# Only tests that raise an error and have no better location should go here. # Tests for specific groupby methods should go in their respective # test file. import datetime import re import numpy as np import pytest from pandas import ( Categorical, DataFrame, Grouper, Series, ) import pandas._testing as tm from pandas.tests.groupby import get_groupby_method_args @pytest.fixture( params=[ "a", ["a"], ["a", "b"], Grouper(key="a"), lambda x: x % 2, [0, 0, 0, 1, 2, 2, 2, 3, 3], np.array([0, 0, 0, 1, 2, 2, 2, 3, 3]), dict(zip(range(9), [0, 0, 0, 1, 2, 2, 2, 3, 3])), Series([1, 1, 1, 1, 1, 2, 2, 2, 2]), [Series([1, 1, 1, 1, 1, 2, 2, 2, 2]), Series([3, 3, 4, 4, 4, 4, 4, 3, 3])], ] ) def by(request): return request.param @pytest.fixture(params=[True, False]) def groupby_series(request): return request.param @pytest.fixture def df_with_string_col(): df = DataFrame( { "a": [1, 1, 1, 1, 1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4, 4, 4, 3, 3], "c": range(9), "d": list("xyzwtyuio"), } ) return df @pytest.fixture def df_with_datetime_col(): df = DataFrame( { "a": [1, 1, 1, 1, 1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4, 4, 4, 3, 3], "c": range(9), "d": datetime.datetime(2005, 1, 1, 10, 30, 23, 540000), } ) return df @pytest.fixture def df_with_timedelta_col(): df = DataFrame( { "a": [1, 1, 1, 1, 1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4, 4, 4, 3, 3], "c": range(9), "d": datetime.timedelta(days=1), } ) return df @pytest.fixture def df_with_cat_col(): df = DataFrame( { "a": [1, 1, 1, 1, 1, 2, 2, 2, 2], "b": [3, 3, 4, 4, 4, 4, 4, 3, 3], "c": range(9), "d": Categorical( ["a", "a", "a", "a", "b", "b", "b", "b", "c"], categories=["a", "b", "c", "d"], ordered=True, ), } ) return df def _call_and_check(klass, msg, how, gb, groupby_func, args): if klass is None: if how == "method": getattr(gb, groupby_func)(*args) elif how == "agg": gb.agg(groupby_func, *args) else: gb.transform(groupby_func, *args) else: with pytest.raises(klass, match=msg): if how == "method": getattr(gb, groupby_func)(*args) elif how == "agg": gb.agg(groupby_func, *args) else: gb.transform(groupby_func, *args) @pytest.mark.parametrize("how", ["method", "agg", "transform"]) def test_groupby_raises_string( how, by, groupby_series, groupby_func, df_with_string_col ): df = df_with_string_col args = get_groupby_method_args(groupby_func, df) gb = df.groupby(by=by) if groupby_series: gb = gb["d"] if groupby_func == "corrwith": assert not hasattr(gb, "corrwith") return klass, msg = { "all": (None, ""), "any": (None, ""), "bfill": (None, ""), "corrwith": (TypeError, "Could not convert"), "count": (None, ""), "cumcount": (None, ""), "cummax": ( (NotImplementedError, TypeError), "(function|cummax) is not (implemented|supported) for (this|object) dtype", ), "cummin": ( (NotImplementedError, TypeError), "(function|cummin) is not (implemented|supported) for (this|object) dtype", ), "cumprod": ( (NotImplementedError, TypeError), "(function|cumprod) is not (implemented|supported) for (this|object) dtype", ), "cumsum": ( (NotImplementedError, TypeError), "(function|cumsum) is not (implemented|supported) for (this|object) dtype", ), "diff": (TypeError, "unsupported operand type"), "ffill": (None, ""), "fillna": (None, ""), "first": (None, ""), "idxmax": (None, ""), "idxmin": (None, ""), "last": (None, ""), "max": (None, ""), "mean": ( TypeError, re.escape("agg function failed [how->mean,dtype->object]"), ), "median": ( TypeError, re.escape("agg function failed [how->median,dtype->object]"), ), "min": (None, ""), "ngroup": (None, ""), "nunique": (None, ""), "pct_change": (TypeError, "unsupported operand type"), "prod": ( TypeError, re.escape("agg function failed [how->prod,dtype->object]"), ), "quantile": (TypeError, "cannot be performed against 'object' dtypes!"), "rank": (None, ""), "sem": (ValueError, "could not convert string to float"), "shift": (None, ""), "size": (None, ""), "skew": (ValueError, "could not convert string to float"), "std": (ValueError, "could not convert string to