""" An exhaustive list of pandas methods exercising NDFrame.__finalize__. """ import operator import re import numpy as np import pytest import pandas as pd import pandas._testing as tm # TODO: # * Binary methods (mul, div, etc.) # * Binary outputs (align, etc.) # * top-level methods (concat, merge, get_dummies, etc.) # * window # * cumulative reductions not_implemented_mark = pytest.mark.xfail(reason="not implemented") mi = pd.MultiIndex.from_product([["a", "b"], [0, 1]], names=["A", "B"]) frame_data = ({"A": [1]},) frame_mi_data = ({"A": [1, 2, 3, 4]}, mi) # Tuple of # - Callable: Constructor (Series, DataFrame) # - Tuple: Constructor args # - Callable: pass the constructed value with attrs set to this. _all_methods = [ ( pd.Series, (np.array([0], dtype="float64")), operator.methodcaller("view", "int64"), ), (pd.Series, ([0],), operator.methodcaller("take", [])), (pd.Series, ([0],), operator.methodcaller("__getitem__", [True])), (pd.Series, ([0],), operator.methodcaller("repeat", 2)), (pd.Series, ([0],), operator.methodcaller("reset_index")), (pd.Series, ([0],), operator.methodcaller("reset_index", drop=True)), (pd.Series, ([0],), operator.methodcaller("to_frame")), (pd.Series, ([0, 0],), operator.methodcaller("drop_duplicates")), (pd.Series, ([0, 0],), operator.methodcaller("duplicated")), (pd.Series, ([0, 0],), operator.methodcaller("round")), (pd.Series, ([0, 0],), operator.methodcaller("rename", lambda x: x + 1)), (pd.Series, ([0, 0],), operator.methodcaller("rename", "name")), (pd.Series, ([0, 0],), operator.methodcaller("set_axis", ["a", "b"])), (pd.Series, ([0, 0],), operator.methodcaller("reindex", [1, 0])), (pd.Series, ([0, 0],), operator.methodcaller("drop", [0])), (pd.Series, (pd.array([0, pd.NA]),), operator.methodcaller("fillna", 0)), (pd.Series, ([0, 0],), operator.methodcaller("replace", {0: 1})), (pd.Series, ([0, 0],), operator.methodcaller("shift")), (pd.Series, ([0, 0],), operator.methodcaller("isin", [0, 1])), (pd.Series, ([0, 0],), operator.methodcaller("between", 0, 2)), (pd.Series, ([0, 0],), operator.methodcaller("isna")), (pd.Series, ([0, 0],), operator.methodcaller("isnull")), (pd.Series, ([0, 0],), operator.methodcaller("notna")), (pd.Series, ([0, 0],), operator.methodcaller("notnull")), (pd.Series, ([1],), operator.methodcaller("add", pd.Series([1]))), # TODO: mul, div, etc. ( pd.Series, ([0], pd.period_range("2000", periods=1)), operator.methodcaller("to_timestamp"), ), ( pd.Series, ([0], pd.date_range("2000", periods=1)), operator.methodcaller("to_period"), ), pytest.param( ( pd.DataFrame, frame_data, operator.methodcaller("dot", pd.DataFrame(index=["A"])), ), marks=pytest.mark.xfail(reason="Implement binary finalize"), ), (pd.DataFrame, frame_data, operator.methodcaller("transpose")), (pd.DataFrame, frame_data, operator.methodcaller("__getitem__", "A")), (pd.DataFrame, frame_data, operator.methodcaller("__getitem__", ["A"])), (pd.DataFrame, frame_data, operator.methodcaller("__getitem__", np.array([True]))), (pd.DataFrame, ({("A", "a"): [1]},), operator.methodcaller("__getitem__", ["A"])), (pd.DataFrame, frame_data, operator.methodcaller("query", "A == 1")), (pd.DataFrame, frame_data, operator.methodcaller("eval", "A + 1", engine="python")), (pd.DataFrame, frame_data, operator.methodcaller("select_dtypes", include="int")), (pd.DataFrame, frame_data, operator.methodcaller("assign", b=1)), (pd.DataFrame, frame_data, operator.methodcaller("set_axis", ["A"])), (pd.DataFrame, frame_data, operator.methodcaller("reindex", [0, 