virtuelle Umgebung teil20b
This commit is contained in:
544
teil20b/lib/python3.11/site-packages/pandas/_libs/missing.pyx
Normal file
544
teil20b/lib/python3.11/site-packages/pandas/_libs/missing.pyx
Normal file
@@ -0,0 +1,544 @@
|
||||
from decimal import Decimal
|
||||
import numbers
|
||||
from sys import maxsize
|
||||
|
||||
cimport cython
|
||||
from cpython.datetime cimport (
|
||||
date,
|
||||
time,
|
||||
timedelta,
|
||||
)
|
||||
from cython cimport Py_ssize_t
|
||||
|
||||
import numpy as np
|
||||
|
||||
cimport numpy as cnp
|
||||
from numpy cimport (
|
||||
flatiter,
|
||||
float64_t,
|
||||
int64_t,
|
||||
ndarray,
|
||||
uint8_t,
|
||||
)
|
||||
|
||||
cnp.import_array()
|
||||
|
||||
from pandas._libs cimport util
|
||||
from pandas._libs.tslibs.nattype cimport (
|
||||
c_NaT as NaT,
|
||||
checknull_with_nat,
|
||||
is_dt64nat,
|
||||
is_td64nat,
|
||||
)
|
||||
from pandas._libs.tslibs.np_datetime cimport (
|
||||
get_datetime64_unit,
|
||||
get_datetime64_value,
|
||||
get_timedelta64_value,
|
||||
import_pandas_datetime,
|
||||
)
|
||||
|
||||
import_pandas_datetime()
|
||||
|
||||
from pandas._libs.ops_dispatch import maybe_dispatch_ufunc_to_dunder_op
|
||||
|
||||
cdef:
|
||||
float64_t INF = <float64_t>np.inf
|
||||
float64_t NEGINF = -INF
|
||||
|
||||
int64_t NPY_NAT = util.get_nat()
|
||||
|
||||
bint is_32bit = maxsize <= 2 ** 32
|
||||
|
||||
type cDecimal = Decimal # for faster isinstance checks
|
||||
|
||||
|
||||
cpdef bint check_na_tuples_nonequal(object left, object right):
|
||||
"""
|
||||
When we have NA in one of the tuples but not the other we have to check here,
|
||||
because our regular checks fail before with ambiguous boolean value.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
left: Any
|
||||
right: Any
|
||||
|
||||
Returns
|
||||
-------
|
||||
True if we are dealing with tuples that have NA on one side and non NA on
|
||||
the other side.
|
||||
|
||||
"""
|
||||
if not isinstance(left, tuple) or not isinstance(right, tuple):
|
||||
return False
|
||||
|
||||
if len(left) != len(right):
|
||||
return False
|
||||
|
||||
for left_element, right_element in zip(left, right):
|
||||
if left_element is C_NA and right_element is not C_NA:
|
||||
return True
|
||||
elif right_element is C_NA and left_element is not C_NA:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
cpdef bint is_matching_na(object left, object right, bint nan_matches_none=False):
|
||||
"""
|
||||
Check if two scalars are both NA of matching types.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
left : Any
|
||||
right : Any
|
||||
nan_matches_none : bool, default False
|
||||
For backwards compatibility, consider NaN as matching None.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
"""
|
||||
if left is None:
|
||||
if nan_matches_none and util.is_nan(right):
|
||||
return True
|
||||
return right is None
|
||||
elif left is C_NA:
|
||||
return right is C_NA
|
||||
elif left is NaT:
|
||||
return right is NaT
|
||||
elif util.is_float_object(left):
|
||||
if nan_matches_none and right is None and util.is_nan(left):
|
||||
return True
|
