import numpy as np from pandas import ( DataFrame, Series, period_range, ) def test_iat(float_frame): for i, row in enumerate(float_frame.index): for j, col in enumerate(float_frame.columns): result = float_frame.iat[i, j] expected = float_frame.at[row, col] assert result == expected def test_iat_duplicate_columns(): # https://github.com/pandas-dev/pandas/issues/11754 df = DataFrame([[1, 2]], columns=["x", "x"]) assert df.iat[0, 0] == 1 def test_iat_getitem_series_with_period_index(): # GH#4390, iat incorrectly indexing index = period_range("1/1/2001", periods=10) ser = Series(np.random.default_rng(2).standard_normal(10), index=index) expected = ser[index[0]] result = ser.iat[0] assert expected == result def test_iat_setitem_item_cache_cleared(indexer_ial, using_copy_on_write): # GH#45684 data = {"x": np.arange(8, dtype=np.int64), "y": np.int64(0)} df = DataFrame(data).copy() ser = df["y"] # previously this iat setting would split the block and fail to clear # the item_cache. indexer_ial(df)[7, 0] = 9999 indexer_ial(df)[7, 1] = 1234 assert df.iat[7, 1] == 1234 if not using_copy_on_write: assert ser.iloc[-1] == 1234 assert df.iloc[-1, -1] == 1234