1])), (pd.DataFrame, frame_data, operator.methodcaller("drop", columns=["A"])), (pd.DataFrame, frame_data, operator.methodcaller("drop", index=[0])), (pd.DataFrame, frame_data, operator.methodcaller("rename", columns={"A": "a"})), (pd.DataFrame, frame_data, operator.methodcaller("rename", index=lambda x: x)), (pd.DataFrame, frame_data, operator.methodcaller("fillna", "A")), (pd.DataFrame, frame_data, operator.methodcaller("fillna", method="ffill")), (pd.DataFrame, frame_data, operator.methodcaller("set_index", "A")), (pd.DataFrame, frame_data, operator.methodcaller("reset_index")), (pd.DataFrame, frame_data, operator.methodcaller("isna")), (pd.DataFrame, frame_data, operator.methodcaller("isnull")), (pd.DataFrame, frame_data, operator.methodcaller("notna")), (pd.DataFrame, frame_data, operator.methodcaller("notnull")), (pd.DataFrame, frame_data, operator.methodcaller("dropna")), (pd.DataFrame, frame_data, operator.methodcaller("drop_duplicates")), (pd.DataFrame, frame_data, operator.methodcaller("duplicated")), (pd.DataFrame, frame_data, operator.methodcaller("sort_values", by="A")), (pd.DataFrame, frame_data, operator.methodcaller("sort_index")), (pd.DataFrame, frame_data, operator.methodcaller("nlargest", 1, "A")), (pd.DataFrame, frame_data, operator.methodcaller("nsmallest", 1, "A")), (pd.DataFrame, frame_mi_data, operator.methodcaller("swaplevel")), ( pd.DataFrame, frame_data, operator.methodcaller("add", pd.DataFrame(*frame_data)), ), # TODO: div, mul, etc. ( pd.DataFrame, frame_data, operator.methodcaller("combine", pd.DataFrame(*frame_data), operator.add), ), ( pd.DataFrame, frame_data, operator.methodcaller("combine_first", pd.DataFrame(*frame_data)), ), pytest.param( ( pd.DataFrame, frame_data, operator.methodcaller("update", pd.DataFrame(*frame_data)), ), marks=not_implemented_mark, ), (pd.DataFrame, frame_data, operator.methodcaller("pivot", columns="A")), ( pd.DataFrame, ({"A": [1], "B": [1]},), operator.methodcaller("pivot_table", columns="A"), ), ( pd.DataFrame, ({"A": [1], "B": [1]},), operator.methodcaller("pivot_table", columns="A", aggfunc=["mean", "sum"]), ), (pd.DataFrame, frame_data, operator.methodcaller("stack")), (pd.DataFrame, frame_data, operator.methodcaller("explode", "A")), (pd.DataFrame, frame_mi_data, operator.methodcaller("unstack")), ( pd.DataFrame, ({"A": ["a", "b", "c"], "B": [1, 3, 5], "C": [2, 4, 6]},), operator.methodcaller("melt", id_vars=["A"], value_vars=["B"]), ), (pd.DataFrame, frame_data, operator.methodcaller("map", lambda x: x)), pytest.param( ( pd.DataFrame, frame_data, operator.methodcaller("merge", pd.DataFrame({"A": [1]})), ), marks=not_implemented_mark, ), (pd.DataFrame, frame_data, operator.methodcaller("round", 2)), (pd.DataFrame, frame_data, operator.methodcaller("corr")), pytest.param( (pd.DataFrame, frame_data, operator.methodcaller("cov")), marks=[ pytest.mark.filterwarnings("ignore::RuntimeWarning"), ], ), ( pd.DataFrame, frame_data, operator.methodcaller("corrwith", pd.DataFrame(*frame_data)), ), (pd.DataFrame, frame_data, operator.methodcaller("count")), (pd.DataFrame, frame_data, operator.methodcaller("nunique")), (pd.DataFrame, frame_data, operator.methodcaller("idxmin")), (pd.DataFrame, frame_data, operator.methodcaller("idxmax")), (pd.DataFrame, frame_data, operator.methodcaller("mode")), (pd.Series, [0], operator.methodcaller("mode")), (pd.DataFrame, frame_data, operator.methodcaller("median")), ( pd.DataFrame, frame_data, operator.methodcaller("quantile", numeric_only=True), ), ( pd.DataFrame, frame_data, operator.methodcaller("quantile", q=[0.25, 