float"), "sum": (None, ""), "var": ( TypeError, re.escape("agg function failed [how->var,dtype->object]"), ), }[groupby_func] _call_and_check(klass, msg, how, gb, groupby_func, args) @pytest.mark.parametrize("how", ["agg", "transform"]) def test_groupby_raises_string_udf(how, by, groupby_series, df_with_string_col): df = df_with_string_col gb = df.groupby(by=by) if groupby_series: gb = gb["d"] def func(x): raise TypeError("Test error message") with pytest.raises(TypeError, match="Test error message"): getattr(gb, how)(func) @pytest.mark.parametrize("how", ["agg", "transform"]) @pytest.mark.parametrize("groupby_func_np", [np.sum, np.mean]) def test_groupby_raises_string_np( how, by, groupby_series, groupby_func_np, df_with_string_col ): # GH#50749 df = df_with_string_col gb = df.groupby(by=by) if groupby_series: gb = gb["d"] klass, msg = { np.sum: (None, ""), np.mean: ( TypeError, re.escape("agg function failed [how->mean,dtype->object]"), ), }[groupby_func_np] if groupby_series: warn_msg = "using SeriesGroupBy.[sum|mean]" else: warn_msg = "using DataFrameGroupBy.[sum|mean]" with tm.assert_produces_warning(FutureWarning, match=warn_msg): _call_and_check(klass, msg, how, gb, groupby_func_np, ()) @pytest.mark.parametrize("how", ["method", "agg", "transform"]) def test_groupby_raises_datetime( how, by, groupby_series, groupby_func, df_with_datetime_col ): df = df_with_datetime_col args = get_groupby_method_args(groupby_func, df) gb = df.groupby(by=by) if groupby_series: gb = gb["d"] if groupby_func == "corrwith": assert not hasattr(gb, "corrwith") return klass, msg = { "all": (None, ""), "any": (None, ""), "bfill": (None, ""), "corrwith": (TypeError, "cannot perform __mul__ with this index type"), "count": (None, ""), "cumcount": (None, ""), "cummax": (None, ""), "cummin": (None, ""), "cumprod": (TypeError, "datetime64 type does not support cumprod operations"), "cumsum": (TypeError, "datetime64 type does not support cumsum operations"), "diff": (None, ""), "ffill": (None, ""), "fillna": (None, ""), "first": (None, ""), "idxmax": (None, ""), "idxmin": (None, ""), "last": (None, ""), "max": (None, ""), "mean": (None, ""), "median": (None, ""), "min": (None, ""), "ngroup": (None, ""), "nunique": (None, ""), "pct_change": (TypeError, "cannot perform __truediv__ with this index type"), "prod": (TypeError, "datetime64 type does not support prod"), "quantile": (None, ""), "rank": (None, ""), "sem": (None, ""), "shift": (None, ""), "size": (None, ""), "skew": ( TypeError, "|".join( [ r"dtype datetime64\[ns\] does not support reduction", "datetime64 type does not support skew operations", ] ), ), "std": (None, ""), "sum": (TypeError, "datetime64 type does not support sum operations"), "var": (TypeError, "datetime64 type does not support var operations"), }[groupby_func] warn = None warn_msg = f"'{groupby_func}' with datetime64 dtypes is deprecated" if groupby_func in ["any", "all"]: warn = FutureWarning with tm.assert_produces_warning(warn, match=warn_msg): _call_and_check(klass, msg, how, gb, groupby_func, args) @pytest.mark.parametrize("how", ["agg", "transform"]) def test_groupby_raises_datetime_udf(how, by, groupby_series, df_with_datetime_col): df = df_with_datetime_col gb = df.groupby(by=by) if groupby_series: gb = gb["d"] def func(x): raise TypeError("Test error message") with pytest.raises(TypeError, match="Test error message"): getattr(gb, how)(func) @pytest.mark.parametrize("how", ["agg", "transform"]) @pytest.mark.parametrize("groupby_func_np", [np.sum, np.mean]) def test_groupby_raises_datetime_np( how, by, groupby_series, groupby_func_np, df_with_datetime_col ): # GH#50749 df = df_with_datetime_col gb = df.groupby(by=by) if groupby_series: gb = gb["d"] klass, msg = { np.sum: (TypeError, "datetime64 type does not support sum operations"), np.mean: (None, ""), }[groupby_func_np] if groupby_series: warn_msg = "using SeriesGroupBy.[sum|mean]" else: warn_msg = "using DataFrameGroupBy.