||||
return (
|
||||
util.is_nan(left)
|
||||
and util.is_float_object(right)
|
||||
and util.is_nan(right)
|
||||
)
|
||||
elif util.is_complex_object(left):
|
||||
return (
|
||||
util.is_nan(left)
|
||||
and util.is_complex_object(right)
|
||||
and util.is_nan(right)
|
||||
)
|
||||
elif util.is_datetime64_object(left):
|
||||
return (
|
||||
get_datetime64_value(left) == NPY_NAT
|
||||
and util.is_datetime64_object(right)
|
||||
and get_datetime64_value(right) == NPY_NAT
|
||||
and get_datetime64_unit(left) == get_datetime64_unit(right)
|
||||
)
|
||||
elif util.is_timedelta64_object(left):
|
||||
return (
|
||||
get_timedelta64_value(left) == NPY_NAT
|
||||
and util.is_timedelta64_object(right)
|
||||
and get_timedelta64_value(right) == NPY_NAT
|
||||
and get_datetime64_unit(left) == get_datetime64_unit(right)
|
||||
)
|
||||
elif is_decimal_na(left):
|
||||
return is_decimal_na(right)
|
||||
return False
|
||||
|
||||
|
||||
cpdef bint checknull(object val, bint inf_as_na=False):
|
||||
"""
|
||||
Return boolean describing of the input is NA-like, defined here as any
|
||||
of:
|
||||
- None
|
||||
- nan
|
||||
- NaT
|
||||
- np.datetime64 representation of NaT
|
||||
- np.timedelta64 representation of NaT
|
||||
- NA
|
||||
- Decimal("NaN")
|
||||
|
||||
Parameters
|
||||
----------
|
||||
val : object
|
||||
inf_as_na : bool, default False
|
||||
Whether to treat INF and -INF as NA values.
|
||||
|
||||
Returns
|
||||
-------
|
||||
bool
|
||||
"""
|
||||
if val is None or val is NaT or val is C_NA:
|
||||
return True
|
||||
elif util.is_float_object(val) or util.is_complex_object(val):
|
||||
if val != val:
|
||||
return True
|
||||
elif inf_as_na:
|
||||
return val == INF or val == NEGINF
|
||||
return False
|
||||
elif util.is_timedelta64_object(val):
|
||||
return get_timedelta64_value(val) == NPY_NAT
|
||||
elif util.is_datetime64_object(val):
|
||||
return get_datetime64_value(val) == NPY_NAT
|
||||
else:
|
||||
return is_decimal_na(val)
|
||||
|
||||
|
||||
cdef bint is_decimal_na(object val):
|
||||
"""
|
||||
Is this a decimal.Decimal object Decimal("NAN").
|
||||
"""
|
||||
return isinstance(val, cDecimal) and val != val
|
||||
|
||||
|
||||
@cython.wraparound(False)
|
||||
@cython.boundscheck(False)
|
||||
cpdef ndarray[uint8_t] isnaobj(ndarray arr, bint inf_as_na=False):
|
||||
"""
|
||||
Return boolean mask denoting which elements of a 1-D array are na-like,
|
||||
according to the criteria defined in `checknull`:
|
||||
- None
|
||||
- nan
|
||||
- NaT
|
||||
- np.datetime64 representation of NaT
|
||||
- np.timedelta64 representation of NaT
|
||||
- NA
|
||||
- Decimal("NaN")
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr : ndarray
|
||||
|
||||
Returns
|
||||
-------
|
||||
result : ndarray (dtype=np.bool_)
|
||||
"""
|
||||
cdef:
|
||||
Py_ssize_t i, n = arr.size
|
||||
object val
|
||||
bint is_null
|
||||
ndarray result = np.empty((<object>arr).shape, dtype=np.uint8)
|
||||
flatiter it = cnp.PyArray_IterNew(arr)
|
||||
flatiter it2 = cnp.PyArray_IterNew(result)
|
||||
|
||||
for i in range(n):
|
||||
# The PyArray_GETITEM and PyArray_ITER_NEXT are faster
|