0.75], numeric_only=True), ), ( pd.DataFrame, ({"A": [pd.Timedelta(days=1), pd.Timedelta(days=2)]},), operator.methodcaller("quantile", numeric_only=False), ), ( pd.DataFrame, ({"A": [np.datetime64("2022-01-01"), np.datetime64("2022-01-02")]},), operator.methodcaller("quantile", numeric_only=True), ), ( pd.DataFrame, ({"A": [1]}, [pd.Period("2000", "D")]), operator.methodcaller("to_timestamp"), ), ( pd.DataFrame, ({"A": [1]}, [pd.Timestamp("2000")]), operator.methodcaller("to_period", freq="D"), ), (pd.DataFrame, frame_mi_data, operator.methodcaller("isin", [1])), (pd.DataFrame, frame_mi_data, operator.methodcaller("isin", pd.Series([1]))), ( pd.DataFrame, frame_mi_data, operator.methodcaller("isin", pd.DataFrame({"A": [1]})), ), (pd.DataFrame, frame_mi_data, operator.methodcaller("droplevel", "A")), (pd.DataFrame, frame_data, operator.methodcaller("pop", "A")), # Squeeze on columns, otherwise we'll end up with a scalar (pd.DataFrame, frame_data, operator.methodcaller("squeeze", axis="columns")), (pd.Series, ([1, 2],), operator.methodcaller("squeeze")), (pd.Series, ([1, 2],), operator.methodcaller("rename_axis", index="a")), (pd.DataFrame, frame_data, operator.methodcaller("rename_axis", columns="a")), # Unary ops (pd.DataFrame, frame_data, operator.neg), (pd.Series, [1], operator.neg), (pd.DataFrame, frame_data, operator.pos), (pd.Series, [1], operator.pos), (pd.DataFrame, frame_data, operator.inv), (pd.Series, [1], operator.inv), (pd.DataFrame, frame_data, abs), (pd.Series, [1], abs), (pd.DataFrame, frame_data, round), (pd.Series, [1], round), (pd.DataFrame, frame_data, operator.methodcaller("take", [0, 0])), (pd.DataFrame, frame_mi_data, operator.methodcaller("xs", "a")), (pd.Series, (1, mi), operator.methodcaller("xs", "a")), (pd.DataFrame, frame_data, operator.methodcaller("get", "A")), ( pd.DataFrame, frame_data, operator.methodcaller("reindex_like", pd.DataFrame({"A": [1, 2, 3]})), ), ( pd.Series, frame_data, operator.methodcaller("reindex_like", pd.Series([0, 1, 2])), ), (pd.DataFrame, frame_data, operator.methodcaller("add_prefix", "_")), (pd.DataFrame, frame_data, operator.methodcaller("add_suffix", "_")), (pd.Series, (1, ["a", "b"]), operator.methodcaller("add_prefix", "_")), (pd.Series, (1, ["a", "b"]), operator.methodcaller("add_suffix", "_")), (pd.Series, ([3, 2],), operator.methodcaller("sort_values")), (pd.Series, ([1] * 10,), operator.methodcaller("head")), (pd.DataFrame, ({"A": [1] * 10},), operator.methodcaller("head")), (pd.Series, ([1] * 10,), operator.methodcaller("tail")), (pd.DataFrame, ({"A": [1] * 10},), operator.methodcaller("tail")), (pd.Series, ([1, 2],), operator.methodcaller("sample", n=2, replace=True)), (pd.DataFrame, (frame_data,), operator.methodcaller("sample", n=2, replace=True)), (pd.Series, ([1, 2],), operator.methodcaller("astype", float)), (pd.DataFrame, frame_data, operator.methodcaller("astype", float)), (pd.Series, ([1, 2],), operator.methodcaller("copy")), (pd.DataFrame, frame_data, operator.methodcaller("copy")), (pd.Series, ([1, 2], None, object), operator.methodcaller("infer_objects")), ( pd.DataFrame, ({"A": np.array([1, 2], dtype=object)},), operator.methodcaller("infer_objects"), ), (pd.Series, ([1, 2],), operator.methodcaller("convert_dtypes")), (pd.DataFrame, frame_data, operator.methodcaller("convert_dtypes")), (pd.Series, ([1, None, 3],), operator.methodcaller("interpolate")), (pd.DataFrame, ({"A": [1, None, 