"""SQL io tests The SQL tests are broken down in different classes: - `PandasSQLTest`: base class with common methods for all test classes - Tests for the public API (only tests with sqlite3) - `_TestSQLApi` base class - `TestSQLApi`: test the public API with sqlalchemy engine - `TestSQLiteFallbackApi`: test the public API with a sqlite DBAPI connection - Tests for the different SQL flavors (flavor specific type conversions) - Tests for the sqlalchemy mode: `_TestSQLAlchemy` is the base class with common methods. The different tested flavors (sqlite3, MySQL, PostgreSQL) derive from the base class - Tests for the fallback mode (`TestSQLiteFallback`) """ from __future__ import annotations import contextlib from contextlib import closing import csv from datetime import ( date, datetime, time, timedelta, ) from io import StringIO from pathlib import Path import sqlite3 import uuid import numpy as np import pytest from pandas._libs import lib import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, DatetimeTZDtype, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, to_datetime, to_timedelta, ) import pandas._testing as tm from pandas.core.arrays import ( ArrowStringArray, StringArray, ) from pandas.util.version import Version from pandas.io import sql from pandas.io.sql import ( SQLAlchemyEngine, SQLDatabase, SQLiteDatabase, get_engine, pandasSQL_builder, read_sql_query, read_sql_table, ) try: import sqlalchemy SQLALCHEMY_INSTALLED = True except ImportError: SQLALCHEMY_INSTALLED = False @pytest.fixture def sql_strings(): return { "read_parameters": { "sqlite": "SELECT * FROM iris WHERE Name=? AND SepalLength=?", "mysql": "SELECT * FROM iris WHERE `Name`=%s AND `SepalLength`=%s", "postgresql": 'SELECT * FROM iris WHERE "Name"=%s AND "SepalLength"=%s', }, "read_named_parameters": { "sqlite": """ SELECT * FROM iris WHERE Name=:name AND SepalLength=:length """, "mysql": """ SELECT * FROM iris WHERE `Name`=%(name)s AND `SepalLength`=%(length)s """, "postgresql": """ SELECT * FROM iris WHERE "Name"=%(name)s AND "SepalLength"=%(length)s """, }, "read_no_parameters_with_percent": { "sqlite": "SELECT * FROM iris WHERE Name LIKE '%'", "mysql": "SELECT * FROM iris WHERE `Name` LIKE '%'", "postgresql": "SELECT * FROM iris WHERE \"Name\" LIKE '%'", }, } def iris_table_metadata(dialect: str): from sqlalchemy import ( REAL, Column, Float, MetaData, String, Table, ) dtype = Float if dialect == "postgresql" else REAL metadata = MetaData() iris = Table( "iris", metadata, Column("SepalLength", dtype), Column("SepalWidth", dtype), Column("PetalLength", dtype), Column("PetalWidth", dtype), Column("Name", String(200)), ) return iris def create_and_load_iris_sqlite3(conn: sqlite3.Connection, iris_file: Path): cur = conn.cursor() stmt = """CREATE TABLE iris ( "SepalLength" REAL, "SepalWidth" REAL, "PetalLength" REAL, "PetalWidth" REAL, "Name" TEXT )""" cur.execute(stmt) with iris_file.open(newline=None, encoding="utf-8") as csvfile: reader = csv.reader(csvfile) next(reader) stmt = "INSERT INTO iris VALUES(?, ?, ?, ?, ?)" cur.executemany(stmt, reader) def create_and_load_iris(conn, iris_file: Path, dialect: str): from sqlalchemy import insert from sqlalchemy.engine import Engine iris = iris_table_metadata(dialect) with iris_file.open(newline=None, encoding="utf-8") as csvfile: reader = csv.reader(csvfile) header = next(reader) params = [dict(zip(header, row)) for row in reader] stmt = insert(iris).values(params) if isinstance(conn, Engine): with conn.connect() as conn: with conn.begin(): iris.drop(conn, checkfirst=True) iris.create(bind=conn) conn.execute(stmt) else: with conn.begin(): iris.drop(conn, checkfirst=True) iris.create(bind=conn) conn.execute(stmt) def create_and_load_iris_view(conn): stmt = "CREATE VIEW iris_view AS SELECT * FROM iris" if isinstance(conn, sqlite3.Connection): cur = conn.cursor() cur.execute(stmt) else: from sqlalchemy import text from sqlalchemy.engine import Engine stmt = text(stmt) if isinstance(conn, Engine): with conn.connect() as conn: with conn.begin(): conn.execute(stmt) else: with conn.begin(): conn.execute(stmt) def types_table_metadata(dialect: str): from sqlalchemy import ( TEXT, Boolean, Column, DateTime, Float, Integer, MetaData, Table, ) date_type = TEXT if dialect == "sqlite" else DateTime bool_type = Integer if dialect == "sqlite" else Boolean metadata = MetaData() types = Table( "types", metadata, Column("TextCol", TEXT), Column("DateCol", date_type), Column("IntDateCol", Integer), Column("IntDateOnlyCol", Integer), Column("FloatCol", Float), Column("IntCol", Integer), Column("BoolCol", bool_type), Column("IntColWithNull", Integer), Column("BoolColWithNull", bool_type), ) if dialect == "postgresql": types.append_column(Column("DateColWithTz", DateTime(timezone=True))) return types def create_and_load_types_sqlite3(conn: sqlite3.Connection, types_data: list[dict]): cur = conn.cursor() stmt = """CREATE TABLE types ( "TextCol" TEXT, "DateCol" TEXT, "IntDateCol" INTEGER, "IntDateOnlyCol" INTEGER, "FloatCol" REAL, "IntCol" INTEGER, "BoolCol" INTEGER, "IntColWithNull" INTEGER, "BoolColWithNull" INTEGER )""" cur.execute(stmt) stmt = """ INSERT INTO types VALUES(?, ?, ?, ?, ?, ?, ?, ?, ?) """ cur.executemany(stmt, types_data) def create_and_load_types(conn, types_data: list[dict], dialect: str): from sqlalchemy import insert from sqlalchemy.engine import Engine types = types_table_metadata(dialect) stmt = insert(types).values(types_data) if isinstance(conn, Engine): with conn.connect() as conn: with conn.begin(): types.drop(conn, checkfirst=True) types.create(bind=conn) conn.execute(stmt) else: with conn.begin(): types.drop(conn, checkfirst=True) types.create(bind=conn) conn.execute(stmt) def check_iris_frame(frame: DataFrame): pytype = frame.dtypes.iloc[0].type row = frame.iloc[0] assert issubclass(pytype, np.floating) tm.equalContents(row.values, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) assert frame.shape in ((150, 5), (8, 5)) def count_rows(conn, table_name: str): stmt = f"SELECT count(*) AS count_1 FROM {table_name}" if isinstance(conn, sqlite3.Connection): cur = conn.cursor() return cur.execute(stmt).fetchone()[0] else: from sqlalchemy import create_engine from sqlalchemy.engine import Engine if isinstance(conn, str): try: engine = create_engine(conn) with engine.connect() as conn: return conn.exec_driver_sql(stmt).scalar_one() finally: engine.dispose() elif isinstance(conn, Engine): with conn.connect() as conn: return conn.exec_driver_sql(stmt).scalar_one() else: return conn.exec_driver_sql(stmt).scalar_one() @pytest.fixture def iris_path(datapath): iris_path = datapath("io", "data", "csv", "iris.csv") return Path(iris_path) @pytest.fixture def types_data(): return [ { "TextCol": "first", "DateCol": "2000-01-03 00:00:00", "IntDateCol": 535852800, "IntDateOnlyCol": 20101010, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": 1, "BoolColWithNull": False, "DateColWithTz": "2000-01-01 00:00:00-08:00", }, { "TextCol": "first", "DateCol": "2000-01-04 00:00:00", "IntDateCol": 1356998400, "IntDateOnlyCol": 20101212, "FloatCol": 10.10, "IntCol": 1, "BoolCol": False, "IntColWithNull": None, "BoolColWithNull": None, "DateColWithTz": "2000-06-01 00:00:00-07:00", }, ] @pytest.fixture def types_data_frame(types_data): dtypes = { "TextCol": "str", "DateCol": "str", "IntDateCol": "int64", "IntDateOnlyCol": "int64", "FloatCol": "float", "IntCol": "int64", "BoolCol": "int64", "IntColWithNull": "float", "BoolColWithNull": "float", } df = DataFrame(types_data) return df[dtypes.keys()].astype(dtypes) @pytest.fixture def test_frame1(): columns = ["index", "A", "B", "C", "D"] data = [ ( "2000-01-03 00:00:00", 0.980268513777, 3.68573087906, -0.364216805298, -1.15973806169, ), ( "2000-01-04 00:00:00", 1.04791624281, -0.0412318367011, -0.16181208307, 0.212549316967, ), ( "2000-01-05 00:00:00", 0.498580885705, 0.731167677815, -0.537677223318, 1.34627041952, ), ( "2000-01-06 00:00:00", 1.12020151869, 1.56762092543, 0.00364077397681, 0.67525259227, ), ] return DataFrame(data, columns=columns) @pytest.fixture def test_frame3(): columns = ["index", "A", "B"] data = [ ("2000-01-03 00:00:00", 2**31 - 1, -1.987670), ("2000-01-04 00:00:00", -29, -0.0412318367011), ("2000-01-05 00:00:00", 20000, 0.731167677815), ("2000-01-06 