""" test positional based indexing with iloc """ from datetime import datetime import re import numpy as np import pytest from pandas.errors import IndexingError import pandas.util._test_decorators as td from pandas import ( NA, Categorical, CategoricalDtype, DataFrame, Index, Interval, NaT, Series, Timestamp, array, concat, date_range, interval_range, isna, to_datetime, ) import pandas._testing as tm from pandas.api.types import is_scalar from pandas.tests.indexing.common import check_indexing_smoketest_or_raises # We pass through the error message from numpy _slice_iloc_msg = re.escape( "only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) " "and integer or boolean arrays are valid indices" ) class TestiLoc: @pytest.mark.parametrize("key", [2, -1, [0, 1, 2]]) @pytest.mark.parametrize("kind", ["series", "frame"]) @pytest.mark.parametrize( "col", ["labels", "mixed", "ts", "floats", "empty"], ) def test_iloc_getitem_int_and_list_int(self, key, kind, col, request): obj = request.getfixturevalue(f"{kind}_{col}") check_indexing_smoketest_or_raises( obj, "iloc", key, fails=IndexError, ) # array of ints (GH5006), make sure that a single indexer is returning # the correct type class TestiLocBaseIndependent: """Tests Independent Of Base Class""" @pytest.mark.parametrize( "key", [ slice(None), slice(3), range(3), [0, 1, 2], Index(range(3)), np.asarray([0, 1, 2]), ], ) @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc]) def test_iloc_setitem_fullcol_categorical(self, indexer, key, using_array_manager): frame = DataFrame({0: range(3)}, dtype=object) cat = Categorical(["alpha", "beta", "gamma"]) if not using_array_manager: assert frame._mgr.blocks[0]._can_hold_element(cat) df = frame.copy() orig_vals = df.values indexer(df)[key, 0] = cat expected = DataFrame({0: cat}).astype(object) if not using_array_manager: assert np.shares_memory(df[0].values, orig_vals) tm.assert_frame_equal(df, expected) # check we dont have a view on cat (may be undesired GH#39986) df.iloc[0, 0] = "gamma" assert cat[0] != "gamma" # pre-2.0 with mixed dataframe ("split" path) we always overwrote the # column. as of 2.0 we correctly write "into" the column, so # we retain the object dtype. frame = DataFrame({0: np.array([0, 1, 2], dtype=object), 1: range(3)}) df = frame.copy() orig_vals = df.values indexer(df)[key, 0] = cat expected = DataFrame({0: cat.astype(object), 1: range(3)}) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("box", [array, Series]) def test_iloc_setitem_ea_inplace(self, frame_or_series, box, using_copy_on_write): # GH#38952 Case with not setting a full column # IntegerArray without NAs arr = array([1, 2, 3, 4]) obj = frame_or_series(arr.to_numpy("i8")) if frame_or_series is Series: values = obj.values else: values = obj._mgr.arrays[0] if frame_or_series is Series: obj.iloc[:2] = box(arr[2:]) else: obj.iloc[:2, 0] = box(arr[2:]) expected = frame_or_series(np.array([3, 4, 3, 4], dtype="i8")) tm.assert_equal(obj, expected) # Check that we are actually in-place if frame_or_series is Series: if using_copy_on_write: assert obj.values is not values assert np.shares_memory(obj.values, values) else: assert obj.values is values else: assert np.shares_memory(obj[0].values, values) def test_is_scalar_access(self): # GH#32085 index with duplicates doesn't matter for _is_scalar_access index = Index([1, 2, 1]) ser = Series(range(3), index=index) assert ser.iloc._is_scalar_access((1,)) df = ser.to_frame() assert df.iloc._is_scalar_access((1, 0)) def test_iloc_exceeds_bounds(self): # GH6296 # iloc should allow indexers that exceed the bounds df = DataFrame(np.random.default_rng(2).random((20, 5)), columns=list("ABCDE")) # lists of positions should raise IndexError! msg = "positional indexers are out-of-bounds" with pytest.raises(IndexError, match=msg): df.iloc[:, [0, 1, 2, 3, 4, 5]] with pytest.raises(IndexError, match=msg): df.iloc[[1, 30]] with pytest.raises(IndexError, match=msg): df.iloc[[1, -30]] with pytest.raises(IndexError, match=msg): df.iloc[[100]] s = df["A"] with pytest.raises(IndexError, match=msg): s.iloc[[100]] with pytest.raises(IndexError, match=msg): s.iloc[[-100]] # still raise on a single indexer msg = "single positional indexer is out-of-bounds" with pytest.raises(IndexError, match=msg): df.iloc[30] with pytest.raises(IndexError, match=msg): df.iloc[-30] # GH10779 # single positive/negative indexer exceeding Series bounds should raise # an IndexError with pytest.raises(IndexError, match=msg): s.iloc[30] with pytest.raises(IndexError, match=msg): s.iloc[-30] # slices are ok result = df.iloc[:, 4:10] # 0 < start < len < stop expected = df.iloc[:, 4:] tm.assert_frame_equal(result, expected) result = df.iloc[:, -4:-10] # stop < 0 < start < len expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4:-1] # 0 < stop < len < start (down) expected = df.iloc[:, :4:-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, 4:-10:-1] # stop < 0 < start < len (down) expected = df.iloc[:, 