3]},), operator.methodcaller("interpolate")), (pd.Series, ([1, 2],), operator.methodcaller("clip", lower=1)), (pd.DataFrame, frame_data, operator.methodcaller("clip", lower=1)), ( pd.Series, (1, pd.date_range("2000", periods=4)), operator.methodcaller("asfreq", "H"), ), ( pd.DataFrame, ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), operator.methodcaller("asfreq", "H"), ), ( pd.Series, (1, pd.date_range("2000", periods=4)), operator.methodcaller("at_time", "12:00"), ), ( pd.DataFrame, ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), operator.methodcaller("at_time", "12:00"), ), ( pd.Series, (1, pd.date_range("2000", periods=4)), operator.methodcaller("between_time", "12:00", "13:00"), ), ( pd.DataFrame, ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), operator.methodcaller("between_time", "12:00", "13:00"), ), ( pd.Series, (1, pd.date_range("2000", periods=4)), operator.methodcaller("last", "3D"), ), ( pd.DataFrame, ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), operator.methodcaller("last", "3D"), ), (pd.Series, ([1, 2],), operator.methodcaller("rank")), (pd.DataFrame, frame_data, operator.methodcaller("rank")), (pd.Series, ([1, 2],), operator.methodcaller("where", np.array([True, False]))), (pd.DataFrame, frame_data, operator.methodcaller("where", np.array([[True]]))), (pd.Series, ([1, 2],), operator.methodcaller("mask", np.array([True, False]))), (pd.DataFrame, frame_data, operator.methodcaller("mask", np.array([[True]]))), (pd.Series, ([1, 2],), operator.methodcaller("truncate", before=0)), (pd.DataFrame, frame_data, operator.methodcaller("truncate", before=0)), ( pd.Series, (1, pd.date_range("2000", periods=4, tz="UTC")), operator.methodcaller("tz_convert", "CET"), ), ( pd.DataFrame, ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4, tz="UTC")), operator.methodcaller("tz_convert", "CET"), ), ( pd.Series, (1, pd.date_range("2000", periods=4)), operator.methodcaller("tz_localize", "CET"), ), ( pd.DataFrame, ({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), operator.methodcaller("tz_localize", "CET"), ), (pd.Series, ([1, 2],), operator.methodcaller("describe")), (pd.DataFrame, frame_data, operator.methodcaller("describe")), (pd.Series, ([1, 2],), operator.methodcaller("pct_change")), (pd.DataFrame, frame_data, operator.methodcaller("pct_change")), (pd.Series, ([1],), operator.methodcaller("transform", lambda x: x - x.min())), ( pd.DataFrame, frame_mi_data, operator.methodcaller("transform", lambda x: x - x.min()), ), (pd.Series, ([1],), operator.methodcaller("apply", lambda x: x)), (pd.DataFrame, frame_mi_data, operator.methodcaller("apply", lambda x: x)), # Cumulative reductions (pd.Series, ([1],), operator.methodcaller("cumsum")), (pd.DataFrame, frame_data, operator.methodcaller("cumsum")), (pd.Series, ([1],), operator.methodcaller("cummin")), (pd.DataFrame, frame_data, operator.methodcaller("cummin")), (pd.Series, ([1],), operator.methodcaller("cummax")), (pd.DataFrame, frame_data, operator.methodcaller("cummax")), (pd.Series, ([1],), operator.methodcaller("cumprod")), (pd.DataFrame, frame_data, operator.methodcaller("cumprod")), # Reductions (pd.DataFrame, frame_data, operator.methodcaller("any")), (pd.DataFrame, frame_data, operator.methodcaller("all")), (pd.DataFrame, frame_data, operator.methodcaller("min")), (pd.DataFrame, frame_data, operator.methodcaller("max")), (pd.DataFrame, frame_data, operator.methodcaller("sum")), (pd.DataFrame, frame_data, operator.methodcaller("std")), (pd.DataFrame, frame_data, operator.methodcaller("mean")), (pd.DataFrame, frame_data, operator.methodcaller("prod")), (pd.DataFrame, frame_data, operator.methodcaller("sem")), (pd.DataFrame, frame_data, operator.methodcaller("skew")), (pd.DataFrame, frame_data, operator.methodcaller("kurt")), ] def idfn(x): xpr = re.compile(r"'(.