00:00:00", -290867, 1.56762092543), ] return DataFrame(data, columns=columns) @pytest.fixture def mysql_pymysql_engine(iris_path, types_data): sqlalchemy = pytest.importorskip("sqlalchemy") pymysql = pytest.importorskip("pymysql") engine = sqlalchemy.create_engine( "mysql+pymysql://root@localhost:3306/pandas", connect_args={"client_flag": pymysql.constants.CLIENT.MULTI_STATEMENTS}, poolclass=sqlalchemy.pool.NullPool, ) insp = sqlalchemy.inspect(engine) if not insp.has_table("iris"): create_and_load_iris(engine, iris_path, "mysql") if not insp.has_table("types"): for entry in types_data: entry.pop("DateColWithTz") create_and_load_types(engine, types_data, "mysql") yield engine with engine.connect() as conn: with conn.begin(): stmt = sqlalchemy.text("DROP TABLE IF EXISTS test_frame;") conn.execute(stmt) engine.dispose() @pytest.fixture def mysql_pymysql_conn(mysql_pymysql_engine): with mysql_pymysql_engine.connect() as conn: yield conn @pytest.fixture def postgresql_psycopg2_engine(iris_path, types_data): sqlalchemy = pytest.importorskip("sqlalchemy") pytest.importorskip("psycopg2") engine = sqlalchemy.create_engine( "postgresql+psycopg2://postgres:postgres@localhost:5432/pandas", poolclass=sqlalchemy.pool.NullPool, ) insp = sqlalchemy.inspect(engine) if not insp.has_table("iris"): create_and_load_iris(engine, iris_path, "postgresql") if not insp.has_table("types"): create_and_load_types(engine, types_data, "postgresql") yield engine with engine.connect() as conn: with conn.begin(): stmt = sqlalchemy.text("DROP TABLE IF EXISTS test_frame;") conn.execute(stmt) engine.dispose() @pytest.fixture def postgresql_psycopg2_conn(postgresql_psycopg2_engine): with postgresql_psycopg2_engine.connect() as conn: yield conn @pytest.fixture def sqlite_str(): pytest.importorskip("sqlalchemy") with tm.ensure_clean() as name: yield "sqlite:///" + name @pytest.fixture def sqlite_engine(sqlite_str): sqlalchemy = pytest.importorskip("sqlalchemy") engine = sqlalchemy.create_engine(sqlite_str, poolclass=sqlalchemy.pool.NullPool) yield engine engine.dispose() @pytest.fixture def sqlite_conn(sqlite_engine): with sqlite_engine.connect() as conn: yield conn @pytest.fixture def sqlite_iris_str(sqlite_str, iris_path): sqlalchemy = pytest.importorskip("sqlalchemy") engine = sqlalchemy.create_engine(sqlite_str) create_and_load_iris(engine, iris_path, "sqlite") engine.dispose() return sqlite_str @pytest.fixture def sqlite_iris_engine(sqlite_engine, iris_path): create_and_load_iris(sqlite_engine, iris_path, "sqlite") return sqlite_engine @pytest.fixture def sqlite_iris_conn(sqlite_iris_engine): with sqlite_iris_engine.connect() as conn: yield conn @pytest.fixture def sqlite_buildin(): with contextlib.closing(sqlite3.connect(":memory:")) as closing_conn: with closing_conn as conn: yield conn @pytest.fixture def sqlite_buildin_iris(sqlite_buildin, iris_path): create_and_load_iris_sqlite3(sqlite_buildin, iris_path) return sqlite_buildin mysql_connectable = [ "mysql_pymysql_engine", "mysql_pymysql_conn", ] postgresql_connectable = [ "postgresql_psycopg2_engine", "postgresql_psycopg2_conn", ] sqlite_connectable = [ "sqlite_engine", "sqlite_conn", "sqlite_str", ] sqlite_iris_connectable = [ "sqlite_iris_engine", "sqlite_iris_conn", "sqlite_iris_str", ] sqlalchemy_connectable = mysql_connectable + postgresql_connectable + sqlite_connectable sqlalchemy_connectable_iris = ( mysql_connectable + postgresql_connectable + sqlite_iris_connectable ) all_connectable = sqlalchemy_connectable + ["sqlite_buildin"] all_connectable_iris = sqlalchemy_connectable_iris + ["sqlite_buildin_iris"] @pytest.mark.db @pytest.mark.parametrize("conn", all_connectable) def test_dataframe_to_sql(conn, test_frame1, request): # GH 51086 if conn is sqlite_engine conn = request.getfixturevalue(conn) test_frame1.to_sql(name="test", con=conn, if_exists="append", index=False) @pytest.mark.db @pytest.mark.parametrize("conn", all_connectable) def test_dataframe_to_sql_arrow_dtypes(conn, request): # GH 52046 pytest.importorskip("pyarrow") df = DataFrame( { "int": pd.array([1], dtype="int8[pyarrow]"), "datetime": pd.array( [datetime(2023, 1, 1)], dtype="timestamp[ns][pyarrow]" ), "date": pd.array([date(2023, 1, 1)], dtype="date32[day][pyarrow]"), "timedelta": pd.array([timedelta(1)], dtype="duration[ns][pyarrow]"), "string": pd.array(["a"], dtype="string[pyarrow]"), } ) conn = request.getfixturevalue(conn) with tm.assert_produces_warning(UserWarning, match="the 'timedelta'"): df.to_sql(name="test_arrow", con=conn, if_exists="replace", index=False) @pytest.mark.db @pytest.mark.parametrize("conn", all_connectable) def test_dataframe_to_sql_arrow_dtypes_missing(conn, request, nulls_fixture): # GH 52046 pytest.importorskip("pyarrow") df = DataFrame( { "datetime": pd.array( [datetime(2023, 1, 1), nulls_fixture], dtype="timestamp[ns][pyarrow]" ), } ) conn = request.getfixturevalue(conn) df.to_sql(name="test_arrow", con=conn, if_exists="replace", index=False) @pytest.mark.db @pytest.mark.parametrize("conn", all_connectable) @pytest.mark.parametrize("method", [None, "multi"]) def test_to_sql(conn, method, test_frame1, request): conn = request.getfixturevalue(conn) with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: pandasSQL.to_sql(test_frame1, "test_frame", method=method) assert pandasSQL.has_table("test_frame") assert count_rows(conn, "test_frame") == len(test_frame1) @pytest.mark.db @pytest.mark.parametrize("conn", all_connectable) @pytest.mark.parametrize("mode, num_row_coef", [("replace", 1), ("append", 2)]) def test_to_sql_exist(conn, mode, num_row_coef, test_frame1, request): conn = request.getfixturevalue(conn) with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail") pandasSQL.to_sql(test_frame1, "test_frame", if_exists=mode) assert pandasSQL.has_table("test_frame") assert count_rows(conn, "test_frame") == num_row_coef * len(test_frame1) @pytest.mark.db @pytest.mark.parametrize("conn", all_connectable) def test_to_sql_exist_fail(conn, test_frame1, request): conn = request.getfixturevalue(conn) with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail") assert pandasSQL.has_table("test_frame") msg = "Table 'test_frame' already exists" with pytest.raises(ValueError, match=msg): pandasSQL.to_sql(test_frame1, "test_frame", if_exists="fail") @pytest.mark.db @pytest.mark.parametrize("conn", all_connectable_iris) def test_read_iris_query(conn, request): conn = request.getfixturevalue(conn) iris_frame = read_sql_query("SELECT * FROM iris", conn) check_iris_frame(iris_frame) iris_frame = pd.read_sql("SELECT * FROM iris", conn) check_iris_frame(iris_frame) iris_frame = pd.read_sql("SELECT * FROM iris where 0=1", conn) assert iris_frame.shape == (0, 5) assert "SepalWidth" in iris_frame.columns @pytest.mark.db @pytest.mark.parametrize("conn", all_connectable_iris) def test_read_iris_query_chunksize(conn, request): conn = request.getfixturevalue(conn) iris_frame = concat(read_sql_query("SELECT * FROM iris", conn, chunksize=7)) check_iris_frame(iris_frame) iris_frame = concat(pd.read_sql("SELECT * FROM iris", conn, chunksize=7)) check_iris_frame(iris_frame) iris_frame = concat(pd.read_sql("SELECT * FROM iris where 0=1", conn, chunksize=7)) assert iris_frame.shape == (0, 5) assert "SepalWidth" in iris_frame.columns @pytest.mark.db @pytest.mark.parametrize("conn", sqlalchemy_connectable_iris) def test_read_iris_query_expression_with_parameter(conn, request): conn = request.getfixturevalue(conn) from sqlalchemy import ( MetaData, Table, create_engine, select, ) metadata = MetaData() autoload_con = create_engine(conn) if isinstance(conn, str) else conn iris = Table("iris", metadata, autoload_with=autoload_con) iris_frame = read_sql_query( select(iris), conn, params={"name": "Iris-setosa", "length": 5.1} ) check_iris_frame(iris_frame) if isinstance(conn, str): autoload_con.dispose() @pytest.mark.db @pytest.mark.parametrize("conn", all_connectable_iris) def test_read_iris_query_string_with_parameter(conn, request, sql_strings): for db, query in sql_strings["read_parameters"].items(): if db in conn: break else: raise KeyError(f"No part of {conn} found in sql_strings['read_parameters']") conn = request.getfixturevalue(conn) iris_frame = read_sql_query(query, conn, params=("Iris-setosa", 5.1)) check_iris_frame(iris_frame) @pytest.mark.db @pytest.mark.parametrize("conn", sqlalchemy_connectable_iris) def test_read_iris_table(conn, request): # GH 51015 if conn = sqlite_iris_str conn = request.getfixturevalue(conn) iris_frame = read_sql_table("iris", conn) check_iris_frame(iris_frame) iris_frame = pd.read_sql("iris", conn) check_iris_frame(iris_frame) @pytest.mark.db @pytest.mark.parametrize("conn", sqlalchemy_connectable_iris) def test_read_iris_table_chunksize(conn, request): conn = request.getfixturevalue(conn) iris_frame = concat(read_sql_table("iris", conn, chunksize=7)) check_iris_frame(iris_frame) iris_frame = concat(pd.read_sql("iris", conn, chunksize=7)) check_iris_frame(iris_frame) @pytest.mark.db @pytest.mark.parametrize("conn", sqlalchemy_connectable) def test_to_sql_callable(conn, test_frame1, request): conn = request.getfixturevalue(conn) check = [] # used to double check function below is really being used def sample(pd_table, conn, keys, data_iter): check.append(1) data = [dict(zip(keys, row)) for row in data_iter] conn.execute(pd_table.table.insert(), data) with pandasSQL_builder(conn, need_transaction=True) as pandasSQL: pandasSQL.to_sql(test_frame1, "test_frame", method=sample) assert pandasSQL.has_table("test_frame") assert check == [1] assert count_rows(conn, "test_frame") == len(test_frame1) @pytest.mark.db @pytest.mark.parametrize("conn", mysql_connectable) def test_default_type_conversion(conn, request): conn = request.getfixturevalue(conn) df = sql.read_sql_table("types", conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # MySQL has no real BOOL type (it's an alias for TINYINT) assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA = int column with NA values => becomes float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) @pytest.mark.db @pytest.mark.parametrize("conn", mysql_connectable) def test_read_procedure(conn, request): conn = request.getfixturevalue(conn) # GH 7324 # Although it is more an api test, it is added to the # mysql tests as sqlite does not have stored procedures from sqlalchemy import text from sqlalchemy.engine import Engine df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3]}) df.to_sql(name="test_frame", con=conn, index=False) proc = """DROP PROCEDURE IF EXISTS get_testdb; CREATE PROCEDURE get_testdb () BEGIN SELECT * FROM test_frame; END""" proc = text(proc) if isinstance(conn, Engine): with conn.connect() as engine_conn: with engine_conn.begin(): engine_conn.execute(proc) else: with conn.begin(): conn.execute(proc) res1 = sql.read_sql_query("CALL get_testdb();", conn) tm.assert_frame_equal(df, res1) # test delegation to read_sql_query res2 = sql.read_sql("CALL get_testdb();", conn) tm.assert_frame_equal(df, res2) @pytest.mark.db @pytest.mark.parametrize("conn", postgresql_connectable) @pytest.mark.parametrize("expected_count", [2, "Success!"]) def test_copy_from_callable_insertion_method(conn, expected_count, request): # GH 8953 # Example in io.rst found under _io.sql.method # not available in sqlite, mysql def psql_insert_copy(table, conn, keys, data_iter): # gets a DBAPI connection that can provide a cursor dbapi_conn = conn.connection with dbapi_conn.cursor() as cur: s_buf = StringIO() writer = csv.writer(s_buf) writer.writerows(data_iter) s_buf.seek(0) columns = ", ".join([f'"{k}"' for k in keys]) if table.schema: table_name = f"{table.schema}.{table.name}" else: table_name = table.name sql_query = f"COPY {table_name} ({columns}) FROM STDIN WITH CSV" cur.copy_expert(sql=sql_query, file=s_buf) return expected_count conn = request.getfixturevalue(conn) expected = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) result_count = expected.to_sql( name="test_frame", con=conn, index=False, method=psql_insert_copy ) # GH 46891 if expected_count is None: assert result_count is None else: assert result_count == expected_count result = sql.read_sql_table("test_frame", conn) tm.assert_frame_equal(result, expected) @pytest.mark.db @pytest.mark.parametrize("conn", postgresql_connectable) def test_insertion_method_on_conflict_do_nothing(conn, request): # GH 15988: Example in to_sql docstring conn = request.getfixturevalue(conn) from sqlalchemy.dialects.postgresql import insert from sqlalchemy.engine import Engine from sqlalchemy.sql import text def insert_on_conflict(table, conn, keys, data_iter): data = [dict(zip(keys, row)) for row in data_iter] stmt = ( insert(table.table) .values(data) .on_conflict_do_nothing(index_elements=["a"]) ) result = conn.execute(stmt) return result.rowcount create_sql = text( """ CREATE TABLE test_insert_conflict ( a integer PRIMARY KEY, b numeric, c text ); """ ) if isinstance(conn, Engine): with conn.connect() as con: with con.begin(): con.execute(create_sql) else: with conn.begin(): conn.execute(create_sql) expected = DataFrame([[1, 2.1, "a"]], columns=list("abc")) expected.to_sql( name="test_insert_conflict", con=conn, if_exists="append", index=False ) df_insert = DataFrame([[1, 3.2, "b"]], columns=list("abc")) inserted = df_insert.to_sql( name="test_insert_conflict", con=conn, index=False, if_exists="append", method=insert_on_conflict, ) result = sql.read_sql_table("test_insert_conflict", conn) tm.assert_frame_equal(result, expected) assert inserted == 0 # Cleanup with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: pandasSQL.drop_table("test_insert_conflict") @pytest.mark.db @pytest.mark.parametrize("conn", mysql_connectable) def test_insertion_method_on_conflict_update(conn, request): # GH 14553: Example in to_sql docstring conn = request.getfixturevalue(conn) from sqlalchemy.dialects.mysql import insert from sqlalchemy.engine import Engine from sqlalchemy.sql import text def insert_on_conflict(table, conn, keys, data_iter): data = [dict(zip(keys, row)) for row in data_iter] stmt = insert(table.table).values(data) stmt = stmt.on_duplicate_key_update(b=stmt.inserted.b, c=stmt.inserted.c) result = conn.execute(stmt) return result.rowcount create_sql = text( """ CREATE TABLE test_insert_conflict ( a INT PRIMARY KEY, b FLOAT, c VARCHAR(10) ); """ ) if isinstance(conn, Engine): with conn.connect() as con: with con.begin(): con.execute(create_sql) else: with conn.begin(): conn.execute(create_sql) df = DataFrame([[1, 2.1, "a"]], columns=list("abc")) df.to_sql(name="test_insert_conflict", con=conn, if_exists="append", index=False) expected = DataFrame([[1, 3.2, "b"]], columns=list("abc")) inserted = expected.to_sql( name="test_insert_conflict", con=conn, index=False, if_exists="append", method=insert_on_conflict, ) result = sql.read_sql_table("test_insert_conflict", conn) tm.assert_frame_equal(result, expected) assert inserted == 2 # Cleanup with sql.SQLDatabase(conn, need_transaction=True) as pandasSQL: pandasSQL.drop_table("test_insert_conflict") @pytest.mark.db @pytest.mark.parametrize("conn", postgresql_connectable) def test_read_view_postgres(conn, request): # GH 52969 conn = request.getfixturevalue(conn) from sqlalchemy.engine import Engine from sqlalchemy.sql import text table_name = f"group_{uuid.uuid4().hex}" view_name = f"group_view_{uuid.uuid4().hex}" sql_stmt = text( f""" CREATE TABLE {table_name} ( group_id INTEGER, name TEXT ); INSERT INTO {table_name} VALUES (1, 'name'); CREATE VIEW {view_name} AS SELECT * FROM {table_name}; """ ) if isinstance(conn, Engine): with conn.connect() as con: with con.begin(): con.execute(sql_stmt) else: with conn.begin(): conn.execute(sql_stmt) result = read_sql_table(view_name, conn) expected = DataFrame({"group_id": [1], "name": "name"}) tm.assert_frame_equal(result, expected) def test_read_view_sqlite(sqlite_buildin): # GH 52969 create_table = """ CREATE TABLE groups ( group_id INTEGER, name TEXT ); """ insert_into = """ INSERT INTO groups VALUES (1, 'name'); """ create_view = """ CREATE VIEW group_view AS SELECT * FROM groups; """ sqlite_buildin.execute(create_table) sqlite_buildin.execute(insert_into) sqlite_buildin.execute(create_view) result = pd.read_sql("SELECT * FROM group_view", sqlite_buildin) expected = DataFrame({"group_id": [1], "name": "name"}) tm.assert_frame_equal(result, expected) def test_execute_typeerror(sqlite_iris_engine): with pytest.raises(TypeError, match="pandas.io.sql.execute requires a connection"): with tm.assert_produces_warning( FutureWarning, match="`pandas.io.sql.execute` is