4::-1] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:4] # start < 0 < stop < len expected = df.iloc[:, :4] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:4] # 0 < stop < len < start expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, -10:-11:-1] # stop < start < 0 < len (down) expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) result = df.iloc[:, 10:11] # 0 < len < start < stop expected = df.iloc[:, :0] tm.assert_frame_equal(result, expected) # slice bounds exceeding is ok result = s.iloc[18:30] expected = s.iloc[18:] tm.assert_series_equal(result, expected) result = s.iloc[30:] expected = s.iloc[:0] tm.assert_series_equal(result, expected) result = s.iloc[30::-1] expected = s.iloc[::-1] tm.assert_series_equal(result, expected) # doc example def check(result, expected): str(result) result.dtypes tm.assert_frame_equal(result, expected) dfl = DataFrame( np.random.default_rng(2).standard_normal((5, 2)), columns=list("AB") ) check(dfl.iloc[:, 2:3], DataFrame(index=dfl.index, columns=[])) check(dfl.iloc[:, 1:3], dfl.iloc[:, [1]]) check(dfl.iloc[4:6], dfl.iloc[[4]]) msg = "positional indexers are out-of-bounds" with pytest.raises(IndexError, match=msg): dfl.iloc[[4, 5, 6]] msg = "single positional indexer is out-of-bounds" with pytest.raises(IndexError, match=msg): dfl.iloc[:, 4] @pytest.mark.parametrize("index,columns", [(np.arange(20), list("ABCDE"))]) @pytest.mark.parametrize( "index_vals,column_vals", [ ([slice(None), ["A", "D"]]), (["1", "2"], slice(None)), ([datetime(2019, 1, 1)], slice(None)), ], ) def test_iloc_non_integer_raises(self, index, columns, index_vals, column_vals): # GH 25753 df = DataFrame( np.random.default_rng(2).standard_normal((len(index), len(columns))), index=index, columns=columns, ) msg = ".iloc requires numeric indexers, got" with pytest.raises(IndexError, match=msg): df.iloc[index_vals, column_vals] def test_iloc_getitem_invalid_scalar(self, frame_or_series): # GH 21982 obj = DataFrame(np.arange(100).reshape(10, 10)) obj = tm.get_obj(obj, frame_or_series) with pytest.raises(TypeError, match="Cannot index by location index"): obj.iloc["a"] def test_iloc_array_not_mutating_negative_indices(self): # GH 21867 array_with_neg_numbers = np.array([1, 2, -1]) array_copy = array_with_neg_numbers.copy() df = DataFrame( {"A": [100, 101, 102], "B": [103, 104, 105], "C": [106, 107, 108]}, index=[1, 2, 3], ) df.iloc[array_with_neg_numbers] tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy) df.iloc[:, array_with_neg_numbers] tm.assert_numpy_array_equal(array_with_neg_numbers, array_copy) def test_iloc_getitem_neg_int_can_reach_first_index(self): # GH10547 and GH10779 # negative integers should be able to reach index 0 df = DataFrame({"A": [2, 3, 5], "B": [7, 11, 13]}) s = df["A"] expected = df.iloc[0] result = df.iloc[-3] tm.assert_series_equal(result, expected) expected = df.iloc[[0]] result = df.iloc[[-3]] tm.assert_frame_equal(result, expected) expected = s.iloc[0] result = s.iloc[-3] assert result == expected expected = s.iloc[[0]] result = s.iloc[[-3]] tm.assert_series_equal(result, expected) # check the length 1 Series case highlighted in GH10547 expected = Series(["a"], index=["A"]) result = expected.iloc[[-1]] tm.assert_series_equal(result, expected) def test_iloc_getitem_dups(self): # GH 6766 df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}]) df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}]) df = concat([df1, df2], axis=1) # cross-sectional indexing result = df.iloc[0, 0] assert isna(result) result = df.iloc[0, :] expected = Series([np.nan, 1, 3, 3], index=["A", "B", "A", "B"], name=0) tm.assert_series_equal(result, expected) def test_iloc_getitem_array(self): df = DataFrame( [ {"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}, {"A": 1000, "B": 2000, "C": 3000}, ] ) expected = DataFrame([{"A": 1, "B": 2, "C": 3}]) tm.assert_frame_equal(df.iloc[[0]], expected) expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}]) tm.assert_frame_equal(df.iloc[[0, 1]], expected) expected = DataFrame([{"B": 2, "C": 3}, {"B": 2000, "C": 3000}], index=[0, 2]) result = df.iloc[[0, 2], [1, 2]] tm.assert_frame_equal(result, expected) def test_iloc_getitem_bool(self): df = DataFrame( [ {"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}, {"A": 1000, "B": 2000, "C": 3000}, ] ) expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}]) result = df.iloc[[True, True, False]] tm.assert_frame_equal(result, expected) expected = DataFrame( [{"A": 1, "B": 2, "C": 3}, {"A": 1000, "B": 2000, "C": 3000}], index=[0, 2] ) result = df.iloc[lambda x: x.index % 2 == 0] tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("index", [[True, False], [True, False, True, False]]) def test_iloc_getitem_bool_diff_len(self, index): # GH26658 s = Series([1, 2, 3]) msg = f"Boolean index has wrong length: {len(index)} instead of {len(s)}" with pytest.raises(IndexError, match=msg): s.iloc[index] def test_iloc_getitem_slice(self): df = DataFrame( [ {"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}, {"A": 1000, "B": 2000, "C": 3000}, ] ) expected = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 100, "B": 200, "C": 300}]) result = df.iloc[:2] tm.assert_frame_equal(result, expected) expected = DataFrame([{"A": 100, "B": 200}], index=[1]) result = df.iloc[1:2, 0:2] tm.assert_frame_equal(result, expected) expected = DataFrame( [{"A": 1, "C": 3}, {"A": 100, "C": 300}, {"A": 1000, "C": 3000}] ) result = df.iloc[:, lambda df: [0, 2]] tm.assert_frame_equal(result, expected) def test_iloc_getitem_slice_dups(self): df1 = DataFrame( np.random.default_rng(2).standard_normal((10, 4)), columns=["A", "A", "B", "B"], ) df2 = DataFrame( np.random.default_rng(2).integers(0, 10, size=20).reshape(10, 2), columns=["A", "C"], ) # axis=1 df = concat([df1, df2], axis=1) tm.assert_frame_equal(df.iloc[:, :4], df1) tm.assert_frame_equal(df.iloc[:, 4:], df2) df = concat([df2, df1], axis=1) tm.assert_frame_equal(df.iloc[:, :2], df2) tm.assert_frame_equal(df.iloc[:, 2:], df1) exp = concat([df2, df1.iloc[:, [0]]], axis=1) tm.assert_frame_equal(df.iloc[:, 0:3], exp) # axis=0 df = concat([df, df], axis=0) tm.assert_frame_equal(df.iloc[0:10, :2], df2) tm.assert_frame_equal(df.iloc[0:10, 2:], df1) tm.assert_frame_equal(df.iloc[10:, :2], df2) tm.assert_frame_equal(df.iloc[10:, 2:], df1) def test_iloc_setitem(self): df = DataFrame( np.random.default_rng(2).standard_normal((4, 4)), index=np.arange(0, 8, 2), columns=np.arange(0, 12, 3), ) df.iloc[1, 1] = 1 result = df.iloc[1, 1] assert result == 1 df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) # GH5771 s = Series(0, index=[4, 5, 6]) s.iloc[1:2] += 1 expected = Series([0, 1, 0], index=[4, 5, 6]) tm.assert_series_equal(s, expected) def test_iloc_setitem_axis_argument(self): # GH45032 df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]]) expected = DataFrame([[6, "c", 10], [7, "d", 11], [5, 5, 5]]) df.iloc(axis=0)[2] = 5 tm.assert_frame_equal(df, expected) df = DataFrame([[6, "c", 10], [7, "d", 11], [8, "e", 12]]) expected = DataFrame([[6, "c", 5], [7, "d", 5], [8, "e", 5]]) df.iloc(axis=1)[2] = 5 tm.assert_frame_equal(df, expected) def test_iloc_setitem_list(self): # setitem with an iloc list df = DataFrame( np.arange(9).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"] ) df.iloc[[0, 1], [1, 2]] df.iloc[[0, 1], [1, 2]] += 100 expected = DataFrame( np.array([0, 101, 102, 3, 104, 105, 6, 7, 8]).reshape((3, 3)), index=["A", "B", "C"], columns=["A", "B", "C"], ) tm.assert_frame_equal(df, expected) def test_iloc_setitem_pandas_object(self): # GH 17193 s_orig = Series([0, 1, 2, 3]) expected = Series([0, -1, -2, 3]) s = s_orig.copy() s.iloc[Series([1, 2])] = [-1, -2] tm.assert_series_equal(s, expected) s = s_orig.copy() s.iloc[Index([1, 2])] = [-1, -2] tm.assert_series_equal(s, expected) def test_iloc_setitem_dups(self): # GH 6766 # iloc with a mask aligning from another iloc df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}]) df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}]) df = concat([df1, df2], axis=1) expected = df.fillna(3) inds = np.isnan(df.iloc[:, 0]) mask = inds[inds].index df.iloc[mask, 0] = df.iloc[mask, 2] tm.assert_frame_equal(df, expected) # del a dup column across blocks expected = DataFrame({0: [1, 2], 1: [3, 4]}) expected.columns = ["B", "B"] del df["A"] tm.assert_frame_equal(df, expected) # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # reversed x 2 df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True) df.iloc[[1, 0], [0, 1]] = df.iloc[[1, 0], [0, 1]].reset_index(drop=True) tm.assert_frame_equal(df, expected) def test_iloc_setitem_frame_duplicate_columns_multiple_blocks( self, using_array_manager ): # Same as the "assign back to self" check in test_iloc_setitem_dups # but on a DataFrame with multiple blocks df = DataFrame([[0, 1], [2, 3]], columns=["B", "B"]) # setting float values that can be held by existing integer arrays # is inplace df.iloc[:, 0] = df.iloc[:, 0].astype("f8") if not using_array_manager: assert len(df._mgr.blocks) == 1 # if the assigned values cannot be held by existing integer arrays, # we cast df.iloc[:, 0] = df.iloc[:, 0] + 0.5 if not using_array_manager: assert len(df._mgr.blocks) == 2 expected = df.copy() # assign back to self df.iloc[[0, 1], [0, 1]] = df.iloc[[0, 1], [0, 1]] tm.assert_frame_equal(df, expected) # TODO: GH#27620 this test used to compare iloc against ix; check if this # is redundant with another test comparing iloc against loc def test_iloc_getitem_frame(self): df = DataFrame( np.random.default_rng(2).standard_normal((10, 4)), index=range(0, 20, 2), columns=range(0, 8, 2), ) result = df.iloc[2] exp = df.loc[4] tm.assert_series_equal(result, exp) result = df.iloc[2, 2] exp = df.loc[4, 4] assert result == exp # slice result = df.iloc[4:8] expected = df.loc[8:14] tm.assert_frame_equal(result, expected) result = df.iloc[:, 2:3] expected = df.loc[:, 4:5] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[0, 1, 