
||
|
origVal = frame[col][idx] + colSeries[col]
|
||
|
if not np.isnan(val):
|
||
|
assert val == origVal
|
||
|
else:
|
||
|
assert np.isnan(origVal)
|
||
|
|
||
|
def test_frame_operators_col_align(self, float_frame):
|
||
|
frame2 = pd.DataFrame(float_frame, columns=["D", "C", "B", "A"])
|
||
|
added = frame2 + frame2
|
||
|
expected = frame2 * 2
|
||
|
tm.assert_frame_equal(added, expected)
|
||
|
|
||
|
def test_frame_operators_none_to_nan(self):
|
||
|
df = pd.DataFrame({"a": ["a", None, "b"]})
|
||
|
tm.assert_frame_equal(df + df, pd.DataFrame({"a": ["aa", np.nan, "bb"]}))
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", ("float", "int64"))
|
||
|
def test_frame_operators_empty_like(self, dtype):
|
||
|
# Test for issue #10181
|
||
|
frames = [
|
||
|
pd.DataFrame(dtype=dtype),
|
||
|
pd.DataFrame(columns=["A"], dtype=dtype),
|
||
|
pd.DataFrame(index=[0], dtype=dtype),
|
||
|
]
|
||
|
for df in frames:
|
||
|
assert (df + df).equals(df)
|
||
|
tm.assert_frame_equal(df + df, df)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"func",
|
||
|
[lambda x: x * 2, lambda x: x[::2], lambda x: 5],
|
||
|
ids=["multiply", "slice", "constant"],
|
||
|
)
|
||
|
def test_series_operators_arithmetic(self, all_arithmetic_functions, func):
|
||
|
op = all_arithmetic_functions
|
||
|
series = tm.makeTimeSeries().rename("ts")
|
||
|
other = func(series)
|
||
|
compare_op(series, other, op)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"func", [lambda x: x + 1, lambda x: 5], ids=["add", "constant"]
|
||
|
)
|
||
|
def test_series_operators_compare(self, comparison_op, func):
|
||
|
op = comparison_op
|
||
|
series = tm.makeTimeSeries().rename("ts")
|
||
|
other = func(series)
|
||
|
compare_op(series, other, op)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"func",
|
||
|
[lambda x: x * 2, lambda x: x[::2], lambda x: 5],
|
||
|
ids=["multiply", "slice", "constant"],
|
||
|
)
|
||
|
def test_divmod(self, func):
|
||
|
series = tm.makeTimeSeries().rename("ts")
|
||
|
other = func(series)
|
||
|
results = divmod(series, other)
|
||
|
if isinstance(other, abc.Iterable) and len(series) != len(other):
|
||
|
# if the lengths don't match, this is the test where we use
|
||
|
# `tser[::2]`. Pad every other value in `other_np` with nan.
|
||
|
other_np = []
|
||
|
for n in other:
|
||
|
other_np.append(n)
|
||
|
other_np.append(np.nan)
|
||
|
else:
|
||
|
other_np = other
|
||
|
other_np = np.asarray(other_np)
|
||
|
with np.errstate(all="ignore"):
|
||
|
expecteds = divmod(series.values, np.asarray(other_np))
|
||
|
|
||
|
for result, expected in zip(results, expecteds):
|
||
|
# check the values, name, and index separately
|
||
|
tm.assert_almost_equal(np.asarray(result), expected)
|
||
|
|
||
|
assert result.name == series.name
|
||
|
tm.assert_index_equal(result.index, series.index._with_freq(None))
|
||
|
|
||
|
def test_series_divmod_zero(self):