deprecated and " "will be removed in the future version.", ): sql.execute("select * from iris", sqlite_iris_engine) def test_execute_deprecated(sqlite_buildin_iris): # GH50185 with tm.assert_produces_warning( FutureWarning, match="`pandas.io.sql.execute` is deprecated and " "will be removed in the future version.", ): sql.execute("select * from iris", sqlite_buildin_iris) class MixInBase: def teardown_method(self): # if setup fails, there may not be a connection to close. if hasattr(self, "conn"): self.conn.close() # use a fresh connection to ensure we can drop all tables. try: conn = self.connect() except (sqlalchemy.exc.OperationalError, sqlite3.OperationalError): pass else: with conn: for view in self._get_all_views(conn): self.drop_view(view, conn) for tbl in self._get_all_tables(conn): self.drop_table(tbl, conn) class SQLiteMixIn(MixInBase): def connect(self): return sqlite3.connect(":memory:") def drop_table(self, table_name, conn): conn.execute(f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}") conn.commit() def _get_all_tables(self, conn): c = conn.execute("SELECT name FROM sqlite_master WHERE type='table'") return [table[0] for table in c.fetchall()] def drop_view(self, view_name, conn): conn.execute(f"DROP VIEW IF EXISTS {sql._get_valid_sqlite_name(view_name)}") conn.commit() def _get_all_views(self, conn): c = conn.execute("SELECT name FROM sqlite_master WHERE type='view'") return [view[0] for view in c.fetchall()] class SQLAlchemyMixIn(MixInBase): @classmethod def teardown_class(cls): cls.engine.dispose() def connect(self): return self.engine.connect() def drop_table(self, table_name, conn): if conn.in_transaction(): conn.get_transaction().rollback() with conn.begin(): sql.SQLDatabase(conn).drop_table(table_name) def _get_all_tables(self, conn): from sqlalchemy import inspect return inspect(conn).get_table_names() def drop_view(self, view_name, conn): quoted_view = conn.engine.dialect.identifier_preparer.quote_identifier( view_name ) if conn.in_transaction(): conn.get_transaction().rollback() with conn.begin(): conn.exec_driver_sql(f"DROP VIEW IF EXISTS {quoted_view}") def _get_all_views(self, conn): from sqlalchemy import inspect return inspect(conn).get_view_names() class PandasSQLTest: """ Base class with common private methods for SQLAlchemy and fallback cases. """ def load_iris_data(self, iris_path): self.drop_table("iris", self.conn) if isinstance(self.conn, sqlite3.Connection): create_and_load_iris_sqlite3(self.conn, iris_path) else: create_and_load_iris(self.conn, iris_path, self.flavor) def load_types_data(self, types_data): if self.flavor != "postgresql": for entry in types_data: entry.pop("DateColWithTz") if isinstance(self.conn, sqlite3.Connection): types_data = [tuple(entry.values()) for entry in types_data] create_and_load_types_sqlite3(self.conn, types_data) else: create_and_load_types(self.conn, types_data, self.flavor) def _read_sql_iris_parameter(self, sql_strings): query = sql_strings["read_parameters"][self.flavor] params = ("Iris-setosa", 5.1) iris_frame = self.pandasSQL.read_query(query, params=params) check_iris_frame(iris_frame) def _read_sql_iris_named_parameter(self, sql_strings): query = sql_strings["read_named_parameters"][self.flavor] params = {"name": "Iris-setosa", "length": 5.1} iris_frame = self.pandasSQL.read_query(query, params=params) check_iris_frame(iris_frame) def _read_sql_iris_no_parameter_with_percent(self, sql_strings): query = sql_strings["read_no_parameters_with_percent"][self.flavor] iris_frame = self.pandasSQL.read_query(query, params=None) check_iris_frame(iris_frame) def _to_sql_empty(self, test_frame1): self.drop_table("test_frame1", self.conn) assert self.pandasSQL.to_sql(test_frame1.iloc[:0], "test_frame1") == 0 def _to_sql_with_sql_engine(self, test_frame1, engine="auto", **engine_kwargs): """`to_sql` with the `engine` param""" # mostly copied from this class's `_to_sql()` method self.drop_table("test_frame1", self.conn) assert ( self.pandasSQL.to_sql( test_frame1, "test_frame1", engine=engine, **engine_kwargs ) == 4 ) assert self.pandasSQL.has_table("test_frame1") num_entries = len(test_frame1) num_rows = count_rows(self.conn, "test_frame1") assert num_rows == num_entries # Nuke table self.drop_table("test_frame1", self.conn) def _roundtrip(self, test_frame1): self.drop_table("test_frame_roundtrip", self.conn) assert self.pandasSQL.to_sql(test_frame1, "test_frame_roundtrip") == 4 result = self.pandasSQL.read_query("SELECT * FROM test_frame_roundtrip") result.set_index("level_0", inplace=True) # result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, test_frame1) def _execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done iris_results = self.pandasSQL.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def _to_sql_save_index(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A"] ) assert self.pandasSQL.to_sql(df, "test_to_sql_saves_index") == 2 ix_cols = self._get_index_columns("test_to_sql_saves_index") assert ix_cols == [["A"]] def _transaction_test(self): with self.pandasSQL.run_transaction() as trans: stmt = "CREATE TABLE test_trans (A INT, B TEXT)" if isinstance(self.pandasSQL, SQLiteDatabase): trans.execute(stmt) else: from sqlalchemy import text stmt = text(stmt) trans.execute(stmt) class DummyException(Exception): pass # Make sure when transaction is rolled back, no rows get inserted ins_sql = "INSERT INTO test_trans (A,B) VALUES (1, 'blah')" if isinstance(self.pandasSQL, SQLDatabase): from sqlalchemy import text ins_sql = text(ins_sql) try: with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) raise DummyException("error") except DummyException: # ignore raised exception pass res = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res) == 0 # Make sure when transaction is committed, rows do get inserted with self.pandasSQL.run_transaction() as trans: trans.execute(ins_sql) res2 = self.pandasSQL.read_query("SELECT * FROM test_trans") assert len(res2) == 1 # ----------------------------------------------------------------------------- # -- Testing the public API class _TestSQLApi(PandasSQLTest): """ Base class to test the public API. From this two classes are derived to run these tests for both the sqlalchemy mode (`TestSQLApi`) and the fallback mode (`TestSQLiteFallbackApi`). These tests are run with sqlite3. Specific tests for the different sql flavours are included in `_TestSQLAlchemy`. Notes: flavor can always be passed even in SQLAlchemy mode, should be correctly ignored. we don't use drop_table because that isn't part of the public api """ flavor = "sqlite" mode: str @pytest.fixture(autouse=True) def setup_method(self, iris_path, types_data): self.conn = self.connect() self.load_iris_data(iris_path) self.load_types_data(types_data) self.load_test_data_and_sql() def load_test_data_and_sql(self): create_and_load_iris_view(self.conn) def test_read_sql_view(self): iris_frame = sql.read_sql_query("SELECT * FROM iris_view", self.conn) check_iris_frame(iris_frame) def test_read_sql_with_chunksize_no_result(self): query = "SELECT * FROM iris_view WHERE SepalLength < 0.0" with_batch = sql.read_sql_query(query, self.conn, chunksize=5) without_batch = sql.read_sql_query(query, self.conn) tm.assert_frame_equal(concat(with_batch), without_batch) def test_to_sql(self, test_frame1): sql.to_sql(test_frame1, "test_frame1", self.conn) assert sql.has_table("test_frame1", self.conn) def test_to_sql_fail(self, test_frame1): sql.to_sql(test_frame1, "test_frame2", self.conn, if_exists="fail") assert sql.has_table("test_frame2", self.conn) msg = "Table 'test_frame2' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql(test_frame1, "test_frame2", self.conn, if_exists="fail") def test_to_sql_replace(self, test_frame1): sql.to_sql(test_frame1, "test_frame3", self.conn, if_exists="fail") # Add to table again sql.to_sql(test_frame1, "test_frame3", self.conn, if_exists="replace") assert sql.has_table("test_frame3", self.conn) num_entries = len(test_frame1) num_rows = count_rows(self.conn, "test_frame3") assert num_rows == num_entries def test_to_sql_append(self, test_frame1): assert sql.to_sql(test_frame1, "test_frame4", self.conn, if_exists="fail") == 4 # Add to table again assert ( sql.to_sql(test_frame1, "test_frame4", self.conn, if_exists="append") == 4 ) assert sql.has_table("test_frame4", self.conn) num_entries = 2 * len(test_frame1) num_rows = count_rows(self.conn, "test_frame4") assert num_rows == num_entries def test_to_sql_type_mapping(self, test_frame3): sql.to_sql(test_frame3, "test_frame5", self.conn, index=False) result = sql.read_sql("SELECT * FROM test_frame5", self.conn) tm.assert_frame_equal(test_frame3, result) def test_to_sql_series(self): s = Series(np.arange(5, dtype="int64"), name="series") sql.to_sql(s, "test_series", self.conn, index=False) s2 = sql.read_sql_query("SELECT * FROM test_series", self.conn) tm.assert_frame_equal(s.to_frame(), s2) def test_roundtrip(self, test_frame1): sql.to_sql(test_frame1, "test_frame_roundtrip", con=self.conn) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) # HACK! result.index = test_frame1.index result.set_index("level_0", inplace=True) result.index.astype(int) result.index.name = None tm.assert_frame_equal(result, test_frame1) def test_roundtrip_chunksize(self, test_frame1): sql.to_sql( test_frame1, "test_frame_roundtrip", con=self.conn, index=False, chunksize=2, ) result = sql.read_sql_query("SELECT * FROM test_frame_roundtrip", con=self.conn) tm.assert_frame_equal(result, test_frame1) def test_execute_sql(self): # drop_sql = "DROP TABLE IF EXISTS test" # should already be done with sql.pandasSQL_builder(self.conn) as pandas_sql: iris_results = pandas_sql.execute("SELECT * FROM iris") row = iris_results.fetchone() tm.equalContents(row, [5.1, 3.5, 1.4, 0.2, "Iris-setosa"]) def test_date_parsing(self): # Test date parsing in read_sql # No Parsing df = sql.read_sql_query("SELECT * FROM types", self.conn) assert not issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_query( "SELECT * FROM types", self.conn, parse_dates=["DateCol"] ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ Timestamp(2000, 1, 3, 0, 0, 0), Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) assert df.DateCol.tolist() == [ Timestamp(2000, 1, 3, 0, 0, 0), Timestamp(2000, 1, 4, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types", self.conn, parse_dates=["IntDateCol"] ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ Timestamp(1986, 12, 25, 0, 0, 0), Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types", self.conn, parse_dates={"IntDateCol": "s"} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) assert df.IntDateCol.tolist() == [ Timestamp(1986, 12, 25, 0, 0, 0), Timestamp(2013, 1, 1, 0, 0, 0), ] df = sql.read_sql_query( "SELECT * FROM types", self.conn, parse_dates={"IntDateOnlyCol": "%Y%m%d"}, ) assert issubclass(df.IntDateOnlyCol.dtype.type, np.datetime64) assert df.IntDateOnlyCol.tolist() == [ Timestamp("2010-10-10"), Timestamp("2010-12-12"), ] @pytest.mark.parametrize("error", ["ignore", "raise", "coerce"]) @pytest.mark.parametrize( "read_sql, text, mode", [ (sql.read_sql, "SELECT * FROM types", ("sqlalchemy", "fallback")), (sql.read_sql, "types", ("sqlalchemy")), ( sql.read_sql_query, "SELECT * FROM types", ("sqlalchemy", "fallback"), ), (sql.read_sql_table, "types", ("sqlalchemy")), ], ) def test_custom_dateparsing_error( self, read_sql, text, mode, error, types_data_frame ): if self.mode in mode: expected = types_data_frame.astype({"DateCol": "datetime64[ns]"}) result = read_sql( text, con=self.conn, parse_dates={ "DateCol": {"errors": error}, }, ) tm.assert_frame_equal(result, expected) def test_date_and_index(self): # Test case where same column appears in parse_date and index_col df = sql.read_sql_query( "SELECT * FROM types", self.conn, index_col="DateCol", parse_dates=["DateCol", "IntDateCol"], ) assert issubclass(df.index.dtype.type, np.datetime64) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_timedelta(self): # see #6921 df = to_timedelta(Series(["00:00:01", "00:00:03"], name="foo")).to_frame() with tm.assert_produces_warning(UserWarning): result_count = df.to_sql(name="test_timedelta", con=self.conn) assert result_count == 2 result = sql.read_sql_query("SELECT * FROM test_timedelta", self.conn) tm.assert_series_equal(result["foo"], df["foo"].view("int64")) def test_complex_raises(self): df = DataFrame({"a": [1 + 1j, 2j]}) msg = "Complex datatypes not supported" with pytest.raises(ValueError, match=msg): assert df.to_sql("test_complex", con=self.conn) is None @pytest.mark.parametrize( "index_name,index_label,expected", [ # no index name, defaults to 'index' (None, None, "index"), # specifying index_label (None, "other_label", "other_label"), # using the index name ("index_name", None, "index_name"), # has index name, but specifying index_label ("index_name", "other_label", "other_label"), # index name is integer (0, None, "0"), # index name is None but index label is integer (None, 0, "0"), ], ) def test_to_sql_index_label(self, index_name, index_label, expected): temp_frame = DataFrame({"col1": range(4)}) temp_frame.index.name = index_name query = "SELECT * FROM test_index_label" sql.to_sql(temp_frame, "test_index_label", self.conn, index_label=index_label) frame = sql.read_sql_query(query, self.conn) assert frame.columns[0] == expected def test_to_sql_index_label_multiindex(self): expected_row_count = 4 temp_frame = DataFrame( {"col1": range(4)}, index=MultiIndex.from_product([("A0", "A1"), ("B0", "B1")]), ) # no index name, defaults to 'level_0' and 'level_1' result = sql.to_sql(temp_frame, "test_index_label", self.conn) assert result == expected_row_count frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[0] == "level_0" assert frame.columns[1] == "level_1" # specifying index_label result = sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["A", "B"], ) assert result == expected_row_count frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # using the index name temp_frame.index.names = ["A", "B"] result = sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace" ) assert result == expected_row_count frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["A", "B"] # has index name, but specifying index_label result = sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label=["C", "D"], ) assert result == expected_row_count frame = sql.read_sql_query("SELECT * FROM test_index_label", self.conn) assert frame.columns[:2].tolist() == ["C", "D"] msg = "Length of 'index_label' should match number of levels, which is 2" with pytest.raises(ValueError, match=msg): sql.to_sql( temp_frame, "test_index_label", self.conn, if_exists="replace", index_label="C", ) def test_multiindex_roundtrip(self): df = DataFrame.from_records( [(1, 2.1, "line1"), (2, 1.5, "line2")], columns=["A", "B", "C"], index=["A", "B"], ) df.to_sql(name="test_multiindex_roundtrip", con=self.conn) result = sql.read_sql_query( "SELECT * FROM test_multiindex_roundtrip", self.conn, index_col=["A", "B"] ) tm.assert_frame_equal(df, result, check_index_type=True) @pytest.mark.parametrize( "dtype", [ None, int, float, {"A": int, "B": float}, ], ) def test_dtype_argument(self, dtype): # GH10285 Add dtype argument to read_sql_query df = DataFrame([[1.2, 3.4], [5.6, 7.8]], columns=["A", "B"]) assert df.to_sql(name="test_dtype_argument", con=self.conn) == 2 expected = df.astype(dtype) result = sql.read_sql_query( "SELECT A, B FROM test_dtype_argument", con=self.conn, dtype=dtype ) tm.assert_frame_equal(result, expected) def test_integer_col_names(self): df = DataFrame([[1, 2], [3, 4]], columns=[0, 1]) sql.to_sql(df, "test_frame_integer_col_names", self.conn, if_exists="replace") def test_get_schema(self, test_frame1): create_sql = sql.get_schema(test_frame1, "test", con=self.conn) assert "CREATE" in create_sql def test_get_schema_with_schema(self, test_frame1): # GH28486 create_sql = sql.get_schema(test_frame1, "test", con=self.conn, schema="pypi") assert "CREATE TABLE pypi." in create_sql def test_get_schema_dtypes(self): if self.mode == "sqlalchemy": from sqlalchemy import Integer dtype = Integer else: dtype = "INTEGER" float_frame = DataFrame({"a": [1.1, 1.2], "b": [2.1, 2.2]}) create_sql = sql.get_schema( float_frame, "test", con=self.conn, dtype={"b": dtype} ) assert "CREATE" in create_sql assert "INTEGER" in create_sql def test_get_schema_keys(self, test_frame1): frame = DataFrame({"Col1": [1.1, 1.2], "Col2": [2.1, 2.2]}) create_sql = sql.get_schema(frame, "test", con=self.conn, keys="Col1") constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("Col1")' assert