3]] expected = df.loc[[0, 2, 6]] tm.assert_frame_equal(result, expected) result = df.iloc[[0, 1, 3], [0, 1]] expected = df.loc[[0, 2, 6], [0, 2]] tm.assert_frame_equal(result, expected) # neg indices result = df.iloc[[-1, 1, 3], [-1, 1]] expected = df.loc[[18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # dups indices result = df.iloc[[-1, -1, 1, 3], [-1, 1]] expected = df.loc[[18, 18, 2, 6], [6, 2]] tm.assert_frame_equal(result, expected) # with index-like s = Series(index=range(1, 5), dtype=object) result = df.iloc[s.index] expected = df.loc[[2, 4, 6, 8]] tm.assert_frame_equal(result, expected) def test_iloc_getitem_labelled_frame(self): # try with labelled frame df = DataFrame( np.random.default_rng(2).standard_normal((10, 4)), index=list("abcdefghij"), columns=list("ABCD"), ) result = df.iloc[1, 1] exp = df.loc["b", "B"] assert result == exp result = df.iloc[:, 2:3] expected = df.loc[:, ["C"]] tm.assert_frame_equal(result, expected) # negative indexing result = df.iloc[-1, -1] exp = df.loc["j", "D"] assert result == exp # out-of-bounds exception msg = "index 5 is out of bounds for axis 0 with size 4" with pytest.raises(IndexError, match=msg): df.iloc[10, 5] # trying to use a label msg = ( r"Location based indexing can only have \[integer, integer " r"slice \(START point is INCLUDED, END point is EXCLUDED\), " r"listlike of integers, boolean array\] types" ) with pytest.raises(ValueError, match=msg): df.iloc["j", "D"] def test_iloc_getitem_doc_issue(self, using_array_manager): # multi axis slicing issue with single block # surfaced in GH 6059 arr = np.random.default_rng(2).standard_normal((6, 4)) index = date_range("20130101", periods=6) columns = list("ABCD") df = DataFrame(arr, index=index, columns=columns) # defines ref_locs df.describe() result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=columns[0:2]) tm.assert_frame_equal(result, expected) # for dups df.columns = list("aaaa") result = df.iloc[3:5, 0:2] str(result) result.dtypes expected = DataFrame(arr[3:5, 0:2], index=index[3:5], columns=list("aa")) tm.assert_frame_equal(result, expected) # related arr = np.random.default_rng(2).standard_normal((6, 4)) index = list(range(0, 12, 2)) columns = list(range(0, 8, 2)) df = DataFrame(arr, index=index, columns=columns) if not using_array_manager: df._mgr.blocks[0].mgr_locs result = df.iloc[1:5, 2:4] str(result) result.dtypes expected = DataFrame(arr[1:5, 2:4], index=index[1:5], columns=columns[2:4]) tm.assert_frame_equal(result, expected) def test_iloc_setitem_series(self): df = DataFrame( np.random.default_rng(2).standard_normal((10, 4)), index=list("abcdefghij"), columns=list("ABCD"), ) df.iloc[1, 1] = 1 result = df.iloc[1, 1] assert result == 1 df.iloc[:, 2:3] = 0 expected = df.iloc[:, 2:3] result = df.iloc[:, 2:3] tm.assert_frame_equal(result, expected) s = Series(np.random.default_rng(2).standard_normal(10), index=range(0, 20, 2)) s.iloc[1] = 1 result = s.iloc[1] assert result == 1 s.iloc[:4] = 0 expected = s.iloc[:4] result = s.iloc[:4] tm.assert_series_equal(result, expected) s = Series([-1] * 6) s.iloc[0::2] = [0, 2, 4] s.iloc[1::2] = [1, 3, 5] result = s expected = Series([0, 1, 2, 3, 4, 5]) tm.assert_series_equal(result, expected) def test_iloc_setitem_list_of_lists(self): # GH 7551 # list-of-list is set incorrectly in mixed vs. single dtyped frames df = DataFrame( {"A": np.arange(5, dtype="int64"), "B": np.arange(5, 10, dtype="int64")} ) df.iloc[2:4] = [[10, 11], [12, 13]] expected = DataFrame({"A": [0, 1, 10, 12, 4], "B": [5, 6, 11, 13, 9]}) tm.assert_frame_equal(df, expected) df = DataFrame( {"A": ["a", "b", "c", "d", "e"], "B": np.arange(5, 10, dtype="int64")} ) df.iloc[2:4] = [["x", 11], ["y", 13]] expected = DataFrame({"A": ["a", "b", "x", "y", "e"], "B": [5, 6, 11, 13, 9]}) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("indexer", [[0], slice(None, 1, None), np.array([0])]) @pytest.mark.parametrize("value", [["Z"], np.array(["Z"])]) def test_iloc_setitem_with_scalar_index(self, indexer, value): # GH #19474 # assigning like "df.iloc[0, [0]] = ['Z']" should be evaluated # elementwisely, not using "setter('A', ['Z'])". # Set object type to avoid upcast when setting "Z" df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"]).astype({"A": object}) df.iloc[0, indexer] = value result = df.iloc[0, 0] assert is_scalar(result) and result == "Z" @pytest.mark.filterwarnings("ignore::UserWarning") def test_iloc_mask(self): # GH 3631, iloc with a mask (of a series) should raise df = DataFrame(list(range(5)), index=list("ABCDE"), columns=["a"]) mask = df.a % 2 == 0 msg = "iLocation based boolean indexing cannot use an indexable as a mask" with pytest.raises(ValueError, match=msg): df.iloc[mask] mask.index = range(len(mask)) msg = "iLocation based boolean indexing on an integer type is not available" with pytest.raises(NotImplementedError, match=msg): df.iloc[mask] # ndarray ok result = df.iloc[np.array([True] * len(mask), dtype=bool)] tm.assert_frame_equal(result, df) # the