|
||
|
# Check that divmod uses pandas convention for division by zero,
|
||
|
# which does not match numpy.
|
||
|
# pandas convention has
|
||
|
# 1/0 == np.inf
|
||
|
# -1/0 == -np.inf
|
||
|
# 1/-0.0 == -np.inf
|
||
|
# -1/-0.0 == np.inf
|
||
|
tser = tm.makeTimeSeries().rename("ts")
|
||
|
other = tser * 0
|
||
|
|
||
|
result = divmod(tser, other)
|
||
|
exp1 = Series([np.inf] * len(tser), index=tser.index, name="ts")
|
||
|
exp2 = Series([np.nan] * len(tser), index=tser.index, name="ts")
|
||
|
tm.assert_series_equal(result[0], exp1)
|
||
|
tm.assert_series_equal(result[1], exp2)
|
||
|
|
||
|
|
||
|
class TestUFuncCompat:
|
||
|
# TODO: add more dtypes
|
||
|
@pytest.mark.parametrize("holder", [Index, RangeIndex, Series])
|
||
|
@pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
|
||
|
def test_ufunc_compat(self, holder, dtype):
|
||
|
box = Series if holder is Series else Index
|
||
|
|
||
|
if holder is RangeIndex:
|
||
|
if dtype != np.int64:
|
||
|
pytest.skip(f"dtype {dtype} not relevant for RangeIndex")
|
||
|
idx = RangeIndex(0, 5, name="foo")
|
||
|
else:
|
||
|
idx = holder(np.arange(5, dtype=dtype), name="foo")
|
||
|
result = np.sin(idx)
|
||
|
expected = box(np.sin(np.arange(5, dtype=dtype)), name="foo")
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
# TODO: add more dtypes
|
||
|
@pytest.mark.parametrize("holder", [Index, Series])
|
||
|
@pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
|
||
|
def test_ufunc_coercions(self, holder, dtype):
|
||
|
idx = holder([1, 2, 3, 4, 5], dtype=dtype, name="x")
|
||
|
box = Series if holder is Series else Index
|
||
|
|
||
|
result = np.sqrt(idx)
|
||
|
assert result.dtype == "f8" and isinstance(result, box)
|
||
|
exp = Index(np.sqrt(np.array([1, 2, 3, 4, 5], dtype=np.float64)), name="x")
|
||
|
exp = tm.box_expected(exp, box)
|
||
|
tm.assert_equal(result, exp)
|
||
|
|
||
|
result = np.divide(idx, 2.0)
|
||
|
assert result.dtype == "f8" and isinstance(result, box)
|
||
|
exp = Index([0.5, 1.0, 1.5, 2.0, 2.5], dtype=np.float64, name="x")
|
||
|
exp = tm.box_expected(exp, box)
|
||
|
tm.assert_equal(result, exp)
|
||
|
|
||
|
# _evaluate_numeric_binop
|
||
|
result = idx + 2.0
|
||
|
assert result.dtype == "f8" and isinstance(result, box)
|
||
|
exp = Index([3.0, 4.0, 5.0, 6.0, 7.0], dtype=np.float64, name="x")
|
||
|
exp = tm.box_expected(exp, box)
|
||
|
tm.assert_equal(result, exp)
|
||
|
|
||
|
result = idx - 2.0
|
||
|
assert result.dtype == "f8" and isinstance(result, box)
|
||
|
exp = Index([-1.0, 0.0, 1.0, 2.0, 3.0], dtype=np.float64, name="x")
|
||
|
exp = tm.box_expected(exp, box)
|
||
|
tm.assert_equal(result, exp)
|
||
|
|
||
|
result = idx * 1.0
|
||
|
assert result.dtype == "f8" and isinstance(result, box)
|
||
|
exp = Index([1.0, 2.0, 3.0, 4.0, 5.0], dtype=np.float64, name="x")
|
||
|