constraint_sentence in create_sql # multiple columns as key (GH10385) create_sql = sql.get_schema(test_frame1, "test", con=self.conn, keys=["A", "B"]) constraint_sentence = 'CONSTRAINT test_pk PRIMARY KEY ("A", "B")' assert constraint_sentence in create_sql def test_chunksize_read(self): df = DataFrame( np.random.default_rng(2).standard_normal((22, 5)), columns=list("abcde") ) df.to_sql(name="test_chunksize", con=self.conn, index=False) # reading the query in one time res1 = sql.read_sql_query("select * from test_chunksize", self.conn) # reading the query in chunks with read_sql_query res2 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_query( "select * from test_chunksize", self.conn, chunksize=5 ): res2 = concat([res2, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res2) # reading the query in chunks with read_sql_query if self.mode == "sqlalchemy": res3 = DataFrame() i = 0 sizes = [5, 5, 5, 5, 2] for chunk in sql.read_sql_table("test_chunksize", self.conn, chunksize=5): res3 = concat([res3, chunk], ignore_index=True) assert len(chunk) == sizes[i] i += 1 tm.assert_frame_equal(res1, res3) def test_categorical(self): # GH8624 # test that categorical gets written correctly as dense column df = DataFrame( { "person_id": [1, 2, 3], "person_name": ["John P. Doe", "Jane Dove", "John P. Doe"], } ) df2 = df.copy() df2["person_name"] = df2["person_name"].astype("category") df2.to_sql(name="test_categorical", con=self.conn, index=False) res = sql.read_sql_query("SELECT * FROM test_categorical", self.conn) tm.assert_frame_equal(res, df) def test_unicode_column_name(self): # GH 11431 df = DataFrame([[1, 2], [3, 4]], columns=["\xe9", "b"]) df.to_sql(name="test_unicode", con=self.conn, index=False) def test_escaped_table_name(self): # GH 13206 df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) df.to_sql(name="d1187b08-4943-4c8d-a7f6", con=self.conn, index=False) res = sql.read_sql_query("SELECT * FROM `d1187b08-4943-4c8d-a7f6`", self.conn) tm.assert_frame_equal(res, df) def test_read_sql_duplicate_columns(self): # GH#53117 df = DataFrame({"a": [1, 2, 3], "b": [0.1, 0.2, 0.3], "c": 1}) df.to_sql(name="test_table", con=self.conn, index=False) result = pd.read_sql("SELECT a, b, a +1 as a, c FROM test_table;", self.conn) expected = DataFrame( [[1, 0.1, 2, 1], [2, 0.2, 3, 1], [3, 0.3, 4, 1]], columns=["a", "b", "a", "c"], ) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed") class TestSQLApi(SQLAlchemyMixIn, _TestSQLApi): """ Test the public API as it would be used directly Tests for `read_sql_table` are included here, as this is specific for the sqlalchemy mode. """ flavor = "sqlite" mode = "sqlalchemy" @classmethod def setup_class(cls): cls.engine = sqlalchemy.create_engine("sqlite:///:memory:") def test_read_table_columns(self, test_frame1): # test columns argument in read_table sql.to_sql(test_frame1, "test_frame", self.conn) cols = ["A", "B"] result = sql.read_sql_table("test_frame", self.conn, columns=cols) assert result.columns.tolist() == cols def test_read_table_index_col(self, test_frame1): # test columns argument in read_table sql.to_sql(test_frame1, "test_frame", self.conn) result = sql.read_sql_table("test_frame", self.conn, index_col="index") assert result.index.names == ["index"] result = sql.read_sql_table("test_frame", self.conn, index_col=["A", "B"]) assert result.index.names == ["A", "B"] result = sql.read_sql_table( "test_frame", self.conn, index_col=["A", "B"], columns=["C", "D"] ) assert result.index.names == ["A", "B"] assert result.columns.tolist() == ["C", "D"] def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) iris_frame1 = sql.read_sql_table("iris", self.conn) iris_frame2 = sql.read_sql("iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) def test_not_reflect_all_tables(self): from sqlalchemy import text from sqlalchemy.engine import Engine # create invalid table query_list = [ text("CREATE TABLE invalid (x INTEGER, y UNKNOWN);"), text("CREATE TABLE other_table (x INTEGER, y INTEGER);"), ] for query in query_list: if isinstance(self.conn, Engine): with self.conn.connect() as conn: with conn.begin(): conn.execute(query) else: with self.conn.begin(): self.conn.execute(query) with tm.assert_produces_warning(None): sql.read_sql_table("other_table", self.conn) sql.read_sql_query("SELECT * FROM other_table", self.conn) def test_warning_case_insensitive_table_name(self, test_frame1): # see gh-7815 with tm.assert_produces_warning( UserWarning, match=( r"The provided table name 'TABLE1' is not found exactly as such in " r"the database after writing the table, possibly due to case " r"sensitivity issues. Consider using lower case table names." ), ): sql.SQLDatabase(self.conn).check_case_sensitive("TABLE1", "") # Test that the warning is certainly NOT triggered in a normal case. with tm.assert_produces_warning(None): test_frame1.to_sql(name="CaseSensitive", con=self.conn) def _get_index_columns(self, tbl_name): from sqlalchemy.engine import reflection insp = reflection.Inspector.from_engine(self.conn) ixs = insp.get_indexes("test_index_saved") ixs = [i["column_names"] for i in ixs] return ixs def test_sqlalchemy_type_mapping(self): from sqlalchemy import TIMESTAMP # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["2014-12-12 01:54", "2014-12-11 02:54"], utc=True)} ) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) # GH 9086: TIMESTAMP is the suggested type for datetimes with timezones assert isinstance(table.table.c["time"].type, TIMESTAMP) @pytest.mark.parametrize( "integer, expected", [ ("int8", "SMALLINT"), ("Int8", "SMALLINT"), ("uint8", "SMALLINT"), ("UInt8", "SMALLINT"), ("int16", "SMALLINT"), ("Int16", "SMALLINT"), ("uint16", "INTEGER"), ("UInt16", "INTEGER"), ("int32", "INTEGER"), ("Int32", "INTEGER"), ("uint32", "BIGINT"), ("UInt32", "BIGINT"), ("int64", "BIGINT"), ("Int64", "BIGINT"), (int, "BIGINT" if np.dtype(int).name == "int64" else "INTEGER"), ], ) def test_sqlalchemy_integer_mapping(self, integer, expected): # GH35076 Map pandas integer to optimal SQLAlchemy integer type df = DataFrame([0, 1], columns=["a"], dtype=integer) db = sql.SQLDatabase(self.conn) table = sql.SQLTable("test_type", db, frame=df) result = str(table.table.c.a.type) assert result == expected @pytest.mark.parametrize("integer", ["uint64", "UInt64"]) def test_sqlalchemy_integer_overload_mapping(self, integer): # GH35076 Map pandas integer to optimal SQLAlchemy integer type df = DataFrame([0, 1], columns=["a"], dtype=integer) db = sql.SQLDatabase(self.conn) with pytest.raises( ValueError, match="Unsigned 64 bit integer datatype is not supported" ): sql.SQLTable("test_type", db, frame=df) def test_database_uri_string(self, test_frame1): # Test read_sql and .to_sql method with a database URI (GH10654) # db_uri = 'sqlite:///:memory:' # raises # sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) near # "iris": syntax error [SQL: 'iris'] with tm.ensure_clean() as name: db_uri = "sqlite:///" + name table = "iris" test_frame1.to_sql(name=table, con=db_uri, if_exists="replace", index=False) test_frame2 = sql.read_sql(table, db_uri) test_frame3 = sql.read_sql_table(table, db_uri) query = "SELECT * FROM iris" test_frame4 = sql.read_sql_query(query, db_uri) tm.assert_frame_equal(test_frame1, test_frame2) tm.assert_frame_equal(test_frame1, test_frame3) tm.assert_frame_equal(test_frame1, test_frame4) @td.skip_if_installed("pg8000") def test_pg8000_sqlalchemy_passthrough_error(self): # using driver that will not be installed on CI to trigger error # in sqlalchemy.create_engine -> test passing of this error to user db_uri = "postgresql+pg8000://user:pass@host/dbname" with pytest.raises(ImportError, match="pg8000"): sql.read_sql("select * from table", db_uri) def test_query_by_text_obj(self): # WIP : GH10846 from sqlalchemy import text name_text = text("select * from iris where name=:name") iris_df = sql.read_sql(name_text, self.conn, params={"name": "Iris-versicolor"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-versicolor"} def test_query_by_select_obj(self): # WIP : GH10846 from sqlalchemy import ( bindparam, select, ) iris = iris_table_metadata(self.flavor) name_select = select(iris).where(iris.c.Name == bindparam("name")) iris_df = sql.read_sql(name_select, self.conn, params={"name": "Iris-setosa"}) all_names = set(iris_df["Name"]) assert all_names == {"Iris-setosa"} def test_column_with_percentage(self): # GH 37157 df = DataFrame({"A": [0, 1, 2], "%_variation": [3, 4, 5]}) df.to_sql(name="test_column_percentage", con=self.conn, index=False) res = sql.read_sql_table("test_column_percentage", self.conn) tm.assert_frame_equal(res, df) class TestSQLiteFallbackApi(SQLiteMixIn, _TestSQLApi): """ Test the public sqlite connection fallback API """ flavor = "sqlite" mode = "fallback" def connect(self, database=":memory:"): return sqlite3.connect(database) def test_sql_open_close(self, test_frame3): # Test if the IO in the database still work if the connection closed # between the writing and reading (as in many real situations). with tm.ensure_clean() as name: with closing(self.connect(name)) as conn: assert ( sql.to_sql(test_frame3, "test_frame3_legacy", conn, index=False) == 4 ) with closing(self.connect(name)) as conn: result = sql.read_sql_query("SELECT * FROM test_frame3_legacy;", conn) tm.assert_frame_equal(test_frame3, result) @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed") def test_con_string_import_error(self): conn = "mysql://root@localhost/pandas" msg = "Using URI string without sqlalchemy installed" with pytest.raises(ImportError, match=msg): sql.read_sql("SELECT * FROM iris", conn) @pytest.mark.skipif(SQLALCHEMY_INSTALLED, reason="SQLAlchemy is installed") def test_con_unknown_dbapi2_class_does_not_error_without_sql_alchemy_installed( self, ): class MockSqliteConnection: def __init__(self, *args, **kwargs) -> None: self.conn = sqlite3.Connection(*args, **kwargs) def __getattr__(self, name): return getattr(self.conn, name) def close(self): self.conn.close() with contextlib.closing(MockSqliteConnection(":memory:")) as conn: with tm.assert_produces_warning(UserWarning): sql.read_sql("SELECT 1", conn) def test_read_sql_delegate(self): iris_frame1 = sql.read_sql_query("SELECT * FROM iris", self.conn) iris_frame2 = sql.read_sql("SELECT * FROM iris", self.conn) tm.assert_frame_equal(iris_frame1, iris_frame2) msg = "Execution failed on sql 'iris': near \"iris\": syntax error" with pytest.raises(sql.DatabaseError, match=msg): sql.read_sql("iris", self.conn) def test_get_schema2(self, test_frame1): # without providing a connection object (available for backwards comp) create_sql = sql.get_schema(test_frame1, "test") assert "CREATE" in create_sql def _get_sqlite_column_type(self, schema, column): for col in schema.split("\n"): if col.split()[0].strip('"') == column: return col.split()[1] raise ValueError(f"Column {column} not found") def test_sqlite_type_mapping(self): # Test Timestamp objects (no datetime64 because of timezone) (GH9085) df = DataFrame( {"time": to_datetime(["2014-12-12 01:54", "2014-12-11 02:54"], utc=True)} ) db = sql.SQLiteDatabase(self.conn) table = sql.SQLiteTable("test_type", db, frame=df) schema = table.sql_schema() assert self._get_sqlite_column_type(schema, "time") == "TIMESTAMP" # ----------------------------------------------------------------------------- # -- Database flavor specific tests @pytest.mark.skipif(not SQLALCHEMY_INSTALLED, reason="SQLAlchemy not installed") class _TestSQLAlchemy(SQLAlchemyMixIn, PandasSQLTest): """ Base class for testing the sqlalchemy backend. Subclasses for specific database types are created below. Tests that deviate for each flavor are overwritten there. """ flavor: str @classmethod def setup_class(cls): cls.setup_driver() cls.setup_engine() @pytest.fixture(autouse=True) def setup_method(self, iris_path, types_data): try: self.conn = self.engine.connect() self.pandasSQL = sql.SQLDatabase(self.conn) except sqlalchemy.exc.OperationalError: pytest.skip(f"Can't connect to {self.flavor} server") self.load_iris_data(iris_path) self.load_types_data(types_data) @classmethod def setup_driver(cls): raise NotImplementedError() @classmethod def setup_engine(cls): raise NotImplementedError() def test_read_sql_parameter(self, sql_strings): self._read_sql_iris_parameter(sql_strings) def test_read_sql_named_parameter(self, sql_strings): self._read_sql_iris_named_parameter(sql_strings) def test_to_sql_empty(self, test_frame1): self._to_sql_empty(test_frame1) def test_create_table(self): from sqlalchemy import inspect temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) with sql.SQLDatabase(temp_conn, need_transaction=True) as pandasSQL: assert pandasSQL.to_sql(temp_frame, "temp_frame") == 4 insp = inspect(temp_conn) assert insp.has_table("temp_frame") # Cleanup with sql.SQLDatabase(temp_conn, need_transaction=True) as pandasSQL: pandasSQL.drop_table("temp_frame") def test_drop_table(self): from sqlalchemy import inspect temp_conn = self.connect() temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) pandasSQL = sql.SQLDatabase(temp_conn) assert pandasSQL.to_sql(temp_frame, "temp_frame") == 4 insp = inspect(temp_conn) assert insp.has_table("temp_frame") pandasSQL.drop_table("temp_frame") try: insp.clear_cache() # needed with SQLAlchemy 2.0, unavailable prior except AttributeError: pass assert not insp.has_table("temp_frame") def test_roundtrip(self, test_frame1): self._roundtrip(test_frame1) def test_execute_sql(self): self._execute_sql() def test_read_table(self): iris_frame = sql.read_sql_table("iris", con=self.conn) check_iris_frame(iris_frame) def test_read_table_columns(self): iris_frame = sql.read_sql_table( "iris", con=self.conn, columns=["SepalLength", "SepalLength"] ) tm.equalContents(iris_frame.columns.values, ["SepalLength", "SepalLength"]) def test_read_table_absent_raises(self): msg = "Table this_doesnt_exist not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("this_doesnt_exist", con=self.conn) def test_default_type_conversion(self): df = sql.read_sql_table("types", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) assert issubclass(df.BoolCol.dtype.type, np.bool_) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Bool column with NA values becomes object assert issubclass(df.BoolColWithNull.dtype.type, object) def test_bigint(self): # int64 should be converted to BigInteger, GH7433 df = DataFrame(data={"i64": [2**62]}) assert df.to_sql(name="test_bigint", con=self.conn, index=False) == 1 result = sql.read_sql_table("test_bigint", self.conn) tm.assert_frame_equal(df, result) def test_default_date_load(self): df = sql.read_sql_table("types", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but # MySQL SHOULD be converted. assert issubclass(df.DateCol.dtype.type, np.datetime64) def test_datetime_with_timezone(self, request): # edge case that converts postgresql datetime with time zone types # to datetime64[ns,psycopg2.tz.FixedOffsetTimezone..], which is ok # but should be more natural, so coerce to datetime64[ns] for now def check(col): # check that a column is either datetime64[ns] # or datetime64[ns, UTC] if lib.is_np_dtype(col.dtype, "M"): # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" assert col[0] == Timestamp("2000-01-01 08:00:00") # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" assert col[1] == Timestamp("2000-06-01 07:00:00") elif isinstance(col.dtype, DatetimeTZDtype): assert str(col.dt.tz) == "UTC" # "2000-01-01 00:00:00-08:00" should convert to # "2000-01-01 08:00:00" # "2000-06-01 00:00:00-07:00" should convert to # "2000-06-01 07:00:00" # GH 6415 expected_data = [ Timestamp("2000-01-01 08:00:00", tz="UTC"), Timestamp("2000-06-01 07:00:00", tz="UTC"), ] expected = Series(expected_data, name=col.name) tm.assert_series_equal(col, expected) else: raise AssertionError( f"DateCol loaded with incorrect type -> {col.dtype}" ) # GH11216 df = read_sql_query("select * from types", self.conn) if not hasattr(df, "DateColWithTz"): request.node.add_marker( pytest.mark.xfail(reason="no column with datetime with time zone") ) # this is parsed on Travis (linux), but not on macosx for some reason # even with the same versions of psycopg2 & sqlalchemy, possibly a # Postgresql server version difference col = df.DateColWithTz assert isinstance(col.dtype, DatetimeTZDtype) df = read_sql_query( "select * from types", self.conn, parse_dates=["DateColWithTz"] ) if not hasattr(df, "DateColWithTz"): request.node.add_marker( pytest.mark.xfail(reason="no column with datetime with time zone") ) col = df.DateColWithTz assert