possibilities locs = np.arange(4) nums = 2**locs reps = [bin(num) for num in nums] df = DataFrame({"locs": locs, "nums": nums}, reps) expected = { (None, ""): "0b1100", (None, ".loc"): "0b1100", (None, ".iloc"): "0b1100", ("index", ""): "0b11", ("index", ".loc"): "0b11", ("index", ".iloc"): ( "iLocation based boolean indexing cannot use an indexable as a mask" ), ("locs", ""): "Unalignable boolean Series provided as indexer " "(index of the boolean Series and of the indexed " "object do not match).", ("locs", ".loc"): "Unalignable boolean Series provided as indexer " "(index of the boolean Series and of the " "indexed object do not match).", ("locs", ".iloc"): ( "iLocation based boolean indexing on an " "integer type is not available" ), } # UserWarnings from reindex of a boolean mask for idx in [None, "index", "locs"]: mask = (df.nums > 2).values if idx: mask_index = getattr(df, idx)[::-1] mask = Series(mask, list(mask_index)) for method in ["", ".loc", ".iloc"]: try: if method: accessor = getattr(df, method[1:]) else: accessor = df answer = str(bin(accessor[mask]["nums"].sum())) except (ValueError, IndexingError, NotImplementedError) as e: answer = str(e) key = ( idx, method, ) r = expected.get(key) if r != answer: raise AssertionError( f"[{key}] does not match [{answer}], received [{r}]" ) def test_iloc_non_unique_indexing(self): # GH 4017, non-unique indexing (on the axis) df = DataFrame({"A": [0.1] * 3000, "B": [1] * 3000}) idx = np.arange(30) * 99 expected = df.iloc[idx] df3 = concat([df, 2 * df, 3 * df]) result = df3.iloc[idx] tm.assert_frame_equal(result, expected) df2 = DataFrame({"A": [0.1] * 1000, "B": [1] * 1000}) df2 = concat([df2, 2 * df2, 3 * df2]) with pytest.raises(KeyError, match="not in index"): df2.loc[idx] def test_iloc_empty_list_indexer_is_ok(self): df = tm.makeCustomDataframe(5, 2) # vertical empty tm.assert_frame_equal( df.iloc[:, []], df.iloc[:, :0], check_index_type=True, check_column_type=True, ) # horizontal empty tm.assert_frame_equal( df.iloc[[], :], df.iloc[:0, :], check_index_type=True, check_column_type=True, ) # horizontal empty tm.assert_frame_equal( df.iloc[[]], df.iloc[:0, :], check_index_type=True, check_column_type=True ) def test_identity_slice_returns_new_object(self, using_copy_on_write): # GH13873 original_df = DataFrame({"a": [1, 2, 3]}) sliced_df = original_df.iloc[:] assert sliced_df is not original_df # should be a shallow copy assert np.shares_memory(original_df["a"], sliced_df["a"]) # Setting using .loc[:, "a"] sets inplace so alters both sliced and orig # depending on CoW original_df.loc[:, "a"] = [4, 4, 4] if using_copy_on_write: assert (sliced_df["a"] == [1, 2, 3]).all() else: assert (sliced_df["a"] == 4).all() original_series = Series([1, 2, 3, 4, 5, 6]) sliced_series = original_series.iloc[:] assert sliced_series is not original_series # should also be a shallow copy original_series[:3] = [7, 8, 9] if using_copy_on_write: # shallow copy not updated (CoW) assert all(sliced_series[:3] == [1, 2, 3]) else: assert all(sliced_series[:3] == [7, 8, 9]) def test_indexing_zerodim_np_array(self): # GH24919 df = DataFrame([[1, 2], [3, 4]]) result = df.iloc[np.array(0)] s = Series([1, 2], name=0) tm.assert_series_equal(result, s) def test_series_indexing_zerodim_np_array(self): # GH24919 s = Series([1, 2]) result = s.iloc[np.array(0)] assert result == 1 def test_iloc_setitem_categorical_updates_inplace(self): # Mixed dtype ensures we go through take_split_path in setitem_with_indexer cat = Categorical(["A", "B", "C"]) df = DataFrame({1: cat, 2: [1, 2, 3]}, copy=False) assert tm.shares_memory(df[1], cat) # With the enforcement of GH#45333 in 2.0, this modifies original # values inplace df.iloc[:, 0] = cat[::-1] assert tm.shares_memory(df[1], cat) expected = Categorical(["C", "B", "A"], categories=["A", "B", "C"]) tm.assert_categorical_equal(cat, expected) def test_iloc_with_boolean_operation(self): # GH 20627 result = DataFrame([[0, 1], [2, 3], [4, 5], [6, np.nan]]) result.iloc[result.index <= 2] *= 2 expected = DataFrame([[0, 2], [4, 6], [8, 10], [6, np.nan]]) tm.assert_frame_equal(result, expected) result.iloc[result.index > 2] *= 2 expected = DataFrame([[0, 2], [4, 6], [8, 10], [12, np.nan]]) tm.assert_frame_equal(result, expected) result.iloc[[True, True, False, False]] *= 2 expected = DataFrame([[0, 4], [8, 12], [8, 10], [12, np.nan]]) tm.assert_frame_equal(result, expected) result.iloc[[False, False, True, True]] /= 2 expected = DataFrame([[0, 4.0], [8, 12.0], [4, 5.0], [6, np.nan]]) tm.assert_frame_equal(result, expected) def test_iloc_getitem_singlerow_slice_categoricaldtype_gives_series(self): # GH#29521 df = DataFrame({"x": Categorical("a b c d e".split())}) result = df.iloc[0] raw_cat = Categorical(["a"], categories=["a", "b", "c", "d", "e"]) expected = Series(raw_cat, index=["x"], name=0, dtype="category") tm.assert_series_equal(result, expected) def test_iloc_getitem_categorical_values(self): # GH#14580 # test