[sum|mean]" with tm.assert_produces_warning(FutureWarning, match=warn_msg): _call_and_check(klass, msg, how, gb, groupby_func_np, ()) @pytest.mark.parametrize("func", ["prod", "cumprod", "skew", "var"]) def test_groupby_raises_timedelta(func, df_with_timedelta_col): df = df_with_timedelta_col gb = df.groupby(by="a") _call_and_check( TypeError, "timedelta64 type does not support .* operations", "method", gb, func, [], ) @pytest.mark.parametrize("how", ["method", "agg", "transform"]) def test_groupby_raises_category( how, by, groupby_series, groupby_func, using_copy_on_write, df_with_cat_col ): # GH#50749 df = df_with_cat_col args = get_groupby_method_args(groupby_func, df) gb = df.groupby(by=by) if groupby_series: gb = gb["d"] if groupby_func == "corrwith": assert not hasattr(gb, "corrwith") return klass, msg = { "all": (None, ""), "any": (None, ""), "bfill": (None, ""), "corrwith": ( TypeError, r"unsupported operand type\(s\) for \*: 'Categorical' and 'int'", ), "count": (None, ""), "cumcount": (None, ""), "cummax": ( (NotImplementedError, TypeError), "(category type does not support cummax operations|" "category dtype not supported|" "cummax is not supported for category dtype)", ), "cummin": ( (NotImplementedError, TypeError), "(category type does not support cummin operations|" "category dtype not supported|" "cummin is not supported for category dtype)", ), "cumprod": ( (NotImplementedError, TypeError), "(category type does not support cumprod operations|" "category dtype not supported|" "cumprod is not supported for category dtype)", ), "cumsum": ( (NotImplementedError, TypeError), "(category type does not support cumsum operations|" "category dtype not supported|" "cumsum is not supported for category dtype)", ), "diff": ( TypeError, r"unsupported operand type\(s\) for -: 'Categorical' and 'Categorical'", ), "ffill": (None, ""), "fillna": ( TypeError, r"Cannot setitem on a Categorical with a new category \(0\), " "set the categories first", ) if not using_copy_on_write else (None, ""), # no-op with CoW "first": (None, ""), "idxmax": (None, ""), "idxmin": (None, ""), "last": (None, ""), "max": (None, ""), "mean": ( TypeError, "|".join( [ "'Categorical' .* does not support reduction 'mean'", "category dtype does not support aggregation 'mean'", ] ), ), "median": ( TypeError, "|".join( [ "'Categorical' .* does not support reduction 'median'", "category dtype does not support aggregation 'median'", ] ), ), "min": (None, ""), "ngroup": (None, ""), "nunique": (None, ""), "pct_change": ( TypeError, r"unsupported operand type\(s\) for /: 'Categorical' and 'Categorical'", ), "prod": (TypeError, "category type does not support prod operations"), "quantile": (TypeError, "No matching signature found"), "rank": (None, ""), "sem": ( TypeError, "|".join( [ "'Categorical' .* does not support reduction 'sem'", "category dtype does not support aggregation 'sem'", ] ), ), "shift": (None, ""), "size": (None, ""), "skew": ( TypeError, "|".join( [ "dtype category does not support reduction 'skew'", "category type does not support skew operations", ] ), ), "std": ( TypeError, "|".join( [ "'Categorical' .* does not support reduction 'std'", "category dtype does not support aggregation 'std'", ] ), ), "sum": (TypeError, "category type does not support sum operations"), "var": ( TypeError, "|".join( [ "'Categorical' .* does not support reduction 'var'", "category dtype does not support aggregation 'var'", ] ), ), }[groupby_func] _call_and_check(klass, msg, how, gb, groupby_func, args) @pytest.mark.parametrize("how", ["agg", "transform"]) def test_groupby_raises_category_udf(how, by, groupby_series, df_with_cat_col): # GH#50749 df = df_with_cat_col gb = df.groupby(by=by) if groupby_series: gb = gb["d"] def func(x): raise TypeError("Test error message") with pytest.raises(TypeError, match="Test error message"): getattr(gb, how)(func) @pytest.mark.parametrize("how", ["agg", "transform"]) @pytest.mark.parametrize("groupby_func_np", [np.sum, np.mean]) def test_groupby_raises_category_np( how, by, groupby_series, groupby_func_np, df_with_cat_col ): # GH#50749 df = df_with_cat_col gb = df.groupby(by=by) if groupby_series: gb = gb["d"] klass, msg = { np.sum: (TypeError, "category type does not support sum operations"), np.mean: ( TypeError, "category dtype does not support aggregation 'mean'", ), }[groupby_func_np] if groupby_series: warn_msg = "using SeriesGroupBy.