*)?'") m = xpr.search(str(x)) if m: return m.group(1) else: return str(x) @pytest.fixture(params=_all_methods, ids=lambda x: idfn(x[-1])) def ndframe_method(request): """ An NDFrame method returning an NDFrame. """ return request.param @pytest.mark.filterwarnings( "ignore:DataFrame.fillna with 'method' is deprecated:FutureWarning", "ignore:last is deprecated:FutureWarning", ) def test_finalize_called(ndframe_method): cls, init_args, method = ndframe_method ndframe = cls(*init_args) ndframe.attrs = {"a": 1} result = method(ndframe) assert result.attrs == {"a": 1} @pytest.mark.parametrize( "data", [ pd.Series(1, pd.date_range("2000", periods=4)), pd.DataFrame({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), ], ) def test_finalize_first(data): deprecated_msg = "first is deprecated" data.attrs = {"a": 1} with tm.assert_produces_warning(FutureWarning, match=deprecated_msg): result = data.first("3D") assert result.attrs == {"a": 1} @pytest.mark.parametrize( "data", [ pd.Series(1, pd.date_range("2000", periods=4)), pd.DataFrame({"A": [1, 1, 1, 1]}, pd.date_range("2000", periods=4)), ], ) def test_finalize_last(data): # GH 53710 deprecated_msg = "last is deprecated" data.attrs = {"a": 1} with tm.assert_produces_warning(FutureWarning, match=deprecated_msg): result = data.last("3D") assert result.attrs == {"a": 1} @not_implemented_mark def test_finalize_called_eval_numexpr(): pytest.importorskip("numexpr") df = pd.DataFrame({"A": [1, 2]}) df.attrs["A"] = 1 result = df.eval("A + 1", engine="numexpr") assert result.attrs == {"A": 1} # ---------------------------------------------------------------------------- # Binary operations @pytest.mark.parametrize("annotate", ["left", "right", "both"]) @pytest.mark.parametrize( "args", [ (1, pd.Series([1])), (1, pd.DataFrame({"A": [1]})), (pd.Series([1]), 1), (pd.DataFrame({"A": [1]}), 1), (pd.Series([1]), pd.Series([1])), (pd.DataFrame({"A": [1]}), pd.DataFrame({"A": [1]})), (pd.Series([1]), pd.DataFrame({"A": [1]})), (pd.DataFrame({"A": [1]}), pd.Series([1])), ], ids=lambda x: f"({type(x[0]).__name__},{type(x[1]).__name__})", ) def test_binops(request, args, annotate, all_binary_operators): # This generates 624 tests... Is that needed? left, right = args if isinstance(left, (pd.DataFrame, pd.Series)): left.attrs = {} if isinstance(right, (pd.DataFrame, pd.Series)): right.attrs = {} if annotate == "left" and isinstance(left, int): pytest.skip("left is an int and doesn't support .attrs") if annotate == "right" and isinstance(right, int): pytest.skip("right is an int and doesn't support .attrs") if not (isinstance(left, int) or isinstance(right, int)) and annotate != "both": if not all_binary_operators.