""" This file contains a minimal set of tests for compliance with the extension array interface test suite, and should contain no other tests. The test suite for the full functionality of the array is located in `pandas/tests/arrays/`. The tests in this file are inherited from the BaseExtensionTests, and only minimal tweaks should be applied to get the tests passing (by overwriting a parent method). Additional tests should either be added to one of the BaseExtensionTests classes (if they are relevant for the extension interface for all dtypes), or be added to the array-specific tests in `pandas/tests/arrays/`. """ import numpy as np import pytest from pandas.core.dtypes.dtypes import IntervalDtype from pandas import Interval from pandas.core.arrays import IntervalArray from pandas.tests.extension import base def make_data(): N = 100 left_array = np.random.default_rng(2).uniform(size=N).cumsum() right_array = left_array + np.random.default_rng(2).uniform(size=N) return [Interval(left, right) for left, right in zip(left_array, right_array)] @pytest.fixture def dtype(): return IntervalDtype() @pytest.fixture def data(): """Length-100 PeriodArray for semantics test.""" return IntervalArray(make_data()) @pytest.fixture def data_missing(): """Length 2 array with [NA, Valid]""" return IntervalArray.from_tuples([None, (0, 1)]) @pytest.fixture def data_for_twos(): pytest.skip("Not a numeric dtype") @pytest.fixture def data_for_sorting(): return IntervalArray.from_tuples([(1, 2), (2, 3), (0, 1)]) @pytest.fixture def data_missing_for_sorting(): return IntervalArray.from_tuples([(1, 2), None, (0, 1)]) @pytest.fixture def data_for_grouping(): a = (0, 1) b = (1, 2) c = (2, 3) return IntervalArray.from_tuples([b, b, None, None, a, a, b, c]) class TestIntervalArray(base.ExtensionTests): divmod_exc = TypeError def _supports_reduction(self, obj, op_name: str) -> bool: return op_name in ["min", "max"] @pytest.mark.xfail( reason="Raises with incorrect message bc it disallows *all* listlikes " "instead of just wrong-length listlikes" ) def test_fillna_length_mismatch(self, data_missing): super().test_fillna_length_mismatch(data_missing) @pytest.mark.parametrize("engine", ["c", "python"]) def test_EA_types(self, engine, data): expected_msg = r".*must implement _from_sequence_of_strings.*" with pytest.raises(NotImplementedError, match=expected_msg): super().test_EA_types(engine, data) @pytest.mark.xfail( reason="Looks like the test (incorrectly) implicitly assumes int/bool dtype" ) def test_invert(self, data): super().test_invert(data) # TODO: either belongs in tests.arrays.interval or move into base tests. def test_fillna_non_scalar_raises(data_missing): msg = "can only insert Interval objects and NA into an IntervalArray" with pytest.raises(TypeError, match=msg): data_missing.fillna([1, 1])