iloc() on Series with Categorical data ser = Series([1, 2, 3]).astype("category") # get slice result = ser.iloc[0:2] expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3])) tm.assert_series_equal(result, expected) # get list of indexes result = ser.iloc[[0, 1]] expected = Series([1, 2]).astype(CategoricalDtype([1, 2, 3])) tm.assert_series_equal(result, expected) # get boolean array result = ser.iloc[[True, False, False]] expected = Series([1]).astype(CategoricalDtype([1, 2, 3])) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("value", [None, NaT, np.nan]) def test_iloc_setitem_td64_values_cast_na(self, value): # GH#18586 series = Series([0, 1, 2], dtype="timedelta64[ns]") series.iloc[0] = value expected = Series([NaT, 1, 2], dtype="timedelta64[ns]") tm.assert_series_equal(series, expected) @pytest.mark.parametrize("not_na", [Interval(0, 1), "a", 1.0]) def test_setitem_mix_of_nan_and_interval(self, not_na, nulls_fixture): # GH#27937 dtype = CategoricalDtype(categories=[not_na]) ser = Series( [nulls_fixture, nulls_fixture, nulls_fixture, nulls_fixture], dtype=dtype ) ser.iloc[:3] = [nulls_fixture, not_na, nulls_fixture] exp = Series([nulls_fixture, not_na, nulls_fixture, nulls_fixture], dtype=dtype) tm.assert_series_equal(ser, exp) def test_iloc_setitem_empty_frame_raises_with_3d_ndarray(self): idx = Index([]) obj = DataFrame( np.random.default_rng(2).standard_normal((len(idx), len(idx))), index=idx, columns=idx, ) nd3 = np.random.default_rng(2).integers(5, size=(2, 2, 2)) msg = f"Cannot set values with ndim > {obj.ndim}" with pytest.raises(ValueError, match=msg): obj.iloc[nd3] = 0 @pytest.mark.parametrize("indexer", [tm.loc, tm.iloc]) def test_iloc_getitem_read_only_values(self, indexer): # GH#10043 this is fundamentally a test for iloc, but test loc while # we're here rw_array = np.eye(10) rw_df = DataFrame(rw_array) ro_array = np.eye(10) ro_array.setflags(write=False) ro_df = DataFrame(ro_array) tm.assert_frame_equal(indexer(rw_df)[[1, 2, 3]], indexer(ro_df)[[1, 2, 3]]) tm.assert_frame_equal(indexer(rw_df)[[1]], indexer(ro_df)[[1]]) tm.assert_series_equal(indexer(rw_df)[1], indexer(ro_df)[1]) tm.assert_frame_equal(indexer(rw_df)[1:3], indexer(ro_df)[1:3]) def test_iloc_getitem_readonly_key(self): # GH#17192 iloc with read-only array raising TypeError df = DataFrame({"data": np.ones(100, dtype="float64")}) indices = np.array([1, 3, 6]) indices.flags.writeable = False result = df.iloc[indices] expected = df.loc[[1, 3, 6]] tm.assert_frame_equal(result, expected) result = df["data"].iloc[indices] expected = df["data"].loc[[1, 3, 6]] tm.assert_series_equal(result, expected) def test_iloc_assign_series_to_df_cell(self): # GH 37593 df = DataFrame(columns=["a"], index=[0]) df.iloc[0, 0] = Series([1, 2, 3]) expected = DataFrame({"a": [Series([1, 2, 3])]}, columns=["a"], index=[0]) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("klass", [list, np.array]) def test_iloc_setitem_bool_indexer(self, klass): # GH#36741 df = DataFrame({"flag": ["x", "y", "z"], "value": [1, 3, 4]}) indexer = klass([True, False, False]) df.iloc[indexer, 1] = df.iloc[indexer, 1] * 2 expected = DataFrame({"flag": ["x", "y", "z"], "value": [2, 3, 4]}) tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("indexer", [[1], slice(1, 2)]) def test_iloc_setitem_pure_position_based(self, indexer): # GH#22046 df1 = DataFrame({"a2": [11, 12, 13], "b2": [14, 15, 16]}) df2 = DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) df2.iloc[:, indexer] = df1.iloc[:, [0]] expected = DataFrame({"a": [1, 2, 3], "b": [11, 12, 13], "c": [7, 8, 9]}) tm.assert_frame_equal(df2, expected) def test_iloc_setitem_dictionary_value(self): # GH#37728 df = DataFrame({"x": [1, 2], "y": [2, 2]}) rhs = {"x": 9, "y": 99} df.iloc[1] = rhs expected = DataFrame({"x": [1, 9], "y": [2, 99]}) tm.assert_frame_equal(df, expected) # GH#38335 same thing, mixed dtypes df = DataFrame({"x": [1, 2], "y": [2.0, 2.0]}) df.iloc[1] = rhs expected = DataFrame({"x": [1, 9], "y": [2.0, 99.0]}) tm.assert_frame_equal(df, expected) def test_iloc_getitem_float_duplicates(self): df = DataFrame( np.random.default_rng(2).standard_normal((3, 3)), index=[0.1, 0.2, 0.2], columns=list("abc"), ) expect = df.iloc[1:] tm.assert_frame_equal(df.loc[0.2], expect) expect = df.iloc[1:, 0] tm.assert_series_equal(df.loc[0.2, "a"], expect) df.index = [1, 0.2, 0.2] expect = df.iloc[1:] tm.assert_frame_equal(df.loc[0.2], expect) expect = df.iloc[1:, 0] tm.assert_series_equal(df.loc[0.2, "a"], expect) df = DataFrame( np.random.default_rng(2).standard_normal((4, 3)), index=[1, 0.2, 0.2, 1], columns=list("abc"), ) expect = df.iloc[1:-1] tm.assert_frame_equal(df.loc[0.2], expect) expect = df.iloc[1:-1, 0] tm.assert_series_equal(df.loc[0.2, "a"], expect) df.index = [0.1, 0.2, 2, 0.2] expect = df.iloc[[1, -1]] tm.assert_frame_equal(df.loc[0.2], expect) expect = df.iloc[[1, -1], 0] tm.assert_series_equal(df.loc[0.2, "a"], expect) def test_iloc_setitem_custom_object(self): # iloc with