Olli Graf
11 months ago
9 changed files with 124 additions and 0 deletions
@ -0,0 +1,4 @@ |
|||||
|
# created by virtualenv automatically |
||||
|
__pycache__ |
||||
|
bin |
||||
|
lib |
@ -0,0 +1,18 @@ |
|||||
|
import io |
||||
|
import numpy as np |
||||
|
|
||||
|
class StressFile: |
||||
|
def readOutFile(self,filename): |
||||
|
result = { |
||||
|
'frequency': [], |
||||
|
'temperatures': [] |
||||
|
} |
||||
|
with open(filename,'r') as f: |
||||
|
content = f.readlines() |
||||
|
print(f'conent= {content}') |
||||
|
|
||||
|
|
||||
|
sf = StressFile() |
||||
|
|
||||
|
sf.readOutFile('./kodos.out') |
||||
|
|
@ -0,0 +1,42 @@ |
|||||
|
import numpy as np |
||||
|
|
||||
|
# Array initialisieren |
||||
|
org = np.array([1,2,3,4,5,6]) |
||||
|
|
||||
|
|
||||
|
# Kopiert das int64 Array in ein float64 Array |
||||
|
def copy_to_float64(source): |
||||
|
liste = [] |
||||
|
|
||||
|
for i in range(source.shape[1]): |
||||
|
liste.append(float(source[i])) |
||||
|
|
||||
|
return np.array(liste,dtype=float64) |
||||
|
|
||||
|
|
||||
|
# Ein paar Kopien anlegen |
||||
|
copy_sum = org.copy() |
||||
|
copy_mult = org.copy() |
||||
|
copy_diff = org.copy() |
||||
|
copy_div = org.astype(np.float64).copy() |
||||
|
|
||||
|
# Zu allen Elementen 2 dazuzählen |
||||
|
copy_sum += 2 |
||||
|
|
||||
|
print(f'copy_sum={copy_sum}') |
||||
|
|
||||
|
# Alle Elemente mit 2 multiplizieren |
||||
|
copy_mult *= 2 |
||||
|
|
||||
|
print(f'copy_mult={copy_mult}') |
||||
|
|
||||
|
|
||||
|
# Von allen Elementen 1 abziehen |
||||
|
copy_diff -= 1 |
||||
|
|
||||
|
print(f'copy_diff={copy_diff}') |
||||
|
|
||||
|
copy_div /=2 |
||||
|
|
||||
|
print(f'copy_div={copy_div}') |
||||
|
|
@ -0,0 +1,20 @@ |
|||||
|
import numpy as np |
||||
|
|
||||
|
org = np.array([1,2,3,4,5,6]) |
||||
|
|
||||
|
copy = org |
||||
|
|
||||
|
print(f'org= {org}') |
||||
|
print(f'copy={copy}') |
||||
|
|
||||
|
copy[2]= 7 |
||||
|
|
||||
|
print(f'org= {org}') |
||||
|
print(f'copy={copy}') |
||||
|
|
||||
|
copy2 = org.copy() |
||||
|
|
||||
|
copy2[2]= 3 |
||||
|
|
||||
|
print(f'org= {org}') |
||||
|
print(f'copy2={copy2}') |
@ -0,0 +1,9 @@ |
|||||
|
import numpy as np |
||||
|
|
||||
|
a = np.array([1,2,3,4,5,6,7,8,9,10]) |
||||
|
|
||||
|
print(f'orignal {a}') |
||||
|
|
||||
|
reshaped = a.reshape(2,5) |
||||
|
|
||||
|
print(f'reshaped {reshaped}') |
@ -0,0 +1,7 @@ |
|||||
|
import numpy as np |
||||
|
|
||||
|
#Erzeuge 1 Mio Zufallszahlen |
||||
|
random_np = np.random(100000) |
||||
|
|
||||
|
random_list = list(random_np) |
||||
|
|
@ -0,0 +1,6 @@ |
|||||
|
import numpy as np |
||||
|
|
||||
|
twodim_array = np.array([[1,2,3,4,5],[1,4,9,16,25]]) |
||||
|
|
||||
|
print(f'shape is {twodim_array.shape}') |
||||
|
|
@ -0,0 +1,9 @@ |
|||||
|
import numpy as np |
||||
|
|
||||
|
|
||||
|
simple_array = np.array([1,2,3,4,5,6]) |
||||
|
|
||||
|
print(f'simple_array={simple_array}') |
||||
|
print(f'ndim={simple_array.ndim}') |
||||
|
print(f'dtype={simple_array.dtype}') |
||||
|
print(f'shape is {simple_array.shape}') |
@ -0,0 +1,9 @@ |
|||||
|
import numpy as np |
||||
|
|
||||
|
twodim_array = np.array([[1,2,3,4,5],[1,4,9,16,25]],dtype='int32') |
||||
|
|
||||
|
print(f'twodim_array={twodim_array}') |
||||
|
print(f'ndim={twodim_array.ndim}') |
||||
|
print(f'dtype={twodim_array.dtype}') |
||||
|
print(f'shape is {twodim_array.shape}') |
||||
|
|
Loading…
Reference in new issue