[sum|mean]" else: warn_msg = "using DataFrameGroupBy.[sum|mean]" with tm.assert_produces_warning(FutureWarning, match=warn_msg): _call_and_check(klass, msg, how, gb, groupby_func_np, ()) @pytest.mark.parametrize("how", ["method", "agg", "transform"]) def test_groupby_raises_category_on_category( how, by, groupby_series, groupby_func, observed, using_copy_on_write, df_with_cat_col, ): # GH#50749 df = df_with_cat_col df["a"] = Categorical( ["a", "a", "a", "a", "b", "b", "b", "b", "c"], categories=["a", "b", "c", "d"], ordered=True, ) args = get_groupby_method_args(groupby_func, df) gb = df.groupby(by=by, observed=observed) if groupby_series: gb = gb["d"] if groupby_func == "corrwith": assert not hasattr(gb, "corrwith") return empty_groups = any(group.empty for group in gb.groups.values()) klass, msg = { "all": (None, ""), "any": (None, ""), "bfill": (None, ""), "corrwith": ( TypeError, r"unsupported operand type\(s\) for \*: 'Categorical' and 'int'", ), "count": (None, ""), "cumcount": (None, ""), "cummax": ( (NotImplementedError, TypeError), "(cummax is not supported for category dtype|" "category dtype not supported|" "category type does not support cummax operations)", ), "cummin": ( (NotImplementedError, TypeError), "(cummin is not supported for category dtype|" "category dtype not supported|" "category type does not support cummin operations)", ), "cumprod": ( (NotImplementedError, TypeError), "(cumprod is not supported for category dtype|" "category dtype not supported|" "category type does not support cumprod operations)", ), "cumsum": ( (NotImplementedError, TypeError), "(cumsum is not supported for category dtype|" "category dtype not supported|" "category type does not support cumsum operations)", ), "diff": (TypeError, "unsupported operand type"), "ffill": (None, ""), "fillna": ( TypeError, r"Cannot setitem on a Categorical with a new category \(0\), " "set the categories first", ) if not using_copy_on_write else (None, ""), # no-op with CoW "first": (None, ""), "idxmax": (ValueError, "attempt to get argmax of an empty sequence") if empty_groups else (None, ""), "idxmin": (ValueError, "attempt to get argmin of an empty sequence") if empty_groups else (None, ""), "last": (None, ""), "max": (None, ""), "mean": (TypeError, "category dtype does not support aggregation 'mean'"), "median": (TypeError, "category dtype does not support aggregation 'median'"), "min": (None, ""), "ngroup": (None, ""), "nunique": (None, ""), "pct_change": (TypeError, "unsupported operand type"), "prod": (TypeError, "category type does not support prod operations"), "quantile": (TypeError, ""), "rank": (None, ""), "sem": ( TypeError, "|".join( [ "'Categorical' .* does not support reduction 'sem'", "category dtype does not support aggregation 'sem'", ] ), ), "shift": (None, ""), "size": (None, ""), "skew": ( TypeError, "|".join( [ "category type does not support skew operations", "dtype category does not support reduction 'skew'", ] ), ), "std": ( TypeError, "|".join( [ "'Categorical' .* does not support reduction 'std'", "category dtype does not support aggregation 'std'", ] ), ), "sum": (TypeError, "category type does not support sum operations"), "var": ( TypeError, "|".join( [ "'Categorical' .* does not support reduction 'var'", "category dtype does not support aggregation 'var'", ] ), ), }[groupby_func] _call_and_check(klass, msg, how, gb, groupby_func, args) def test_subsetting_columns_axis_1_raises(): # GH 35443 df = DataFrame({"a": [1], "b": [2], "c": [3]}) msg = "DataFrame.groupby with axis=1 is deprecated" with tm.assert_produces_warning(FutureWarning, match=msg): gb = df.groupby("a", axis=1) with pytest.raises(ValueError, match="Cannot subset columns when using axis=1"): gb["b"]