__name__.startswith("r"): if annotate == "right" and isinstance(left, type(right)): request.node.add_marker( pytest.mark.xfail( reason=f"{all_binary_operators} doesn't work when right has " f"attrs and both are {type(left)}" ) ) if not isinstance(left, type(right)): if annotate == "left" and isinstance(left, pd.Series): request.node.add_marker( pytest.mark.xfail( reason=f"{all_binary_operators} doesn't work when the " "objects are different Series has attrs" ) ) elif annotate == "right" and isinstance(right, pd.Series): request.node.add_marker( pytest.mark.xfail( reason=f"{all_binary_operators} doesn't work when the " "objects are different Series has attrs" ) ) else: if annotate == "left" and isinstance(left, type(right)): request.node.add_marker( pytest.mark.xfail( reason=f"{all_binary_operators} doesn't work when left has " f"attrs and both are {type(left)}" ) ) if not isinstance(left, type(right)): if annotate == "right" and isinstance(right, pd.Series): request.node.add_marker( pytest.mark.xfail( reason=f"{all_binary_operators} doesn't work when the " "objects are different Series has attrs" ) ) elif annotate == "left" and isinstance(left, pd.Series): request.node.add_marker( pytest.mark.xfail( reason=f"{all_binary_operators} doesn't work when the " "objects are different Series has attrs" ) ) if annotate in {"left", "both"} and not isinstance(left, int): left.attrs = {"a": 1} if annotate in {"right", "both"} and not isinstance(right, int): right.attrs = {"a": 1} is_cmp = all_binary_operators in [ operator.eq, operator.ne, operator.gt, operator.ge, operator.lt, operator.le, ] if is_cmp and isinstance(left, pd.DataFrame) and isinstance(right, pd.Series): # in 2.0 silent alignment on comparisons was removed xref GH#28759 left, right = left.align(right, axis=1, copy=False) elif is_cmp and isinstance(left, pd.Series) and isinstance(right, pd.DataFrame): right, left = right.align(left, axis=1, copy=False) result = all_binary_operators(left, right) assert result.attrs == {"a": 1} # ---------------------------------------------------------------------------- # Accessors @pytest.mark.parametrize( "method", [ operator.methodcaller("capitalize"), operator.methodcaller("casefold"), operator.methodcaller("cat", ["a"]), operator.methodcaller("contains", "a"), operator.methodcaller("count", "a"), operator.methodcaller("encode", "utf-8"), operator.methodcaller("endswith", "a"), operator.methodcaller("extract", r"(\w)(\d)"), operator.methodcaller("extract", r"(\w)(\d)", expand=False), operator.methodcaller("find", "a"), operator.methodcaller("findall", "a"), operator.methodcaller("get", 0), operator.methodcaller("index", "a"), operator.methodcaller("len"), operator.methodcaller("ljust", 4), operator.methodcaller("lower"), operator.methodcaller("lstrip"), operator.methodcaller("match", r"\w"), operator.methodcaller("normalize", "NFC"), operator.methodcaller("pad", 4), operator.methodcaller("partition", "a"), operator.methodcaller("repeat", 2), operator.methodcaller("replace", "a", "b"), operator.methodcaller("rfind", "a"), operator.methodcaller("rindex", "a"), operator.methodcaller("rjust", 4), operator.methodcaller("rpartition", "a"), operator.methodcaller("rstrip"), operator.methodcaller("slice", 4), operator.methodcaller("slice_replace", 1, repl="a"), operator.methodcaller("startswith", "a"), operator.methodcaller("strip"), operator.methodcaller("swapcase"), operator.methodcaller("translate", {"a": "b"}), operator.methodcaller("upper"), operator.methodcaller("wrap", 4), operator.methodcaller("zfill", 4), operator.methodcaller("isalnum"), operator.methodcaller("isalpha"), operator.methodcaller("isdigit"), operator.methodcaller("isspace"), operator.methodcaller("islower"), operator.methodcaller("isupper"), operator.methodcaller("istitle"), operator.methodcaller("isnumeric"), operator.methodcaller("isdecimal"), operator.methodcaller("get_dummies"), ], ids=idfn, ) def test_string_method(method): s = pd.Series(["a1"]) s.attrs = {"a": 1} result = method(s.str) assert