||||
# equivalents to `val = values[i]`
|
||||
val = cnp.PyArray_GETITEM(arr, cnp.PyArray_ITER_DATA(it))
|
||||
cnp.PyArray_ITER_NEXT(it)
|
||||
is_null = checknull(val, inf_as_na=inf_as_na)
|
||||
# Dereference pointer (set value)
|
||||
(<uint8_t *>(cnp.PyArray_ITER_DATA(it2)))[0] = <uint8_t>is_null
|
||||
cnp.PyArray_ITER_NEXT(it2)
|
||||
return result.view(np.bool_)
|
||||
|
||||
|
||||
def isposinf_scalar(val: object) -> bool:
|
||||
return util.is_float_object(val) and val == INF
|
||||
|
||||
|
||||
def isneginf_scalar(val: object) -> bool:
|
||||
return util.is_float_object(val) and val == NEGINF
|
||||
|
||||
|
||||
cdef bint is_null_datetime64(v):
|
||||
# determine if we have a null for a datetime (or integer versions),
|
||||
# excluding np.timedelta64('nat')
|
||||
if checknull_with_nat(v) or is_dt64nat(v):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
cdef bint is_null_timedelta64(v):
|
||||
# determine if we have a null for a timedelta (or integer versions),
|
||||
# excluding np.datetime64('nat')
|
||||
if checknull_with_nat(v) or is_td64nat(v):
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
cdef bint checknull_with_nat_and_na(object obj):
|
||||
# See GH#32214
|
||||
return checknull_with_nat(obj) or obj is C_NA
|
||||
|
||||
|
||||
@cython.wraparound(False)
|
||||
@cython.boundscheck(False)
|
||||
def is_float_nan(values: ndarray) -> ndarray:
|
||||
"""
|
||||
True for elements which correspond to a float nan
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray[bool]
|
||||
"""
|
||||
cdef:
|
||||
ndarray[uint8_t] result
|
||||
Py_ssize_t i, N
|
||||
object val
|
||||
|
||||
N = len(values)
|
||||
result = np.zeros(N, dtype=np.uint8)
|
||||
|
||||
for i in range(N):
|
||||
val = values[i]
|
||||
if util.is_nan(val):
|
||||
result[i] = True
|
||||
return result.view(bool)
|
||||
|
||||
|
||||
@cython.wraparound(False)
|
||||
@cython.boundscheck(False)
|
||||
def is_numeric_na(values: ndarray) -> ndarray:
|
||||
"""
|
||||
Check for NA values consistent with IntegerArray/FloatingArray.
|
||||
|
||||
Similar to a vectorized is_valid_na_for_dtype restricted to numeric dtypes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray[bool]
|
||||
"""
|
||||
cdef:
|
||||
ndarray[uint8_t] result
|
||||
Py_ssize_t i, N
|
||||
object val
|
||||
|
||||
N = len(values)
|
||||
result = np.zeros(N, dtype=np.uint8)
|
||||
|
||||
for i in range(N):
|
||||
val = values[i]
|
||||
if checknull(val):
|
||||
if val is None or val is C_NA or util.is_nan(val) or is_decimal_na(val):
|
||||
result[i] = True
|
||||
else:
|
||||
raise TypeError(f"'values' contains non-numeric NA {val}")
|
||||
return result.view(bool)
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Implementation of NA singleton
|
||||
|
||||
|
||||
def _create_binary_propagating_op(name, is_divmod=False):
|
||||
is_cmp = name.strip("_") in ["eq", "ne", "le", "lt", "ge", "gt"]
|
||||
|
||||
def method(self, other):
|
||||
if (other is C_NA or isinstance(other, (str, bytes))
|
||||
or isinstance(other, (numbers.Number, np.bool_))
|
||||
or util.is_array(other) and not other.shape):
