from copy import deepcopy import inspect import pydoc import numpy as np import pytest from pandas._config.config import option_context from pandas.util._test_decorators import async_mark import pandas as pd from pandas import ( DataFrame, Series, date_range, timedelta_range, ) import pandas._testing as tm class TestDataFrameMisc: def test_getitem_pop_assign_name(self, float_frame): s = float_frame["A"] assert s.name == "A" s = float_frame.pop("A") assert s.name == "A" s = float_frame.loc[:, "B"] assert s.name == "B" s2 = s.loc[:] assert s2.name == "B" def test_get_axis(self, float_frame): f = float_frame assert f._get_axis_number(0) == 0 assert f._get_axis_number(1) == 1 assert f._get_axis_number("index") == 0 assert f._get_axis_number("rows") == 0 assert f._get_axis_number("columns") == 1 assert f._get_axis_name(0) == "index" assert f._get_axis_name(1) == "columns" assert f._get_axis_name("index") == "index" assert f._get_axis_name("rows") == "index" assert f._get_axis_name("columns") == "columns" assert f._get_axis(0) is f.index assert f._get_axis(1) is f.columns with pytest.raises(ValueError, match="No axis named"): f._get_axis_number(2) with pytest.raises(ValueError, match="No axis.*foo"): f._get_axis_name("foo") with pytest.raises(ValueError, match="No axis.*None"): f._get_axis_name(None) with pytest.raises(ValueError, match="No axis named"): f._get_axis_number(None) def test_column_contains_raises(self, float_frame): with pytest.raises(TypeError, match="unhashable type: 'Index'"): float_frame.columns in float_frame def test_tab_completion(self): # DataFrame whose columns are identifiers shall have them in __dir__. df = DataFrame([list("abcd"), list("efgh")], columns=list("ABCD")) for key in list("ABCD"): assert key in dir(df) assert isinstance(df.__getitem__("A"), Series) # DataFrame whose first-level columns are identifiers shall have # them in __dir__. df = DataFrame( [list("abcd"), list("efgh")], columns=pd.MultiIndex.from_tuples(list(zip("ABCD", "EFGH"))), ) for key in list("ABCD"): assert key in dir(df) for key in list("EFGH"): assert key not in dir(df) assert isinstance(df.__getitem__("A"), DataFrame) def test_display_max_dir_items(self): # display.max_dir_items increaes the number of columns that are in __dir__. columns = ["a" + str(i) for i in range(420)] values = [range(420), range(420)] df = DataFrame(values, columns=columns) # The default value for display.max_dir_items is 100 assert "a99" in dir(df) assert "a100" not in dir(df) with option_context("display.max_dir_items", 300): df = DataFrame(values, columns=columns) assert "a299" in dir(df) assert "a300" not in dir(df) with option_context("display.max_dir_items", None): df = DataFrame(values, columns=columns) assert "a419" in dir(df) def test_not_hashable(self): empty_frame = DataFrame() df = DataFrame([1]) msg = "unhashable type: 'DataFrame'" with pytest.raises(TypeError, match=msg): hash(df) with pytest.raises(TypeError, match=msg): hash(empty_frame) def test_column_name_contains_unicode_surrogate(self): # GH 25509 colname = "\ud83d" df = DataFrame({colname: []}) # this should not crash assert colname not in dir(df) assert df.columns[0] == colname def test_new_empty_index(self): df1 = DataFrame(np.random.default_rng(2).standard_normal((0, 3))) df2 = DataFrame(np.random.default_rng(2).standard_normal((0, 3))) df1.index.name = "foo" assert df2.index.name is None def test_get_agg_axis(self, float_frame): cols = float_frame._get_agg_axis(0) assert cols is float_frame.columns idx = float_frame._get_agg_axis(1) assert idx is float_frame.index msg = r"Axis must be 0 or 1 \(got 2\)" with pytest.raises(ValueError, match=msg): float_frame._get_agg_axis(2) def test_empty(self, float_frame, float_string_frame): empty_frame = DataFrame() assert empty_frame.empty assert not float_frame.empty assert not float_string_frame.empty # corner case df = DataFrame({"A": [1.0, 2.0, 3.0], "B": ["a", "b", "c"]}, index=np.arange(3)) del df["A"] assert not df.empty def test_len(self, float_frame): assert len(float_frame) == len(float_frame.index) # single block corner case arr = float_frame[["A", "B"]].values expected = float_frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(arr, expected) def test_axis_aliases(self, float_frame): f = float_frame # reg name expected = f.sum(axis=0) result = f.sum(axis="index") tm.assert_series_equal(result, expected) expected = f.sum(axis=1) result = f.sum(axis="columns") tm.assert_series_equal(result, expected) def test_class_axis(self): # GH 18147 # no exception and no empty docstring assert pydoc.getdoc(DataFrame.index) assert pydoc.getdoc(DataFrame.columns) def test_series_put_names(self, float_string_frame): series = float_string_frame._series for k, v in series.items(): assert