""" test with the TimeGrouper / grouping with datetimes """ from datetime import ( datetime, timedelta, ) from io import StringIO import numpy as np import pytest import pytz import pandas as pd from pandas import ( DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, date_range, offsets, ) import pandas._testing as tm from pandas.core.groupby.grouper import Grouper from pandas.core.groupby.ops import BinGrouper @pytest.fixture def frame_for_truncated_bingrouper(): """ DataFrame used by groupby_with_truncated_bingrouper, made into a separate fixture for easier re-use in test_groupby_apply_timegrouper_with_nat_apply_squeeze """ df = DataFrame( { "Quantity": [18, 3, 5, 1, 9, 3], "Date": [ Timestamp(2013, 9, 1, 13, 0), Timestamp(2013, 9, 1, 13, 5), Timestamp(2013, 10, 1, 20, 0), Timestamp(2013, 10, 3, 10, 0), pd.NaT, Timestamp(2013, 9, 2, 14, 0), ], } ) return df @pytest.fixture def groupby_with_truncated_bingrouper(frame_for_truncated_bingrouper): """ GroupBy object such that gb.grouper is a BinGrouper and len(gb.grouper.result_index) < len(gb.grouper.group_keys_seq) Aggregations on this groupby should have dti = date_range("2013-09-01", "2013-10-01", freq="5D", name="Date") As either the index or an index level. """ df = frame_for_truncated_bingrouper tdg = Grouper(key="Date", freq="5D") gb = df.groupby(tdg) # check we're testing the case we're interested in assert len(gb.grouper.result_index) != len(gb.grouper.group_keys_seq) return gb class TestGroupBy: def test_groupby_with_timegrouper(self): # GH 4161 # TimeGrouper requires a sorted index # also verifies that the resultant index has the correct name df_original = DataFrame( { "Buyer": "Carl Carl Carl Carl Joe Carl".split(), "Quantity": [18, 3, 5, 1, 9, 3], "Date": [ datetime(2013, 9, 1, 13, 0), datetime(2013, 9, 1, 13, 5), datetime(2013, 10, 1, 20, 0), datetime(2013, 10, 3, 10, 0), datetime(2013, 12, 2, 12, 0), datetime(2013, 9, 2, 14, 0), ], } ) # GH 6908 change target column's order df_reordered = df_original.sort_values(by="Quantity") for df in [df_original, df_reordered]: df = df.set_index(["Date"]) expected = DataFrame( {"Buyer": 0, "Quantity": 0}, index=date_range( "20130901", "20131205", freq="5D", name="Date", inclusive="left" ), ) # Cast to object to avoid implicit cast when setting entry to "CarlCarlCarl" expected = expected.astype({"Buyer": object}) expected.iloc[0, 0] = "CarlCarlCarl" expected.iloc[6, 0] = "CarlCarl" expected.iloc[18, 0] = "Joe" expected.iloc[[0, 6, 18], 1] = np.array([24, 6, 9], dtype="int64") result1 = df.resample("5D").sum() tm.assert_frame_equal(result1, expected) df_sorted = df.sort_index() result2 = df_sorted.groupby(Grouper(freq="5D")).sum() tm.assert_frame_equal(result2, expected) result3 = df.groupby(Grouper(freq="5D")).sum() tm.assert_frame_equal(result3, expected) @pytest.mark.parametrize("should_sort", [True, False]) def test_groupby_with_timegrouper_methods(self, should_sort): # GH 3881 # make sure API of timegrouper conforms df = DataFrame( { "Branch": "A A A A A B".split(), "Buyer": "Carl Mark Carl Joe Joe Carl".split(), "Quantity": [1, 3, 5, 8, 9, 3], "Date": [ datetime(2013, 1, 1, 13, 0), datetime(2013, 1, 1, 13, 5), datetime(2013, 10, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 12, 2, 12, 0), datetime(2013, 12, 2, 14, 0), ], } ) if should_sort: df = df.sort_values(by="Quantity", ascending=False) df = df.set_index("Date", drop=False) g = df.groupby(Grouper(freq="6M")) assert