an object class TO: def __init__(self, value) -> None: self.value = value def __str__(self) -> str: return f"[{self.value}]" __repr__ = __str__ def __eq__(self, other) -> bool: return self.value == other.value def view(self): return self df = DataFrame(index=[0, 1], columns=[0]) df.iloc[1, 0] = TO(1) df.iloc[1, 0] = TO(2) result = DataFrame(index=[0, 1], columns=[0]) result.iloc[1, 0] = TO(2) tm.assert_frame_equal(result, df) # remains object dtype even after setting it back df = DataFrame(index=[0, 1], columns=[0]) df.iloc[1, 0] = TO(1) df.iloc[1, 0] = np.nan result = DataFrame(index=[0, 1], columns=[0]) tm.assert_frame_equal(result, df) def test_iloc_getitem_with_duplicates(self): df = DataFrame( np.random.default_rng(2).random((3, 3)), columns=list("ABC"), index=list("aab"), ) result = df.iloc[0] assert isinstance(result, Series) tm.assert_almost_equal(result.values, df.values[0]) result = df.T.iloc[:, 0] assert isinstance(result, Series) tm.assert_almost_equal(result.values, df.values[0]) def test_iloc_getitem_with_duplicates2(self): # GH#2259 df = DataFrame([[1, 2, 3], [4, 5, 6]], columns=[1, 1, 2]) result = df.iloc[:, [0]] expected = df.take([0], axis=1) tm.assert_frame_equal(result, expected) def test_iloc_interval(self): # GH#17130 df = DataFrame({Interval(1, 2): [1, 2]}) result = df.iloc[0] expected = Series({Interval(1, 2): 1}, name=0) tm.assert_series_equal(result, expected) result = df.iloc[:, 0] expected = Series([1, 2], name=Interval(1, 2)) tm.assert_series_equal(result, expected) result = df.copy() result.iloc[:, 0] += 1 expected = DataFrame({Interval(1, 2): [2, 3]}) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("indexing_func", [list, np.array]) @pytest.mark.parametrize("rhs_func", [list, np.array]) def test_loc_setitem_boolean_list(self, rhs_func, indexing_func): # GH#20438 testing specifically list key, not arraylike ser = Series([0, 1, 2]) ser.iloc[indexing_func([True, False, True])] = rhs_func([5, 10]) expected = Series([5, 1, 10]) tm.assert_series_equal(ser, expected) df = DataFrame({"a": [0, 1, 2]}) df.iloc[indexing_func([True, False, True])] = rhs_func([[5], [10]]) expected = DataFrame({"a": [5, 1, 10]}) tm.assert_frame_equal(df, expected) def test_iloc_getitem_slice_negative_step_ea_block(self): # GH#44551 df = DataFrame({"A": [1, 2, 3]}, dtype="Int64") res = df.iloc[:, ::-1] tm.assert_frame_equal(res, df) df["B"] = "foo" res = df.iloc[:, ::-1] expected = DataFrame({"B": df["B"], "A": df["A"]}) tm.assert_frame_equal(res, expected) def test_iloc_setitem_2d_ndarray_into_ea_block(self): # GH#44703 df = DataFrame({"status": ["a", "b", "c"]}, dtype="category") df.iloc[np.array([0, 1]), np.array([0])] = np.array([["a"], ["a"]]) expected = DataFrame({"status": ["a", "a", "c"]}, dtype=df["status"].dtype) tm.assert_frame_equal(df, expected) @td.skip_array_manager_not_yet_implemented def test_iloc_getitem_int_single_ea_block_view(self): # GH#45241 # TODO: make an extension interface test for this? arr = interval_range(1, 10.0)._values df = DataFrame(arr) # ser should be a *view* on the DataFrame data ser = df.iloc[2] # if we have a view, then changing arr[2] should also change ser[0] assert arr[2] != arr[-1] # otherwise the rest isn't meaningful arr[2] = arr[-1] assert ser[0] == arr[-1] def test_iloc_setitem_multicolumn_to_datetime(self): # GH#20511 df = DataFrame({"A": ["2022-01-01", "2022-01-02"], "B": ["2021", "2022"]}) df.iloc[:, [0]] = DataFrame({"A": to_datetime(["2021", "2022"])}) expected = DataFrame( { "A": [ Timestamp("2021-01-01 00:00:00"), Timestamp("2022-01-01 00:00:00"), ], "B": ["2021", "2022"], } ) tm.assert_frame_equal(df, expected, check_dtype=False) class TestILocErrors: # NB: this test should work for _any_ Series we can pass as # series_with_simple_index def test_iloc_float_raises(self, series_with_simple_index, frame_or_series): # GH#4892 # float_indexers should raise exceptions # on appropriate Index types & accessors # this duplicates the code below # but is specifically testing for the error # message obj = series_with_simple_index if frame_or_series is DataFrame: obj = obj.to_frame() msg = "Cannot index by location index with a non-integer key" with pytest.raises(TypeError, match=msg): obj.iloc[3.0] with pytest.raises(IndexError, match=_slice_iloc_msg): obj.iloc[3.0] = 0 def test_iloc_getitem_setitem_fancy_exceptions(self, float_frame): with pytest.raises(IndexingError, match="Too many indexers"): float_frame.iloc[:, :, :] with pytest.raises(IndexError, match="too many indices for array"): # GH#32257 we let numpy do validation, get their exception float_frame.iloc[:, :, :] = 1 def test_iloc_frame_indexer(self): # GH#39004 df = DataFrame({"a": [1, 2, 3]}) indexer = DataFrame({"a": [True, False, True]}) msg = "DataFrame indexer for .iloc is not supported. Consider using .loc" with pytest.raises(TypeError, match=msg): df.iloc[indexer] = 1 msg = ( "DataFrame indexer is not allowed for .iloc\n" "Consider using .loc for automatic alignment." ) with