virtuelle Umgebung teil20b
This commit is contained in:
125
teil20b/lib/python3.11/site-packages/pandas/_libs/hashtable.pyx
Normal file
125
teil20b/lib/python3.11/site-packages/pandas/_libs/hashtable.pyx
Normal file
@@ -0,0 +1,125 @@
|
||||
cimport cython
|
||||
from cpython.mem cimport (
|
||||
PyMem_Free,
|
||||
PyMem_Malloc,
|
||||
)
|
||||
from cpython.ref cimport (
|
||||
Py_INCREF,
|
||||
PyObject,
|
||||
)
|
||||
from libc.stdlib cimport (
|
||||
free,
|
||||
malloc,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
cimport numpy as cnp
|
||||
from numpy cimport ndarray
|
||||
|
||||
cnp.import_array()
|
||||
|
||||
|
||||
from pandas._libs cimport util
|
||||
from pandas._libs.dtypes cimport numeric_object_t
|
||||
from pandas._libs.khash cimport (
|
||||
KHASH_TRACE_DOMAIN,
|
||||
are_equivalent_float32_t,
|
||||
are_equivalent_float64_t,
|
||||
are_equivalent_khcomplex64_t,
|
||||
are_equivalent_khcomplex128_t,
|
||||
kh_needed_n_buckets,
|
||||
kh_python_hash_equal,
|
||||
kh_python_hash_func,
|
||||
khiter_t,
|
||||
)
|
||||
from pandas._libs.missing cimport checknull
|
||||
|
||||
|
||||
def get_hashtable_trace_domain():
|
||||
return KHASH_TRACE_DOMAIN
|
||||
|
||||
|
||||
def object_hash(obj):
|
||||
return kh_python_hash_func(obj)
|
||||
|
||||
|
||||
def objects_are_equal(a, b):
|
||||
return kh_python_hash_equal(a, b)
|
||||
|
||||
|
||||
cdef int64_t NPY_NAT = util.get_nat()
|
||||
SIZE_HINT_LIMIT = (1 << 20) + 7
|
||||
|
||||
|
||||
cdef Py_ssize_t _INIT_VEC_CAP = 128
|
||||
|
||||
include "hashtable_class_helper.pxi"
|
||||
include "hashtable_func_helper.pxi"
|
||||
|
||||
|
||||
# map derived hash-map types onto basic hash-map types:
|
||||
if np.dtype(np.intp) == np.dtype(np.int64):
|
||||
IntpHashTable = Int64HashTable
|
||||
unique_label_indices = _unique_label_indices_int64
|
||||
elif np.dtype(np.intp) == np.dtype(np.int32):
|
||||
IntpHashTable = Int32HashTable
|
||||
unique_label_indices = _unique_label_indices_int32
|
||||
else:
|
||||
raise ValueError(np.dtype(np.intp))
|
||||
|
||||
|
||||
cdef class Factorizer:
|
||||
cdef readonly:
|
||||
Py_ssize_t count
|
||||
|
||||
def __cinit__(self, size_hint: int):
|
||||
self.count = 0
|
||||
|
||||
def get_count(self) -> int:
|
||||
return self.count
|
||||
|
||||
def factorize(self, values, na_sentinel=-1, na_value=None, mask=None) -> np.ndarray:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
cdef class ObjectFactorizer(Factorizer):
|
||||
cdef public:
|
||||
PyObjectHashTable table
|
||||
ObjectVector uniques
|
||||
|
||||
def __cinit__(self, size_hint: int):
|
||||
self.table = PyObjectHashTable(size_hint)
|
||||
self.uniques = ObjectVector()
|
||||
|
||||
def factorize(
|
||||
self, ndarray[object] values, na_sentinel=-1, na_value=None, mask=None
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
|
||||
Returns
|
||||
-------
|
||||
np.ndarray[np.intp]
|
||||
|
||||
Examples
|
||||
--------
|
||||
Factorize values with nans replaced by na_sentinel
|
||||
|
||||
>>> fac = ObjectFactorizer(3)
|
||||
>>> fac.factorize(np.array([1,2,np.nan], dtype='O'), na_sentinel=20)
|
||||
array([ 0, 1, 20])
|
||||
"""
|
||||
cdef:
|
||||
ndarray[intp_t] labels
|
||||
|
||||
if mask is not None:
|
||||
raise NotImplementedError("mask not supported for ObjectFactorizer.")
|
||||
|
||||
if self.uniques.external_view_exists:
|
||||
uniques = ObjectVector()
|
||||
uniques.extend(self.uniques.to_array())
|
||||
self.uniques = uniques
|
||||
labels = self.table.get_labels(values, self.uniques,
|
||||
self.count, na_sentinel, na_value)
|
||||
self.count = len(self.uniques)
|
||||
return labels
|
Reference in New Issue
Block a user