exp = tm.box_expected(exp, box)
|
||
|
tm.assert_equal(result, exp)
|
||
|
|
||
|
result = idx / 2.0
|
||
|
assert result.dtype == "f8" and isinstance(result, box)
|
||
|
exp = Index([0.5, 1.0, 1.5, 2.0, 2.5], dtype=np.float64, name="x")
|
||
|
exp = tm.box_expected(exp, box)
|
||
|
tm.assert_equal(result, exp)
|
||
|
|
||
|
# TODO: add more dtypes
|
||
|
@pytest.mark.parametrize("holder", [Index, Series])
|
||
|
@pytest.mark.parametrize("dtype", [np.int64, np.uint64, np.float64])
|
||
|
def test_ufunc_multiple_return_values(self, holder, dtype):
|
||
|
obj = holder([1, 2, 3], dtype=dtype, name="x")
|
||
|
box = Series if holder is Series else Index
|
||
|
|
||
|
result = np.modf(obj)
|
||
|
assert isinstance(result, tuple)
|
||
|
exp1 = Index([0.0, 0.0, 0.0], dtype=np.float64, name="x")
|
||
|
exp2 = Index([1.0, 2.0, 3.0], dtype=np.float64, name="x")
|
||
|
tm.assert_equal(result[0], tm.box_expected(exp1, box))
|
||
|
tm.assert_equal(result[1], tm.box_expected(exp2, box))
|
||
|
|
||
|
def test_ufunc_at(self):
|
||
|
s = Series([0, 1, 2], index=[1, 2, 3], name="x")
|
||
|
np.add.at(s, [0, 2], 10)
|
||
|
expected = Series([10, 1, 12], index=[1, 2, 3], name="x")
|
||
|
tm.assert_series_equal(s, expected)
|
||
|
|
||
|
|
||
|
class TestObjectDtypeEquivalence:
|
||
|
# Tests that arithmetic operations match operations executed elementwise
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [None, object])
|
||
|
def test_numarr_with_dtype_add_nan(self, dtype, box_with_array):
|
||
|
box = box_with_array
|
||
|
ser = Series([1, 2, 3], dtype=dtype)
|
||
|
expected = Series([np.nan, np.nan, np.nan], dtype=dtype)
|
||
|
|
||
|
ser = tm.box_expected(ser, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = np.nan + ser
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = ser + np.nan
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [None, object])
|
||
|
def test_numarr_with_dtype_add_int(self, dtype, box_with_array):
|
||
|
box = box_with_array
|
||
|
ser = Series([1, 2, 3], dtype=dtype)
|
||
|
expected = Series([2, 3, 4], dtype=dtype)
|
||
|
|
||
|
ser = tm.box_expected(ser, box)
|
||
|
expected = tm.box_expected(expected, box)
|
||
|
|
||
|
result = 1 + ser
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
result = ser + 1
|
||
|
tm.assert_equal(result, expected)
|
||
|
|
||
|
# TODO: moved from tests.series.test_operators; needs cleanup
|
||
|
@pytest.mark.parametrize(
|
||
|
"op",
|
||
|
[operator.add, operator.sub, operator.mul, operator.truediv, operator.floordiv],
|
||
|
)
|
||
|
def test_operators_reverse_object(self, op):
|
||
|
# GH#56
|
||
|
arr = Series(
|
||
|
np.random.default_rng(2).standard_normal(10),
|
||
|
index=np.arange(10),
|
||
|
dtype=object,
|
||
|
)
|
||
|
|
||
|
result = op(1.0, arr)
|
||
|
expected = op(1.0, arr.astype(float))
|
||
|
