import io import numpy as np import pytest from pandas import ( DataFrame, date_range, read_csv, read_excel, read_feather, read_json, read_parquet, read_pickle, read_stata, read_table, ) import pandas._testing as tm from pandas.util import _test_decorators as td @pytest.fixture def df1(): return DataFrame( { "int": [1, 3], "float": [2.0, np.nan], "str": ["t", "s"], "dt": date_range("2018-06-18", periods=2), } ) @pytest.fixture def cleared_fs(): fsspec = pytest.importorskip("fsspec") memfs = fsspec.filesystem("memory") yield memfs memfs.store.clear() def test_read_csv(cleared_fs, df1): text = str(df1.to_csv(index=False)).encode() with cleared_fs.open("test/test.csv", "wb") as w: w.write(text) df2 = read_csv("memory://test/test.csv", parse_dates=["dt"]) tm.assert_frame_equal(df1, df2) def test_reasonable_error(monkeypatch, cleared_fs): from fsspec.registry import known_implementations with pytest.raises(ValueError, match="nosuchprotocol"): read_csv("nosuchprotocol://test/test.csv") err_msg = "test error message" monkeypatch.setitem( known_implementations, "couldexist", {"class": "unimportable.CouldExist", "err": err_msg}, ) with pytest.raises(ImportError, match=err_msg): read_csv("couldexist://test/test.csv") def test_to_csv(cleared_fs, df1): df1.to_csv("memory://test/test.csv", index=True) df2 = read_csv("memory://test/test.csv", parse_dates=["dt"], index_col=0) tm.assert_frame_equal(df1, df2) def test_to_excel(cleared_fs, df1): pytest.importorskip("openpyxl") ext = "xlsx" path = f"memory://test/test.{ext}" df1.to_excel(path, index=True) df2 = read_excel(path, parse_dates=["dt"], index_col=0) tm.assert_frame_equal(df1, df2) @pytest.mark.parametrize("binary_mode", [False, True]) def test_to_csv_fsspec_object(cleared_fs, binary_mode, df1): fsspec = pytest.importorskip("fsspec") path = "memory://test/test.csv" mode = "wb" if binary_mode else "w" with fsspec.open(path, mode=mode).open() as fsspec_object: df1.to_csv(fsspec_object, index=True) assert not fsspec_object.closed mode = mode.replace("w", "r") with fsspec.open(path, mode=mode) as fsspec_object: df2 = read_csv( fsspec_object, parse_dates=["dt"], index_col=0, ) assert not fsspec_object.closed tm.assert_frame_equal(df1, df2) def test_csv_options(fsspectest): df = DataFrame({"a": [0]}) df.to_csv( "testmem://test/test.csv", storage_options={"test": "csv_write"}, index=False ) assert fsspectest.test[0] == "csv_write" read_csv("testmem://test/test.csv", storage_options={"test": "csv_read"}) assert fsspectest.test[0] == "csv_read" def test_read_table_options(fsspectest): # GH #39167 df = DataFrame({"a": [0]}) df.to_csv( "testmem://test/test.csv", storage_options={"test": "csv_write"}, index=False ) assert fsspectest.test[0] == "csv_write" read_table("testmem://test/test.csv", storage_options={"test": "csv_read"}) assert fsspectest.test[0] == "csv_read" def test_excel_options(fsspectest): pytest.importorskip("openpyxl") extension = "xlsx" df = DataFrame({"a": [0]}) path = f"testmem://test/test.{extension}" df.to_excel(path, storage_options={"test": "write"}, index=False) assert fsspectest.test[0] == "write" read_excel(path, storage_options={"test": "read"}) assert fsspectest.test[0] == "read" def test_to_parquet_new_file(cleared_fs, df1): """Regression test for writing to a not-yet-existent GCS Parquet file.""" pytest.importorskip("fastparquet") df1.to_parquet( "memory://test/test.csv", index=True, engine="fastparquet", compression=None ) def test_arrowparquet_options(fsspectest): """Regression test for writing to a not-yet-existent GCS Parquet file.""" pytest.importorskip("pyarrow") df = DataFrame({"a": [0]}) df.to_parquet( "testmem://test/test.csv", engine="pyarrow", compression=None, storage_options={"test": "parquet_write"}, ) assert fsspectest.test[0] == "parquet_write" read_parquet( "testmem://test/test.csv", engine="pyarrow", storage_options={"test": "parquet_read"}, ) assert fsspectest.test[0] == "parquet_read" @td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) fastparquet def test_fastparquet_options(fsspectest): """Regression test for writing to a not-yet-existent GCS Parquet file.""" pytest.importorskip("fastparquet") df = DataFrame({"a": [0]}) df.to_parquet( "testmem://test/test.csv", engine="fastparquet", compression=None, storage_options={"test": "parquet_write"}, ) assert fsspectest.test[0] == "parquet_write" read_parquet( "testmem://test/test.csv", engine="fastparquet", storage_options={"test": "parquet_read"}, ) assert fsspectest.test[0] == "parquet_read" @pytest.mark.single_cpu def test_from_s3_csv(s3_public_bucket_with_data, tips_file, s3so): pytest.importorskip("s3fs") tm.assert_equal( read_csv( f"s3://{s3_public_bucket_with_data.name}/tips.csv", storage_options=s3so ), read_csv(tips_file), ) # the following are decompressed by pandas, not fsspec tm.assert_equal( read_csv( f"s3://{s3_public_bucket_with_data.name}/tips.csv.gz", storage_options=s3so ), read_csv(tips_file), ) tm.assert_equal( read_csv( f"s3://{s3_public_bucket_with_data.name}/tips.csv.bz2", storage_options=s3so ), read_csv(tips_file), ) @pytest.mark.single_cpu @pytest.mark.parametrize("protocol", ["s3", "s3a", "s3n"]) def test_s3_protocols(s3_public_bucket_with_data, tips_file, protocol, s3so): pytest.importorskip("s3fs") tm.assert_equal( read_csv( f"{protocol}://{s3_public_bucket_with_data.name}/tips.csv", storage_options=s3so, ), read_csv(tips_file), ) @pytest.mark.single_cpu @td.skip_array_manager_not_yet_implemented # TODO(ArrayManager) fastparquet def test_s3_parquet(s3_public_bucket, s3so, df1): pytest.importorskip("fastparquet") pytest.importorskip("s3fs") fn = f"s3://{s3_public_bucket.name}/test.parquet" df1.to_parquet( fn, index=False, engine="fastparquet", compression=None, storage_options=s3so ) df2 = read_parquet(fn, engine="fastparquet", storage_options=s3so) tm.assert_equal(df1, df2) @td.skip_if_installed("fsspec") def test_not_present_exception(): msg = "Missing optional dependency 'fsspec'|fsspec library is required" with pytest.raises(ImportError, match=msg): read_csv("memory://test/test.csv") def test_feather_options(fsspectest): pytest.importorskip("pyarrow") df = DataFrame({"a": [0]}) df.to_feather("testmem://mockfile", storage_options={"test": "feather_write"}) assert fsspectest.test[0] == "feather_write" out = read_feather("testmem://mockfile", storage_options={"test": "feather_read"}) assert fsspectest.test[0] == "feather_read" tm.assert_frame_equal(df, out) def test_pickle_options(fsspectest): df = DataFrame({"a": [0]}) df.to_pickle("testmem://mockfile", storage_options={"test": "pickle_write"}) assert fsspectest.test[0] == "pickle_write" out = read_pickle("testmem://mockfile", storage_options={"test": "pickle_read"}) assert fsspectest.test[0] == "pickle_read" tm.assert_frame_equal(df, out) def test_json_options(fsspectest, compression): df = DataFrame({"a": [0]}) df.to_json( "testmem://mockfile", compression=compression, storage_options={"test": "json_write"}, ) assert fsspectest.test[0] == "json_write" out = read_json( "testmem://mockfile", compression=compression, storage_options={"test": "json_read"}, ) assert fsspectest.test[0] == "json_read" tm.assert_frame_equal(df, out) def test_stata_options(fsspectest): df = DataFrame({"a": [0]}) df.to_stata( "testmem://mockfile", storage_options={"test": "stata_write"}, write_index=False ) assert fsspectest.test[0] == "stata_write" out = read_stata("testmem://mockfile", storage_options={"test": "stata_read"}) assert fsspectest.test[0] == "stata_read" tm.assert_frame_equal(df, out.astype("int64")) def test_markdown_options(fsspectest): pytest.importorskip("tabulate") df = DataFrame({"a": [0]}) df.to_markdown("testmem://mockfile", storage_options={"test": "md_write"}) assert fsspectest.test[0] == "md_write" assert fsspectest.cat("testmem://mockfile") def test_non_fsspec_options(): pytest.importorskip("pyarrow") with pytest.raises(ValueError, match="storage_options"): read_csv("localfile", storage_options={"a": True}) with pytest.raises(ValueError, match="storage_options"): # separate test for parquet, which has a different code path read_parquet("localfile", storage_options={"a": True}) by = io.BytesIO() with pytest.raises(ValueError, match="storage_options"): read_csv(by, storage_options={"a": True}) df = DataFrame({"a": [0]}) with pytest.raises(ValueError, match="storage_options"): df.to_parquet("nonfsspecpath", storage_options={"a": True})