g.group_keys assert isinstance(g.grouper, BinGrouper) groups = g.groups assert isinstance(groups, dict) assert len(groups) == 3 def test_timegrouper_with_reg_groups(self): # GH 3794 # allow combination of timegrouper/reg groups df_original = DataFrame( { "Branch": "A A A A A A A B".split(), "Buyer": "Carl Mark Carl Carl Joe Joe Joe Carl".split(), "Quantity": [1, 3, 5, 1, 8, 1, 9, 3], "Date": [ datetime(2013, 1, 1, 13, 0), datetime(2013, 1, 1, 13, 5), datetime(2013, 10, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 10, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 12, 2, 12, 0), datetime(2013, 12, 2, 14, 0), ], } ).set_index("Date") df_sorted = df_original.sort_values(by="Quantity", ascending=False) for df in [df_original, df_sorted]: expected = DataFrame( { "Buyer": "Carl Joe Mark".split(), "Quantity": [10, 18, 3], "Date": [ datetime(2013, 12, 31, 0, 0), datetime(2013, 12, 31, 0, 0), datetime(2013, 12, 31, 0, 0), ], } ).set_index(["Date", "Buyer"]) msg = "The default value of numeric_only" result = df.groupby([Grouper(freq="A"), "Buyer"]).sum(numeric_only=True) tm.assert_frame_equal(result, expected) expected = DataFrame( { "Buyer": "Carl Mark Carl Joe".split(), "Quantity": [1, 3, 9, 18], "Date": [ datetime(2013, 1, 1, 0, 0), datetime(2013, 1, 1, 0, 0), datetime(2013, 7, 1, 0, 0), datetime(2013, 7, 1, 0, 0), ], } ).set_index(["Date", "Buyer"]) result = df.groupby([Grouper(freq="6MS"), "Buyer"]).sum(numeric_only=True) tm.assert_frame_equal(result, expected) df_original = DataFrame( { "Branch": "A A A A A A A B".split(), "Buyer": "Carl Mark Carl Carl Joe Joe Joe Carl".split(), "Quantity": [1, 3, 5, 1, 8, 1, 9, 3], "Date": [ datetime(2013, 10, 1, 13, 0), datetime(2013, 10, 1, 13, 5), datetime(2013, 10, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 10, 1, 20, 0), datetime(2013, 10, 2, 10, 0), datetime(2013, 10, 2, 12, 0), datetime(2013, 10, 2, 14, 0), ], } ).set_index("Date") df_sorted = df_original.sort_values(by="Quantity", ascending=False) for df in [df_original, df_sorted]: expected = DataFrame( { "Buyer": "Carl Joe Mark Carl Joe".split(), "Quantity": [6, 8, 3, 4, 10], "Date": [ datetime(2013, 10, 1, 0, 0), datetime(2013, 10, 1, 0, 0), datetime(2013, 10, 1, 0, 0), datetime(2013, 10, 2, 0, 0), datetime(2013, 10, 2, 0, 0), ], } ).set_index(["Date", "Buyer"]) result = df.groupby([Grouper(freq="1D"), "Buyer"]).sum(numeric_only=True) tm.assert_frame_equal(result, expected) result = df.groupby([Grouper(freq="1M"), "Buyer"]).sum(numeric_only=True) expected = DataFrame( { "Buyer": "Carl Joe Mark".split(), "Quantity": [10, 18, 3], "Date": [ datetime(2013, 10, 31, 0, 0), datetime(2013, 10, 31, 0, 0), datetime(2013, 10, 31, 0, 0), ], } ).set_index(["Date", "Buyer"]) tm.assert_frame_equal(result, expected) # passing the name df = df.reset_index() result = df.groupby([Grouper(freq="1M", key="Date"), "Buyer"]).sum( numeric_only=True ) tm.assert_frame_equal(result, expected) with pytest.raises(KeyError, match="'The grouper name foo is not found'"): df.groupby([Grouper(freq="1M", key="foo"), "Buyer"]).sum() # passing the level df = df.set_index("Date") result = df.groupby([Grouper(freq="1M", level="Date"), "Buyer"]).sum( numeric_only=True ) tm.assert_frame_equal(result, expected) result = df.groupby([Grouper(freq="1M", level=0), "Buyer"]).sum( numeric_only=True ) tm.assert_frame_equal(result, expected) with pytest.raises(ValueError, match="The