tm.assert_series_equal(result.astype(float), expected)
|
||
|
|
||
|
|
||
|
class TestNumericArithmeticUnsorted:
|
||
|
# Tests in this class have been moved from type-specific test modules
|
||
|
# but not yet sorted, parametrized, and de-duplicated
|
||
|
@pytest.mark.parametrize(
|
||
|
"op",
|
||
|
[
|
||
|
operator.add,
|
||
|
operator.sub,
|
||
|
operator.mul,
|
||
|
operator.floordiv,
|
||
|
operator.truediv,
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"idx1",
|
||
|
[
|
||
|
RangeIndex(0, 10, 1),
|
||
|
RangeIndex(0, 20, 2),
|
||
|
RangeIndex(-10, 10, 2),
|
||
|
RangeIndex(5, -5, -1),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"idx2",
|
||
|
[
|
||
|
RangeIndex(0, 10, 1),
|
||
|
RangeIndex(0, 20, 2),
|
||
|
RangeIndex(-10, 10, 2),
|
||
|
RangeIndex(5, -5, -1),
|
||
|
],
|
||
|
)
|
||
|
def test_binops_index(self, op, idx1, idx2):
|
||
|
idx1 = idx1._rename("foo")
|
||
|
idx2 = idx2._rename("bar")
|
||
|
result = op(idx1, idx2)
|
||
|
expected = op(Index(idx1.to_numpy()), Index(idx2.to_numpy()))
|
||
|
tm.assert_index_equal(result, expected, exact="equiv")
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"op",
|
||
|
[
|
||
|
operator.add,
|
||
|
operator.sub,
|
||
|
operator.mul,
|
||
|
operator.floordiv,
|
||
|
operator.truediv,
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize(
|
||
|
"idx",
|
||
|
[
|
||
|
RangeIndex(0, 10, 1),
|
||
|
RangeIndex(0, 20, 2),
|
||
|
RangeIndex(-10, 10, 2),
|
||
|
RangeIndex(5, -5, -1),
|
||
|
],
|
||
|
)
|
||
|
@pytest.mark.parametrize("scalar", [-1, 1, 2])
|
||
|
def test_binops_index_scalar(self, op, idx, scalar):
|
||
|
result = op(idx, scalar)
|
||
|
expected = op(Index(idx.to_numpy()), scalar)
|
||
|
tm.assert_index_equal(result, expected, exact="equiv")
|
||
|
|
||
|
@pytest.mark.parametrize("idx1", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
|
||
|
@pytest.mark.parametrize("idx2", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
|
||
|
def test_binops_index_pow(self, idx1, idx2):
|
||
|
# numpy does not allow powers of negative integers so test separately
|
||
|
# https://github.com/numpy/numpy/pull/8127
|
||
|
idx1 = idx1._rename("foo")
|
||
|
idx2 = idx2._rename("bar")
|
||
|
result = pow(idx1, idx2)
|
||
|
expected = pow(Index(idx1.to_numpy()), Index(idx2.to_numpy()))
|
||
|
tm.assert_index_equal(result, expected, exact="equiv")
|
||
|
|
||
|
@pytest.mark.parametrize("idx", [RangeIndex(0, 10, 1), RangeIndex(0, 20, 2)])
|
||
|
@pytest.mark.parametrize("scalar", [1, 2])
|
||
|
def test_binops_index_scalar_pow(self, idx, scalar):
|
||
|
# numpy does not allow powers of negative integers so test separately
|
||
|
# https://github.com/numpy/numpy/pull/8127
|
||
|
result = pow(idx, scalar)
|
||
|
expected = pow(Index(idx.to_numpy()), scalar)
|
||
|
tm.assert_index_equal(result, expected, exact="equiv")