pytest.raises(IndexError, match=msg): df.iloc[indexer] class TestILocSetItemDuplicateColumns: def test_iloc_setitem_scalar_duplicate_columns(self): # GH#15686, duplicate columns and mixed dtype df1 = DataFrame([{"A": None, "B": 1}, {"A": 2, "B": 2}]) df2 = DataFrame([{"A": 3, "B": 3}, {"A": 4, "B": 4}]) df = concat([df1, df2], axis=1) df.iloc[0, 0] = -1 assert df.iloc[0, 0] == -1 assert df.iloc[0, 2] == 3 assert df.dtypes.iloc[2] == np.int64 def test_iloc_setitem_list_duplicate_columns(self): # GH#22036 setting with same-sized list df = DataFrame([[0, "str", "str2"]], columns=["a", "b", "b"]) df.iloc[:, 2] = ["str3"] expected = DataFrame([[0, "str", "str3"]], columns=["a", "b", "b"]) tm.assert_frame_equal(df, expected) def test_iloc_setitem_series_duplicate_columns(self): df = DataFrame( np.arange(8, dtype=np.int64).reshape(2, 4), columns=["A", "B", "A", "B"] ) df.iloc[:, 0] = df.iloc[:, 0].astype(np.float64) assert df.dtypes.iloc[2] == np.int64 @pytest.mark.parametrize( ["dtypes", "init_value", "expected_value"], [("int64", "0", 0), ("float", "1.2", 1.2)], ) def test_iloc_setitem_dtypes_duplicate_columns( self, dtypes, init_value, expected_value ): # GH#22035 df = DataFrame([[init_value, "str", "str2"]], columns=["a", "b", "b"]) # with the enforcement of GH#45333 in 2.0, this sets values inplace, # so we retain object dtype df.iloc[:, 0] = df.iloc[:, 0].astype(dtypes) expected_df = DataFrame( [[expected_value, "str", "str2"]], columns=["a", "b", "b"], dtype=object, ) tm.assert_frame_equal(df, expected_df) class TestILocCallable: def test_frame_iloc_getitem_callable(self): # GH#11485 df = DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD")) # return location res = df.iloc[lambda x: [1, 3]] tm.assert_frame_equal(res, df.iloc[[1, 3]]) res = df.iloc[lambda x: [1, 3], :] tm.assert_frame_equal(res, df.iloc[[1, 3], :]) res = df.iloc[lambda x: [1, 3], lambda x: 0] tm.assert_series_equal(res, df.iloc[[1, 3], 0]) res = df.iloc[lambda x: [1, 3], lambda x: [0]] tm.assert_frame_equal(res, df.iloc[[1, 3], [0]]) # mixture res = df.iloc[[1, 3], lambda x: 0] tm.assert_series_equal(res, df.iloc[[1, 3], 0]) res = df.iloc[[1, 3], lambda x: [0]] tm.assert_frame_equal(res, df.iloc[[1, 3], [0]]) res = df.iloc[lambda x: [1, 3], 0] tm.assert_series_equal(res, df.iloc[[1, 3], 0]) res = df.iloc[lambda x: [1, 3], [0]] tm.assert_frame_equal(res, df.iloc[[1, 3], [0]]) def test_frame_iloc_setitem_callable(self): # GH#11485 df = DataFrame({"X": [1, 2, 3, 4], "Y": list("aabb")}, index=list("ABCD")) # return location res = df.copy() res.iloc[lambda x: [1, 3]] = 0 exp = df.copy() exp.iloc[[1, 3]] = 0 tm.assert_frame_equal(res, exp) res = df.copy() res.iloc[lambda x: [1, 3], :] = -1 exp = df.copy() exp.iloc[[1, 3], :] = -1 tm.assert_frame_equal(res, exp) res = df.copy() res.iloc[lambda x: [1, 3], lambda x: 0] = 5 exp = df.copy() exp.iloc[[1, 3], 0] = 5 tm.assert_frame_equal(res, exp) res = df.copy() res.iloc[lambda x: [1, 3], lambda x: [0]] = 25 exp = df.copy() exp.iloc[[1, 3], [0]] = 25 tm.assert_frame_equal(res, exp) # mixture res = df.copy() res.iloc[[1, 3], lambda x: 0] = -3 exp = df.copy() exp.iloc[[1, 3], 0] = -3 tm.assert_frame_equal(res, exp) res = df.copy() res.iloc[[1, 3], lambda x: [0]] = -5 exp = df.copy() exp.iloc[[1, 3], [0]] = -5 tm.assert_frame_equal(res, exp) res = df.copy() res.iloc[lambda x: [1, 3], 0] = 10 exp = df.copy() exp.iloc[[1, 3], 0] = 10 tm.assert_frame_equal(res, exp) res = df.copy() res.iloc[lambda x: [1, 3], [0]] = [-5, -5] exp = df.copy() exp.iloc[[1, 3], [0]] = [-5, -5] tm.assert_frame_equal(res, exp) class TestILocSeries: def test_iloc(self, using_copy_on_write): ser = Series( np.random.default_rng(2).standard_normal(10), index=list(range(0, 20, 2)) ) ser_original = ser.copy() for i in range(len(ser)): result = ser.iloc[i] exp = ser[ser.index[i]] tm.assert_almost_equal(result, exp) # pass a slice result = ser.iloc[slice(1, 3)] expected = ser.loc[2:4] tm.assert_series_equal(result, expected) # test slice is a view with tm.assert_produces_warning(None): # GH#45324 make sure we aren't giving a spurious FutureWarning result[:] = 0 if using_copy_on_write: tm.assert_series_equal(ser, ser_original) else: assert (ser.iloc[1:3] == 0).all() # list of integers result = ser.iloc[[0, 2, 3, 4, 5]] expected = ser.reindex(ser.index[[0, 2, 3, 4, 5]]) tm.assert_series_equal(result, expected) def test_iloc_getitem_nonunique(self): ser = Series([0, 1, 2], index=[0, 1, 0]) assert ser.iloc[2] == 2 def test_iloc_setitem_pure_position_based(self): # GH#22046 ser1 = Series([1, 2, 3]) ser2 = Series([4, 5, 6], index=[1, 0, 2]) ser1.iloc[1:3] = ser2.iloc[1:3] expected = Series([1, 5, 6]) tm.assert_series_equal(ser1, expected) def test_iloc_nullable_int64_size_1_nan(self): # GH 31861 result = DataFrame({"a": ["test"], "b": [np.nan]}) result.loc[:, "b"] = result.loc[:, "b"].astype("Int64") expected = DataFrame({"a": ["test"], "b": array([NA], dtype="Int64")}) tm.assert_frame_equal(result, expected)