|
||||
# Need the other.shape clause to handle NumPy scalars,
|
||||
# since we do a setitem on `out` below, which
|
||||
# won't work for NumPy scalars.
|
||||
if is_divmod:
|
||||
return NA, NA
|
||||
else:
|
||||
return NA
|
||||
|
||||
elif util.is_array(other):
|
||||
out = np.empty(other.shape, dtype=object)
|
||||
out[:] = NA
|
||||
|
||||
if is_divmod:
|
||||
return out, out.copy()
|
||||
else:
|
||||
return out
|
||||
|
||||
elif is_cmp and isinstance(other, (date, time, timedelta)):
|
||||
return NA
|
||||
|
||||
elif isinstance(other, date):
|
||||
if name in ["__sub__", "__rsub__"]:
|
||||
return NA
|
||||
|
||||
elif isinstance(other, timedelta):
|
||||
if name in ["__sub__", "__rsub__", "__add__", "__radd__"]:
|
||||
return NA
|
||||
|
||||
return NotImplemented
|
||||
|
||||
method.__name__ = name
|
||||
return method
|
||||
|
||||
|
||||
def _create_unary_propagating_op(name: str):
|
||||
def method(self):
|
||||
return NA
|
||||
|
||||
method.__name__ = name
|
||||
return method
|
||||
|
||||
|
||||
cdef class C_NAType:
|
||||
pass
|
||||
|
||||
|
||||
class NAType(C_NAType):
|
||||
"""
|
||||
NA ("not available") missing value indicator.
|
||||
|
||||
.. warning::
|
||||
|
||||
Experimental: the behaviour of NA can still change without warning.
|
||||
|
||||
The NA singleton is a missing value indicator defined by pandas. It is
|
||||
used in certain new extension dtypes (currently the "string" dtype).
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> pd.NA
|
||||
<NA>
|
||||
|
||||
>>> True | pd.NA
|
||||
True
|
||||
|
||||
>>> True & pd.NA
|
||||
<NA>
|
||||
|
||||
>>> pd.NA != pd.NA
|
||||
<NA>
|
||||
|
||||
>>> pd.NA == pd.NA
|
||||
<NA>
|
||||
|
||||
>>> True | pd.NA
|
||||
True
|
||||
"""
|
||||
|
||||
_instance = None
|
||||
|
||||
def __new__(cls, *args, **kwargs):
|
||||
if NAType._instance is None:
|
||||
NAType._instance = C_NAType.__new__(cls, *args, **kwargs)
|
||||
return NAType._instance
|
||||
|
||||
def __repr__(self) -> str:
|
||||
return "<NA>"
|
||||
|
||||
def __format__(self, format_spec) -> str:
|
||||
try:
|
||||
return self.__repr__().__format__(format_spec)
|
||||
except ValueError:
|
||||
return self.__repr__()
|
||||
|
||||
def __bool__(self):
|
||||
raise TypeError("boolean value of NA is ambiguous")
|
||||
|
||||
def __hash__(self):
|
||||
# GH 30013: Ensure hash is large enough to avoid hash collisions with integers
|
||||
exponent = 31 if is_32bit else 61
|
||||
return 2 ** exponent - 1
|
||||
|
||||
def __reduce__(self):
|
||||
return "NA"
|
||||
|
||||
# Binary arithmetic and comparison ops -> propagate
|
||||
|
||||
__add__ = _create_binary_propagating_op("__add__")
|
||||
__radd__ = _create_binary_propagating_op("__radd__")
|
||||
__sub__ = _create_binary_propagating_op("__sub__")
|
||||
__rsub__ = _create_binary_propagating_op("__rsub__")
|
||||
__mul__ = _create_binary_propagating_op("__mul__")
|
||||
__rmul__ = _create_binary_propagating_op("__rmul__")
|
||||
__matmul__ = _create_binary_propagating_op("__matmul__")
|
||||
__rmatmul__ = _create_binary_propagating_op("__rmatmul__")
|
||||
__truediv__ = _create_binary_propagating_op("__truediv__")
|
||||
__rtruediv__ = _create_binary_propagating_op("__rtruediv__")
|
||||
__floordiv__ = _create_binary_propagating_op("__floordiv__")
|
||||
__rfloordiv__ = _create_binary_propagating_op("__rfloordiv__")
|