|
||
|
|
||
|
# TODO: divmod?
|
||
|
@pytest.mark.parametrize(
|
||
|
"op",
|
||
|
[
|
||
|
operator.add,
|
||
|
operator.sub,
|
||
|
operator.mul,
|
||
|
operator.floordiv,
|
||
|
operator.truediv,
|
||
|
operator.pow,
|
||
|
operator.mod,
|
||
|
],
|
||
|
)
|
||
|
def test_arithmetic_with_frame_or_series(self, op):
|
||
|
# check that we return NotImplemented when operating with Series
|
||
|
# or DataFrame
|
||
|
index = RangeIndex(5)
|
||
|
other = Series(np.random.default_rng(2).standard_normal(5))
|
||
|
|
||
|
expected = op(Series(index), other)
|
||
|
result = op(index, other)
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
other = pd.DataFrame(np.random.default_rng(2).standard_normal((2, 5)))
|
||
|
expected = op(pd.DataFrame([index, index]), other)
|
||
|
result = op(index, other)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
def test_numeric_compat2(self):
|
||
|
# validate that we are handling the RangeIndex overrides to numeric ops
|
||
|
# and returning RangeIndex where possible
|
||
|
|
||
|
idx = RangeIndex(0, 10, 2)
|
||
|
|
||
|
result = idx * 2
|
||
|
expected = RangeIndex(0, 20, 4)
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx + 2
|
||
|
expected = RangeIndex(2, 12, 2)
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx - 2
|
||
|
expected = RangeIndex(-2, 8, 2)
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx / 2
|
||
|
expected = RangeIndex(0, 5, 1).astype("float64")
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx / 4
|
||
|
expected = RangeIndex(0, 10, 2) / 4
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
result = idx // 1
|
||
|
expected = idx
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
# __mul__
|
||
|
result = idx * idx
|
||
|
expected = Index(idx.values * idx.values)
|
||
|
tm.assert_index_equal(result, expected, exact=True)
|
||
|
|
||
|
# __pow__
|
||
|
idx = RangeIndex(0, 1000, 2)
|
||
|
result = idx**2
|
||
|
expected = Index(idx._values) ** 2
|
||
|
tm.assert_index_equal(Index(result.values), expected, exact=True)
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"idx, div, expected",
|
||
|
[
|
||
|
# TODO: add more dtypes
|
||
|
(RangeIndex(0, 1000, 2), 2, RangeIndex(0, 500, 1)),
|
||
|
(RangeIndex(-99, -201, -3), -3, RangeIndex(33, 67, 1)),
|
||
|
(
|
||
|
RangeIndex(0, 1000, 1),
|
||
|
2,
|
||
|
Index(RangeIndex(0, 1000, 1)._values) // 2,
|
||
|
),
|
||
|
(
|
||
|
RangeIndex(0, 100, 1),
|
||
|
2.0,
|
||
|
Index(RangeIndex(0, 100, 1)._values) // 2.0,
|
||
|
),
|
||
|
(RangeIndex(0), 50, RangeIndex(0)),
|
||
|
(RangeIndex(2, 4, 2), 3, RangeIndex(0, 1, 1)),
|
||
|
(RangeIndex(-5, -10, -6), 4, RangeIndex(-2, -1, 1)),
|
||
|
(RangeIndex(-100, -200, 3), 2, RangeIndex(0)),
|
||
|
],
|
||
|
)
|
||
|
def test_numeric_compat2_floordiv(self, idx, div, expected):
|
||
|
# __floordiv__
|
||
|
tm.assert_index_equal(idx // div, expected, exact=True)
|
||
|
|
||
|
@pytest.mark.parametrize("dtype", [np.int64, np.float64])
|
||
|
@pytest.mark.parametrize("delta", [1, 0, -1])
|
||
|
def test_addsub_arithmetic(self, dtype, delta):
|
||
|
# GH#8142
|
||
|
delta = dtype(delta)
|
||
|
index = Index([10, 11, 12], dtype=dtype)
|
||
|
result = index + delta
|
||
|
expected = Index(index.values + delta, dtype=dtype)
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
# this subtraction used to fail
|
||
|
result = index - delta
|
||
|
expected = Index(index.values - delta, dtype=dtype)
|
||
|