v.name == k def test_empty_nonzero(self): df = DataFrame([1, 2, 3]) assert not df.empty df = DataFrame(index=[1], columns=[1]) assert not df.empty df = DataFrame(index=["a", "b"], columns=["c", "d"]).dropna() assert df.empty assert df.T.empty @pytest.mark.parametrize( "df", [ DataFrame(), DataFrame(index=[1]), DataFrame(columns=[1]), DataFrame({1: []}), ], ) def test_empty_like(self, df): assert df.empty assert df.T.empty def test_with_datetimelikes(self): df = DataFrame( { "A": date_range("20130101", periods=10), "B": timedelta_range("1 day", periods=10), } ) t = df.T result = t.dtypes.value_counts() expected = Series({np.dtype("object"): 10}, name="count") tm.assert_series_equal(result, expected) def test_deepcopy(self, float_frame): cp = deepcopy(float_frame) series = cp["A"] series[:] = 10 for idx, value in series.items(): assert float_frame["A"][idx] != value def test_inplace_return_self(self): # GH 1893 data = DataFrame( {"a": ["foo", "bar", "baz", "qux"], "b": [0, 0, 1, 1], "c": [1, 2, 3, 4]} ) def _check_f(base, f): result = f(base) assert result is None # -----DataFrame----- # set_index f = lambda x: x.set_index("a", inplace=True) _check_f(data.copy(), f) # reset_index f = lambda x: x.reset_index(inplace=True) _check_f(data.set_index("a"), f) # drop_duplicates f = lambda x: x.drop_duplicates(inplace=True) _check_f(data.copy(), f) # sort f = lambda x: x.sort_values("b", inplace=True) _check_f(data.copy(), f) # sort_index f = lambda x: x.sort_index(inplace=True) _check_f(data.copy(), f) # fillna f = lambda x: x.fillna(0, inplace=True) _check_f(data.copy(), f) # replace f = lambda x: x.replace(1, 0, inplace=True) _check_f(data.copy(), f) # rename f = lambda x: x.rename({1: "foo"}, inplace=True) _check_f(data.copy(), f) # -----Series----- d = data.copy()["c"] # reset_index f = lambda x: x.reset_index(inplace=True, drop=True) _check_f(data.set_index("a")["c"], f) # fillna f = lambda x: x.fillna(0, inplace=True) _check_f(d.copy(), f) # replace f = lambda x: x.replace(1, 0, inplace=True) _check_f(d.copy(), f) # rename f = lambda x: x.rename({1: "foo"}, inplace=True) _check_f(d.copy(), f) @async_mark() async def test_tab_complete_warning(self, ip, frame_or_series): # GH 16409 pytest.importorskip("IPython", minversion="6.0.0") from IPython.core.completer import provisionalcompleter if frame_or_series is DataFrame: code = "from pandas import DataFrame; obj = DataFrame()" else: code = "from pandas import Series; obj = Series(dtype=object)" await ip.run_code(code) # GH 31324 newer jedi version raises Deprecation warning; # appears resolved 2021-02-02 with tm.assert_produces_warning(None, raise_on_extra_warnings=False): with provisionalcompleter("ignore"): list(ip.Completer.completions("obj.", 1)) def test_attrs(self): df = DataFrame({"A": [2, 3]}) assert df.attrs == {} df.attrs["version"] = 1 result = df.rename(columns=str) assert result.attrs == {"version": 1} @pytest.mark.parametrize("allows_duplicate_labels", [True, False, None]) def test_set_flags( self, allows_duplicate_labels, frame_or_series, using_copy_on_write ): obj = DataFrame({"A": [1, 2]}) key = (0, 0) if frame_or_series is Series: obj = obj["A"] key = 0 result = obj.set_flags(allows_duplicate_labels=allows_duplicate_labels) if allows_duplicate_labels is None: # We don't update when it's not provided assert result.flags.allows_duplicate_labels is True else: assert result.flags.allows_duplicate_labels is allows_duplicate_labels # We made a copy assert obj is not result # We didn't mutate obj assert obj.flags.allows_duplicate_labels is True # But we didn't copy data if frame_or_series is Series: assert np.may_share_memory(obj.values, result.values) else: assert np.may_share_memory(obj["A"].values, result["A"].values) result.iloc[key] = 0 if using_copy_on_write: assert obj.iloc[key] == 1 else: assert obj.iloc[key] == 0 # set back to 1 for test below result.iloc[key] = 1 # Now we do copy. result = obj.set_flags( copy=True, allows_duplicate_labels=allows_duplicate_labels ) result.iloc[key] = 10 assert obj.iloc[key] == 1 def test_constructor_expanddim(self): # GH#33628 accessing _constructor_expanddim should not raise NotImplementedError # GH38782 pandas has no container higher than DataFrame (two-dim), so # DataFrame._constructor_expand_dim, doesn't make sense, so is removed. df = DataFrame() msg = "'DataFrame' object has no attribute '_constructor_expanddim'" with pytest.raises(AttributeError, match=msg): df._constructor_expanddim(np.arange(27).reshape(3, 3, 3)) def test_inspect_getmembers(self): # GH38740 pytest.importorskip("jinja2") df = DataFrame() msg = "DataFrame._data is deprecated" with tm.assert_produces_warning( DeprecationWarning, match=msg, check_stacklevel=False ): inspect.getmembers(df)