||||
__mod__ = _create_binary_propagating_op("__mod__")
|
||||
__rmod__ = _create_binary_propagating_op("__rmod__")
|
||||
__divmod__ = _create_binary_propagating_op("__divmod__", is_divmod=True)
|
||||
__rdivmod__ = _create_binary_propagating_op("__rdivmod__", is_divmod=True)
|
||||
# __lshift__ and __rshift__ are not implemented
|
||||
|
||||
__eq__ = _create_binary_propagating_op("__eq__")
|
||||
__ne__ = _create_binary_propagating_op("__ne__")
|
||||
__le__ = _create_binary_propagating_op("__le__")
|
||||
__lt__ = _create_binary_propagating_op("__lt__")
|
||||
__gt__ = _create_binary_propagating_op("__gt__")
|
||||
__ge__ = _create_binary_propagating_op("__ge__")
|
||||
|
||||
# Unary ops
|
||||
|
||||
__neg__ = _create_unary_propagating_op("__neg__")
|
||||
__pos__ = _create_unary_propagating_op("__pos__")
|
||||
__abs__ = _create_unary_propagating_op("__abs__")
|
||||
__invert__ = _create_unary_propagating_op("__invert__")
|
||||
|
||||
# pow has special
|
||||
def __pow__(self, other):
|
||||
if other is C_NA:
|
||||
return NA
|
||||
elif isinstance(other, (numbers.Number, np.bool_)):
|
||||
if other == 0:
|
||||
# returning positive is correct for +/- 0.
|
||||
return type(other)(1)
|
||||
else:
|
||||
return NA
|
||||
elif util.is_array(other):
|
||||
return np.where(other == 0, other.dtype.type(1), NA)
|
||||
|
||||
return NotImplemented
|
||||
|
||||
def __rpow__(self, other):
|
||||
if other is C_NA:
|
||||
return NA
|
||||
elif isinstance(other, (numbers.Number, np.bool_)):
|
||||
if other == 1:
|
||||
return other
|
||||
else:
|
||||
return NA
|
||||
elif util.is_array(other):
|
||||
return np.where(other == 1, other, NA)
|
||||
return NotImplemented
|
||||
|
||||
# Logical ops using Kleene logic
|
||||
|
||||
def __and__(self, other):
|
||||
if other is False:
|
||||
return False
|
||||
elif other is True or other is C_NA:
|
||||
return NA
|
||||
return NotImplemented
|
||||
|
||||
__rand__ = __and__
|
||||
|
||||
def __or__(self, other):
|
||||
if other is True:
|
||||
return True
|
||||
elif other is False or other is C_NA:
|
||||
return NA
|
||||
return NotImplemented
|
||||
|
||||
__ror__ = __or__
|
||||
|
||||
def __xor__(self, other):
|
||||
if other is False or other is True or other is C_NA:
|
||||
return NA
|
||||
return NotImplemented
|
||||
|
||||
__rxor__ = __xor__
|
||||
|
||||
__array_priority__ = 1000
|
||||
_HANDLED_TYPES = (np.ndarray, numbers.Number, str, np.bool_)
|
||||
|
||||
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
||||
types = self._HANDLED_TYPES + (NAType,)
|
||||
for x in inputs:
|
||||
if not isinstance(x, types):
|
||||
return NotImplemented
|
||||
|
||||
if method != "__call__":
|
||||
raise ValueError(f"ufunc method '{method}' not supported for NA")
|
||||
result = maybe_dispatch_ufunc_to_dunder_op(
|
||||
self, ufunc, method, *inputs, **kwargs
|
||||
)
|
||||
if result is NotImplemented:
|
||||
# For a NumPy ufunc that's not a binop, like np.logaddexp
|
||||
index = [i for i, x in enumerate(inputs) if x is NA][0]
|
||||
result = np.broadcast_arrays(*inputs)[index]
|
||||
if result.ndim == 0:
|
||||
result = result.item()
|
||||
if ufunc.nout > 1:
|
||||
result = (NA,) * ufunc.nout
|
||||
|
||||
return result
|
||||
|
||||
|
||||
C_NA = NAType() # C-visible
|
||||
NA = C_NA # Python-visible
|
Reference in New Issue
Block a user