tm.assert_index_equal(result, expected)
|
||
|
|
||
|
tm.assert_index_equal(index + index, 2 * index)
|
||
|
tm.assert_index_equal(index - index, 0 * index)
|
||
|
assert not (index - index).empty
|
||
|
|
||
|
|
||
|
def test_fill_value_inf_masking():
|
||
|
# GH #27464 make sure we mask 0/1 with Inf and not NaN
|
||
|
df = pd.DataFrame({"A": [0, 1, 2], "B": [1.1, None, 1.1]})
|
||
|
|
||
|
other = pd.DataFrame({"A": [1.1, 1.2, 1.3]}, index=[0, 2, 3])
|
||
|
|
||
|
result = df.rfloordiv(other, fill_value=1)
|
||
|
|
||
|
expected = pd.DataFrame(
|
||
|
{"A": [np.inf, 1.0, 0.0, 1.0], "B": [0.0, np.nan, 0.0, np.nan]}
|
||
|
)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_dataframe_div_silenced():
|
||
|
# GH#26793
|
||
|
pdf1 = pd.DataFrame(
|
||
|
{
|
||
|
"A": np.arange(10),
|
||
|
"B": [np.nan, 1, 2, 3, 4] * 2,
|
||
|
"C": [np.nan] * 10,
|
||
|
"D": np.arange(10),
|
||
|
},
|
||
|
index=list("abcdefghij"),
|
||
|
columns=list("ABCD"),
|
||
|
)
|
||
|
pdf2 = pd.DataFrame(
|
||
|
np.random.default_rng(2).standard_normal((10, 4)),
|
||
|
index=list("abcdefghjk"),
|
||
|
columns=list("ABCX"),
|
||
|
)
|
||
|
with tm.assert_produces_warning(None):
|
||
|
pdf1.div(pdf2, fill_value=0)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize(
|
||
|
"data, expected_data",
|
||
|
[([0, 1, 2], [0, 2, 4])],
|
||
|
)
|
||
|
def test_integer_array_add_list_like(
|
||
|
box_pandas_1d_array, box_1d_array, data, expected_data
|
||
|
):
|
||
|
# GH22606 Verify operators with IntegerArray and list-likes
|
||
|
arr = array(data, dtype="Int64")
|
||
|
container = box_pandas_1d_array(arr)
|
||
|
left = container + box_1d_array(data)
|
||
|
right = box_1d_array(data) + container
|
||
|
|
||
|
if Series in [box_1d_array, box_pandas_1d_array]:
|
||
|
cls = Series
|
||
|
elif Index in [box_1d_array, box_pandas_1d_array]:
|
||
|
cls = Index
|
||
|
else:
|
||
|
cls = array
|
||
|
|
||
|
expected = cls(expected_data, dtype="Int64")
|
||
|
|
||
|
tm.assert_equal(left, expected)
|
||
|
tm.assert_equal(right, expected)
|
||
|
|
||
|
|
||
|
def test_sub_multiindex_swapped_levels():
|
||
|
# GH 9952
|
||
|
df = pd.DataFrame(
|
||
|
{"a": np.random.default_rng(2).standard_normal(6)},
|
||
|
index=pd.MultiIndex.from_product(
|
||
|
[["a", "b"], [0, 1, 2]], names=["levA", "levB"]
|
||
|
),
|
||
|
)
|
||
|
df2 = df.copy()
|
||
|
df2.index = df2.index.swaplevel(0, 1)
|
||
|
result = df - df2
|
||
|
expected = pd.DataFrame([0.0] * 6, columns=["a"], index=df.index)
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
@pytest.mark.parametrize("power", [1, 2, 5])
|
||
|
@pytest.mark.parametrize("string_size", [0, 1, 2, 5])
|
||
|
def test_empty_str_comparison(power, string_size):
|
||
|
# GH 37348
|
||
|
a = np.array(range(10**power))
|
||
|
right = pd.DataFrame(a, dtype=np.int64)
|
||
|
left = " " * string_size
|
||
|
|
||
|
result = right == left
|
||
|
expected = pd.DataFrame(np.zeros(right.shape, dtype=bool))
|
||
|
tm.assert_frame_equal(result, expected)
|
||
|
|
||
|
|
||
|
def test_series_add_sub_with_UInt64():
|
||
|
# GH 22023
|
||
|
series1 = Series([1, 2, 3])
|
||
|
series2 = Series([2, 1, 3], dtype="UInt64")
|
||
|
|
||
|
result = series1 + series2
|
||
|
expected = Series([3, 3, 6], dtype="Float64")
|
||
|
tm.assert_series_equal(result, expected)
|
||
|
|
||
|
result = series1 - series2
|
||
|
expected = Series([-1, 1, 0], dtype="Float64")
|
||
|
tm.assert_series_equal(result, expected)
|