level foo is not valid"): df.groupby([Grouper(freq="1M", level="foo"), "Buyer"]).sum() # multi names df = df.copy() df["Date"] = df.index + offsets.MonthEnd(2) result = df.groupby([Grouper(freq="1M", key="Date"), "Buyer"]).sum( numeric_only=True ) expected = DataFrame( { "Buyer": "Carl Joe Mark".split(), "Quantity": [10, 18, 3], "Date": [ datetime(2013, 11, 30, 0, 0), datetime(2013, 11, 30, 0, 0), datetime(2013, 11, 30, 0, 0), ], } ).set_index(["Date", "Buyer"]) tm.assert_frame_equal(result, expected) # error as we have both a level and a name! msg = "The Grouper cannot specify both a key and a level!" with pytest.raises(ValueError, match=msg): df.groupby( [Grouper(freq="1M", key="Date", level="Date"), "Buyer"] ).sum() # single groupers expected = DataFrame( [[31]], columns=["Quantity"], index=DatetimeIndex( [datetime(2013, 10, 31, 0, 0)], freq=offsets.MonthEnd(), name="Date" ), ) result = df.groupby(Grouper(freq="1M")).sum(numeric_only=True) tm.assert_frame_equal(result, expected) result = df.groupby([Grouper(freq="1M")]).sum(numeric_only=True) tm.assert_frame_equal(result, expected) expected.index = expected.index.shift(1) assert expected.index.freq == offsets.MonthEnd() result = df.groupby(Grouper(freq="1M", key="Date")).sum(numeric_only=True) tm.assert_frame_equal(result, expected) result = df.groupby([Grouper(freq="1M", key="Date")]).sum(numeric_only=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("freq", ["D", "M", "A", "Q-APR"]) def test_timegrouper_with_reg_groups_freq(self, freq): # GH 6764 multiple grouping with/without sort df = DataFrame( { "date": pd.to_datetime( [ "20121002", "20121007", "20130130", "20130202", "20130305", "20121002", "20121207", "20130130", "20130202", "20130305", "20130202", "20130305", ] ), "user_id": [1, 1, 1, 1, 1, 3, 3, 3, 5, 5, 5, 5], "whole_cost": [ 1790, 364, 280, 259, 201, 623, 90, 312, 359, 301, 359, 801, ], "cost1": [12, 15, 10, 24, 39, 1, 0, 90, 45, 34, 1, 12], } ).set_index("date") expected = ( df.groupby("user_id")["whole_cost"] .resample(freq) .sum(min_count=1) # XXX .dropna() .reorder_levels(["date", "user_id"]) .sort_index() .astype("int64") ) expected.name = "whole_cost" result1 = ( df.sort_index().groupby([Grouper(freq=freq), "user_id"])["whole_cost"].sum() ) tm.assert_series_equal(result1, expected) result2 = df.groupby([Grouper(freq=freq), "user_id"])["whole_cost"].sum() tm.assert_series_equal(result2, expected) def test_timegrouper_get_group(self): # GH 6914 df_original = DataFrame( { "Buyer": "Carl Joe Joe Carl Joe Carl".split(), "Quantity": [18, 3, 5, 1, 9, 3], "Date": [ datetime(2013, 9, 1, 13, 0), datetime(2013, 9, 1, 13, 5), datetime(2013, 10, 1, 20, 0), datetime(2013, 10, 3, 10, 0), datetime(2013, 12, 2, 12, 0), datetime(2013, 9, 2, 14, 0), ], } ) df_reordered = df_original.sort_values(by="Quantity") # single grouping expected_list = [ df_original.iloc[[0, 1, 5]], df_original.iloc[[2, 3]], df_original.iloc[[4]], ] dt_list = ["2013-09-30", "2013-10-31", "2013-12-31"] for df in [df_original, df_reordered]: grouped = df.groupby(Grouper(freq="M", key="Date")) for t, expected in zip(dt_list, expected_list): dt = Timestamp(t) result = grouped.get_group(dt) tm.assert_frame_equal(result, expected) # multiple grouping expected_list = [ df_original.iloc[[1]], df_original.iloc[[3]], df_original.iloc[[4]], ] g_list = [("Joe", "2013-09-30"), ("Carl", "2013-10-31"), ("Joe", "2013-12-31")] for df in [df_original, df_reordered]: grouped = df.groupby(["Buyer", Grouper(freq="M", key="Date")]) for (b, t), expected in zip(g_list, expected_list): dt = Timestamp(t) result = grouped.get_group((b, dt)) tm.assert_frame_equal(result, expected) # with index df_original = df_original.set_index("Date") df_reordered = df_original.sort_values(by="Quantity") expected_list = [ df_original.iloc[[0, 1, 5]], df_original.iloc[[2, 3]], df_original.iloc[[4]], ] for df in [df_original, df_reordered]: grouped = df.groupby(Grouper(freq="M")) for t, expected in zip(dt_list, expected_list): dt = Timestamp(t) result = grouped.get_group(dt) tm.assert_frame_equal(result, expected) def test_timegrouper_apply_return_type_series(self): # Using `apply` with the `TimeGrouper` should give the # same return type as an `apply` with a `Grouper`. # Issue #11742 df = DataFrame({"date": ["10/10/2000", "11/10/2000"], "value": [10, 13]}) df_dt = df.copy() df_dt["date"] = pd.to_datetime(df_dt["date"]) def sumfunc_series(x): return Series([x["value"].sum()], ("sum",)) expected = df.groupby(Grouper(key="date")).apply(sumfunc_series) result = df_dt.groupby(Grouper(freq="M", key="date")).apply(sumfunc_series) tm.assert_frame_equal( result.reset_index(drop=True), expected.reset_index(drop=True) ) def test_timegrouper_apply_return_type_value(self): # Using `apply` with the `TimeGrouper` should give the # same return type as an `apply` with a `Grouper`. # Issue #11742 df = DataFrame({"date": ["10/10/2000", "11/10/2000"], "value": [10, 13]}) df_dt = df.copy() df_dt["date"] = pd.to_datetime(df_dt["date"]) def sumfunc_value(x): return x.value.sum() expected = df.groupby(Grouper(key="date")).apply(sumfunc_value) result = df_dt.groupby(Grouper(freq="M", key="date")).apply(sumfunc_value) tm.assert_series_equal( result.reset_index(drop=True), expected.reset_index(drop=True) ) def test_groupby_groups_datetimeindex(self): # GH#1430 periods = 1000 ind = date_range(start="2012/1/1", freq="5min", periods=periods) df = DataFrame( {"high": np.arange(periods), "low": np.arange(periods)}, index=ind ) grouped = df.groupby(lambda x: datetime(x.year, x.month, x.day)) # it works! groups = grouped.groups assert isinstance(next(iter(groups.keys())), datetime) # GH#11442 index = date_range("2015/01/01", periods=5, name="date") df = DataFrame({"A": [5, 6, 7, 8, 9], "B": [1, 2, 3, 4, 5]}, index=index) result = df.groupby(level="date").groups dates = ["2015-01-05", "2015-01-04", "2015-01-03", "2015-01-02", "2015-01-01"] expected = { Timestamp(date): DatetimeIndex([date], name="date") for date in dates } tm.assert_dict_equal(result, expected) grouped = df.groupby(level="date") for date in dates: result = grouped.get_group(date) data = [[df.loc[date, "A"], df.loc[date, "B"]]] expected_index = DatetimeIndex([date], name="date", freq="D") expected = DataFrame(data, columns=list("AB"), index=expected_index) tm.assert_frame_equal(result, expected) def test_groupby_groups_datetimeindex_tz(self): # GH 3950 dates = [ "2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00", "2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00", ] df = DataFrame( { "label": ["a", "a", "a", "b", "b", "b"], "datetime": dates, "value1": np.arange(6, dtype="int64"), "value2": [1, 2] * 3, } ) df["datetime"] = df["datetime"].apply(lambda d: Timestamp(d, tz="US/Pacific")) exp_idx1 = DatetimeIndex( [ "2011-07-19 07:00:00", "2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00", "2011-07-19 