result.attrs == {"a": 1} @pytest.mark.parametrize( "method", [ operator.methodcaller("to_period"), operator.methodcaller("tz_localize", "CET"), operator.methodcaller("normalize"), operator.methodcaller("strftime", "%Y"), operator.methodcaller("round", "H"), operator.methodcaller("floor", "H"), operator.methodcaller("ceil", "H"), operator.methodcaller("month_name"), operator.methodcaller("day_name"), ], ids=idfn, ) def test_datetime_method(method): s = pd.Series(pd.date_range("2000", periods=4)) s.attrs = {"a": 1} result = method(s.dt) assert result.attrs == {"a": 1} @pytest.mark.parametrize( "attr", [ "date", "time", "timetz", "year", "month", "day", "hour", "minute", "second", "microsecond", "nanosecond", "dayofweek", "day_of_week", "dayofyear", "day_of_year", "quarter", "is_month_start", "is_month_end", "is_quarter_start", "is_quarter_end", "is_year_start", "is_year_end", "is_leap_year", "daysinmonth", "days_in_month", ], ) def test_datetime_property(attr): s = pd.Series(pd.date_range("2000", periods=4)) s.attrs = {"a": 1} result = getattr(s.dt, attr) assert result.attrs == {"a": 1} @pytest.mark.parametrize( "attr", ["days", "seconds", "microseconds", "nanoseconds", "components"] ) def test_timedelta_property(attr): s = pd.Series(pd.timedelta_range("2000", periods=4)) s.attrs = {"a": 1} result = getattr(s.dt, attr) assert result.attrs == {"a": 1} @pytest.mark.parametrize("method", [operator.methodcaller("total_seconds")]) def test_timedelta_methods(method): s = pd.Series(pd.timedelta_range("2000", periods=4)) s.attrs = {"a": 1} result = method(s.dt) assert result.attrs == {"a": 1} @pytest.mark.parametrize( "method", [ operator.methodcaller("add_categories", ["c"]), operator.methodcaller("as_ordered"), operator.methodcaller("as_unordered"), lambda x: getattr(x, "codes"), operator.methodcaller("remove_categories", "a"), operator.methodcaller("remove_unused_categories"), operator.methodcaller("rename_categories", {"a": "A", "b": "B"}), operator.methodcaller("reorder_categories", ["b", "a"]), operator.methodcaller("set_categories", ["A", "B"]), ], ) @not_implemented_mark def test_categorical_accessor(method): s = pd.Series(["a", "b"], dtype="category") s.attrs = {"a": 1} result = method(s.cat) assert result.attrs == {"a": 1} # ---------------------------------------------------------------------------- # Groupby @pytest.mark.parametrize( "obj", [pd.Series([0, 0]), pd.DataFrame({"A": [0, 1], "B": [1, 2]})] ) @pytest.mark.parametrize( "method", [ operator.methodcaller("sum"), lambda x: x.apply(lambda y: y), lambda x: x.agg("sum"), lambda x: x.agg("mean"), lambda x: x.agg("median"), ], ) def test_groupby_finalize(obj, method): obj.attrs = {"a": 1} result = method(obj.groupby([0, 0], group_keys=False)) assert result.attrs == {"a": 1} @pytest.mark.parametrize( "obj", [pd.Series([0, 0]), pd.DataFrame({"A": [0, 1], "B": [1, 2]})] ) @pytest.mark.parametrize( "method", [ lambda x: x.agg(["sum", "count"]), lambda x: x.agg("std"), lambda x: x.agg("var"), lambda x: x.agg("sem"), lambda x: x.agg("size"), lambda x: x.agg("ohlc"), ], ) @not_implemented_mark def test_groupby_finalize_not_implemented(obj, method): obj.attrs = {"a": 1} result = method(obj.groupby([0, 0])) assert result.attrs == {"a": 1} def test_finalize_frame_series_name(): # https://github.com/pandas-dev/pandas/pull/37186/files#r506978889 # ensure we don't copy the column `name` to the Series. df = pd.DataFrame({"name": [1, 2]}) result = pd.Series([1, 2]).__finalize__(df) assert result.name is None