09:00:00", ], tz="US/Pacific", name="datetime", ) exp_idx2 = Index(["a", "b"] * 3, name="label") exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2]) expected = DataFrame( {"value1": [0, 3, 1, 4, 2, 5], "value2": [1, 2, 2, 1, 1, 2]}, index=exp_idx, columns=["value1", "value2"], ) result = df.groupby(["datetime", "label"]).sum() tm.assert_frame_equal(result, expected) # by level didx = DatetimeIndex(dates, tz="Asia/Tokyo") df = DataFrame( {"value1": np.arange(6, dtype="int64"), "value2": [1, 2, 3, 1, 2, 3]}, index=didx, ) exp_idx = DatetimeIndex( ["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"], tz="Asia/Tokyo", ) expected = DataFrame( {"value1": [3, 5, 7], "value2": [2, 4, 6]}, index=exp_idx, columns=["value1", "value2"], ) result = df.groupby(level=0).sum() tm.assert_frame_equal(result, expected) def test_frame_datetime64_handling_groupby(self): # it works! df = DataFrame( [(3, np.datetime64("2012-07-03")), (3, np.datetime64("2012-07-04"))], columns=["a", "date"], ) result = df.groupby("a").first() assert result["date"][3] == Timestamp("2012-07-03") def test_groupby_multi_timezone(self): # combining multiple / different timezones yields UTC data = """0,2000-01-28 16:47:00,America/Chicago 1,2000-01-29 16:48:00,America/Chicago 2,2000-01-30 16:49:00,America/Los_Angeles 3,2000-01-31 16:50:00,America/Chicago 4,2000-01-01 16:50:00,America/New_York""" df = pd.read_csv(StringIO(data), header=None, names=["value", "date", "tz"]) result = df.groupby("tz", group_keys=False).date.apply( lambda x: pd.to_datetime(x).dt.tz_localize(x.name) ) expected = Series( [ Timestamp("2000-01-28 16:47:00-0600", tz="America/Chicago"), Timestamp("2000-01-29 16:48:00-0600", tz="America/Chicago"), Timestamp("2000-01-30 16:49:00-0800", tz="America/Los_Angeles"), Timestamp("2000-01-31 16:50:00-0600", tz="America/Chicago"), Timestamp("2000-01-01 16:50:00-0500", tz="America/New_York"), ], name="date", dtype=object, ) tm.assert_series_equal(result, expected) tz = "America/Chicago" res_values = df.groupby("tz").date.get_group(tz) result = pd.to_datetime(res_values).dt.tz_localize(tz) exp_values = Series( ["2000-01-28 16:47:00", "2000-01-29 16:48:00", "2000-01-31 16:50:00"], index=[0, 1, 3], name="date", ) expected = pd.to_datetime(exp_values).dt.tz_localize(tz) tm.assert_series_equal(result, expected) def test_groupby_groups_periods(self): dates = [ "2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00", "2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00", ] df = DataFrame( { "label": ["a", "a", "a", "b", "b", "b"], "period": [pd.Period(d, freq="H") for d in dates], "value1": np.arange(6, dtype="int64"), "value2": [1, 2] * 3, } ) exp_idx1 = pd.PeriodIndex( [ "2011-07-19 07:00:00", "2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00", "2011-07-19 09:00:00", ], freq="H", name="period", ) exp_idx2 = Index(["a", "b"] * 3, name="label") exp_idx = MultiIndex.from_arrays([exp_idx1, exp_idx2]) expected = DataFrame( {"value1": [0, 3, 1, 4, 2, 5], "value2": [1, 2, 2, 1, 1, 2]}, index=exp_idx, columns=["value1", "value2"], ) result = df.groupby(["period", "label"]).sum() tm.assert_frame_equal(result, expected) # by level didx = pd.PeriodIndex(dates, freq="H") df = DataFrame( {"value1": np.arange(6, dtype="int64"), "value2": [1, 2, 3, 1, 2, 3]}, index=didx, ) exp_idx = pd.PeriodIndex( ["2011-07-19 07:00:00", "2011-07-19 08:00:00", "2011-07-19 09:00:00"], freq="H", ) expected = DataFrame( {"value1": [3, 5, 7], "value2": [2, 4, 6]}, index=exp_idx, columns=["value1", "value2"], ) result = df.groupby(level=0).sum() tm.assert_frame_equal(result, expected) def test_groupby_first_datetime64(self): df = DataFrame([(1, 1351036800000000000), (2, 1351036800000000000)]) df[1] = df[1].view("M8[ns]") assert issubclass(df[1].dtype.type, np.datetime64) result = df.groupby(level=0).first() got_dt = result[1].dtype assert issubclass(got_dt.type, np.datetime64) result = df[1].groupby(level=0).first() got_dt = result.dtype assert issubclass(got_dt.type, np.datetime64) def test_groupby_max_datetime64(self): # GH 5869 # datetimelike dtype conversion from int df = DataFrame({"A": Timestamp("20130101"), "B": np.arange(5)}) # TODO: can we retain second reso in .apply here? expected = df.groupby("A")["A"].apply(lambda x: x.max()).astype("M8[s]") result = df.groupby("A")["A"].max() tm.assert_series_equal(result, expected) def test_groupby_datetime64_32_bit(self): # GH 6410 / numpy 4328 # 32-bit under 1.9-dev indexing issue df = DataFrame({"A": range(2), "B": [Timestamp("2000-01-1")] * 2}) result = df.groupby("A")["B"].transform("min") expected = Series([Timestamp("2000-01-1")] * 2, name="B") tm.assert_series_equal(result, expected) def test_groupby_with_timezone_selection(self): # GH 11616 # Test that column selection returns output in correct timezone. df = DataFrame( { "factor": np.random.default_rng(2).integers(0, 3, size=60), "time": date_range("01/01/2000 00:00", periods=60, freq="s", tz="UTC"), } ) df1 = df.groupby("factor").max()["time"] df2 = df.groupby("factor")["time"].max() tm.assert_series_equal(df1, df2) def test_timezone_info(self): # see gh-11682: Timezone info lost when broadcasting # scalar datetime to DataFrame df = DataFrame({"a": [1], "b": [datetime.now(pytz.utc)]}) assert df["b"][0].tzinfo == pytz.utc df = DataFrame({"a": [1, 2, 3]}) df["b"] = datetime.now(pytz.utc) assert df["b"][0].tzinfo == pytz.utc def test_datetime_count(self): df = DataFrame( {"a": [1, 2, 3] * 2, "dates": date_range("now", periods=6, freq="T")} ) result = df.groupby("a").dates.count() expected = Series([2, 2, 2], index=Index([1, 2, 3], name="a"), name="dates") tm.assert_series_equal(result, expected) def test_first_last_max_min_on_time_data(self): # GH 10295 # Verify that NaT is not in the result of max, min, first and last on # Dataframe with datetime or timedelta values. df_test = DataFrame( { "dt": [ np.nan, "2015-07-24 10:10", "2015-07-25 11:11", "2015-07-23 12:12", np.nan, ], "td": [ np.nan, timedelta(days=1), timedelta(days=2), timedelta(days=3), np.nan, ], } ) df_test.dt = pd.to_datetime(df_test.dt) df_test["group"] = "A" df_ref = df_test[df_test.dt.notna()] grouped_test = df_test.groupby("group") grouped_ref = df_ref.groupby("group") tm.assert_frame_equal(grouped_ref.max(), grouped_test.max()) tm.assert_frame_equal(grouped_ref.min(), grouped_test.min()) tm.assert_frame_equal(grouped_ref.first(), grouped_test.first()) tm.assert_frame_equal(grouped_ref.last(), grouped_test.last()) def test_nunique_with_timegrouper_and_nat(self): # GH 17575 test = DataFrame( { "time": [ Timestamp("2016-06-28 09:35:35"), pd.NaT, Timestamp("2016-06-28 16:46:28"), ], "data": ["1", "2", "3"], } ) grouper = Grouper(key="time", freq="h") result = test.groupby(grouper)["data"].nunique() expected = test[test.time.notnull()].groupby(grouper)["data"].nunique() expected.index = expected.index._with_freq(None) tm.assert_series_equal(result, expected) def test_scalar_call_versus_list_call(self): # Issue: 17530 data_frame = { "location": ["shanghai", "beijing", "shanghai"], "time": Series( ["2017-08-09 13:32:23", "2017-08-11 23:23:15", "2017-08-11 22:23:15"], dtype="datetime64[ns]", ), "value": [1, 2, 3], } data_frame = DataFrame(data_frame).set_index("time") grouper = Grouper(freq="D") grouped = data_frame.groupby(grouper) result = grouped.count() grouped = data_frame.groupby([grouper]) expected = grouped.count() tm.assert_frame_equal(result, expected) def test_grouper_period_index(self): # GH 32108 periods = 2 index = pd.period_range( start="2018-01", periods=periods, freq="M", name="Month" ) period_series = Series(range(periods), index=index) result = period_series.groupby(period_series.index.month).sum() expected = Series( range(0, periods), index=Index(range(1, periods + 1), name=index.name) ) tm.assert_series_equal(result, expected) def test_groupby_apply_timegrouper_with_nat_dict_returns( self, groupby_with_truncated_bingrouper ): # GH#43500 case where gb.grouper.result_index and gb.grouper.group_keys_seq # have different lengths that goes through the `isinstance(values[0], dict)` # path gb = groupby_with_truncated_bingrouper res = gb["Quantity"].apply(lambda x: {"foo": len(x)}) dti = date_range("2013-09-01", "2013-10-01", freq="5D", name="Date") mi = MultiIndex.from_arrays([dti, ["foo"] * len(dti)]) expected = Series([3, 0, 0, 0, 0, 0, 2], index=mi, name="Quantity") tm.assert_series_equal(res, expected) def test_groupby_apply_timegrouper_with_nat_scalar_returns( self, groupby_with_truncated_bingrouper ): # GH#43500 Previously raised ValueError bc used index with incorrect # length in wrap_applied_result gb = groupby_with_truncated_bingrouper res = gb["Quantity"].apply(lambda x: x.iloc[0] if len(x) else np.nan) dti = date_range("2013-09-01", "2013-10-01", freq="5D", name="Date") expected = Series( [18, np.nan, np.nan, np.nan, np.nan, np.nan, 5], index=dti._with_freq(None), name="Quantity", ) tm.assert_series_equal(res, expected) def test_groupby_apply_timegrouper_with_nat_apply_squeeze( self, frame_for_truncated_bingrouper ): df = frame_for_truncated_bingrouper # We need to create a GroupBy object with only one non-NaT group, # so use a huge freq so that all non-NaT dates will be grouped together tdg = Grouper(key="Date", freq="100Y") gb = df.groupby(tdg) # check that we will go through the singular_series path # in _wrap_applied_output_series assert gb.ngroups == 1 assert gb._selected_obj._get_axis(gb.axis).nlevels == 1 # function that returns a Series res = gb.apply(lambda x: x["Quantity"] * 2) expected = DataFrame( [[36, 6, 6, 10, 2]], index=Index([Timestamp("2013-12-31")], name="Date"), columns=Index([0, 1, 5, 2, 3], name="Quantity"), ) tm.assert_frame_equal(res, expected) @pytest.mark.single_cpu def test_groupby_agg_numba_timegrouper_with_nat( self, groupby_with_truncated_bingrouper ): pytest.importorskip("numba") # See discussion in GH#43487 gb = groupby_with_truncated_bingrouper result = gb["Quantity"].aggregate( lambda values, index: np.nanmean(values), engine="numba" ) expected = gb["Quantity"].aggregate("mean") tm.assert_series_equal(result, expected) result_df = gb[["Quantity"]].aggregate( lambda values, index: np.nanmean(values), engine="numba" ) expected_df = gb[["Quantity"]].aggregate("mean") tm.assert_frame_equal(result_df, expected_df)