isinstance(col.dtype, DatetimeTZDtype) assert str(col.dt.tz) == "UTC" check(df.DateColWithTz) df = concat( list(read_sql_query("select * from types", self.conn, chunksize=1)), ignore_index=True, ) col = df.DateColWithTz assert isinstance(col.dtype, DatetimeTZDtype) assert str(col.dt.tz) == "UTC" expected = sql.read_sql_table("types", self.conn) col = expected.DateColWithTz assert isinstance(col.dtype, DatetimeTZDtype) tm.assert_series_equal(df.DateColWithTz, expected.DateColWithTz) # xref #7139 # this might or might not be converted depending on the postgres driver df = sql.read_sql_table("types", self.conn) check(df.DateColWithTz) def test_datetime_with_timezone_roundtrip(self): # GH 9086 # Write datetimetz data to a db and read it back # For dbs that support timestamps with timezones, should get back UTC # otherwise naive data should be returned expected = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3, tz="US/Pacific")} ) assert expected.to_sql(name="test_datetime_tz", con=self.conn, index=False) == 3 if self.flavor == "postgresql": # SQLAlchemy "timezones" (i.e. offsets) are coerced to UTC expected["A"] = expected["A"].dt.tz_convert("UTC") else: # Otherwise, timestamps are returned as local, naive expected["A"] = expected["A"].dt.tz_localize(None) result = sql.read_sql_table("test_datetime_tz", self.conn) tm.assert_frame_equal(result, expected) result = sql.read_sql_query("SELECT * FROM test_datetime_tz", self.conn) if self.flavor == "sqlite": # read_sql_query does not return datetime type like read_sql_table assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, expected) def test_out_of_bounds_datetime(self): # GH 26761 data = DataFrame({"date": datetime(9999, 1, 1)}, index=[0]) assert data.to_sql(name="test_datetime_obb", con=self.conn, index=False) == 1 result = sql.read_sql_table("test_datetime_obb", self.conn) expected = DataFrame([pd.NaT], columns=["date"]) tm.assert_frame_equal(result, expected) def test_naive_datetimeindex_roundtrip(self): # GH 23510 # Ensure that a naive DatetimeIndex isn't converted to UTC dates = date_range("2018-01-01", periods=5, freq="6H")._with_freq(None) expected = DataFrame({"nums": range(5)}, index=dates) assert ( expected.to_sql(name="foo_table", con=self.conn, index_label="info_date") == 5 ) result = sql.read_sql_table("foo_table", self.conn, index_col="info_date") # result index with gain a name from a set_index operation; expected tm.assert_frame_equal(result, expected, check_names=False) def test_date_parsing(self): # No Parsing df = sql.read_sql_table("types", self.conn) expected_type = object if self.flavor == "sqlite" else np.datetime64 assert issubclass(df.DateCol.dtype.type, expected_type) df = sql.read_sql_table("types", self.conn, parse_dates=["DateCol"]) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types", self.conn, parse_dates={"DateCol": "%Y-%m-%d %H:%M:%S"} ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types", self.conn, parse_dates={"DateCol": {"format": "%Y-%m-%d %H:%M:%S"}}, ) assert issubclass(df.DateCol.dtype.type, np.datetime64) df = sql.read_sql_table("types", self.conn, parse_dates=["IntDateCol"]) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table("types", self.conn, parse_dates={"IntDateCol": "s"}) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) df = sql.read_sql_table( "types", self.conn, parse_dates={"IntDateCol": {"unit": "s"}} ) assert issubclass(df.IntDateCol.dtype.type, np.datetime64) def test_datetime(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) assert df.to_sql(name="test_datetime", con=self.conn) == 3 # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) result = result.drop("index", axis=1) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) result = result.drop("index", axis=1) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"]) tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_NaT(self): df = DataFrame( {"A": date_range("2013-01-01 09:00:00", periods=3), "B": np.arange(3.0)} ) df.loc[1, "A"] = np.nan assert df.to_sql(name="test_datetime", con=self.conn, index=False) == 3 # with read_table -> type information from schema used result = sql.read_sql_table("test_datetime", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> no type information -> sqlite has no native result = sql.read_sql_query("SELECT * FROM test_datetime", self.conn) if self.flavor == "sqlite": assert isinstance(result.loc[0, "A"], str) result["A"] = to_datetime(result["A"], errors="coerce") tm.assert_frame_equal(result, df) else: tm.assert_frame_equal(result, df) def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) assert df.to_sql(name="test_date", con=self.conn, index=False) == 2 res = read_sql_table("test_date", self.conn) result = res["a"] expected = to_datetime(df["a"]) # comes back as datetime64 tm.assert_series_equal(result, expected) def test_datetime_time(self, sqlite_buildin): # test support for datetime.time df = DataFrame([time(9, 0, 0), time(9, 1, 30)], columns=["a"]) assert df.to_sql(name="test_time", con=self.conn, index=False) == 2 res = read_sql_table("test_time", self.conn) tm.assert_frame_equal(res, df) # GH8341 # first, use the fallback to have the sqlite adapter put in place sqlite_conn = sqlite_buildin assert sql.to_sql(df, "test_time2", sqlite_conn, index=False) == 2 res = sql.read_sql_query("SELECT * FROM test_time2", sqlite_conn) ref = df.map(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) # check if adapter is in place # then test if sqlalchemy is unaffected by the sqlite adapter assert sql.to_sql(df, "test_time3", self.conn, index=False) == 2 if self.flavor == "sqlite": res = sql.read_sql_query("SELECT * FROM test_time3", self.conn) ref = df.map(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(ref, res) res = sql.read_sql_table("test_time3", self.conn) tm.assert_frame_equal(df, res) def test_mixed_dtype_insert(self): # see GH6509 s1 = Series(2**25 + 1, dtype=np.int32) s2 = Series(0.0, dtype=np.float32) df = DataFrame({"s1": s1, "s2": s2}) # write and read again assert df.to_sql(name="test_read_write", con=self.conn, index=False) == 1 df2 = sql.read_sql_table("test_read_write", self.conn) tm.assert_frame_equal(df, df2, check_dtype=False, check_exact=True) def test_nan_numeric(self): # NaNs in numeric float column df = DataFrame({"A": [0, 1, 2], "B": [0.2, np.nan, 5.6]}) assert df.to_sql(name="test_nan", con=self.conn, index=False) == 3 # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_fullcolumn(self): # full NaN column (numeric float column) df = DataFrame({"A": [0, 1, 2], "B": [np.nan, np.nan, np.nan]}) assert df.to_sql(name="test_nan", con=self.conn, index=False) == 3 # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql -> not type info from table -> stays None df["B"] = df["B"].astype("object") df["B"] = None result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def test_nan_string(self): # NaNs in string column df = DataFrame({"A": [0, 1, 2], "B": ["a", "b", np.nan]}) assert df.to_sql(name="test_nan", con=self.conn, index=False) == 3 # NaNs are coming back as None df.loc[2, "B"] = None # with read_table result = sql.read_sql_table("test_nan", self.conn) tm.assert_frame_equal(result, df) # with read_sql result = sql.read_sql_query("SELECT * FROM test_nan", self.conn) tm.assert_frame_equal(result, df) def _get_index_columns(self, tbl_name): from sqlalchemy import inspect insp = inspect(self.conn) ixs = insp.get_indexes(tbl_name) ixs = [i["column_names"] for i in ixs] return ixs def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def test_get_schema_create_table(self, test_frame3): # Use a dataframe without a bool column, since MySQL converts bool to # TINYINT (which read_sql_table returns as an int and causes a dtype # mismatch) from sqlalchemy import text from sqlalchemy.engine import Engine tbl = "test_get_schema_create_table" create_sql = sql.get_schema(test_frame3, tbl, con=self.conn) blank_test_df = test_frame3.iloc[:0] self.drop_table(tbl, self.conn) create_sql = text(create_sql) if isinstance(self.conn, Engine): with self.conn.connect() as conn: with conn.begin(): conn.execute(create_sql) else: with self.conn.begin(): self.conn.execute(create_sql) returned_df = sql.read_sql_table(tbl, self.conn) tm.assert_frame_equal(returned_df, blank_test_df, check_index_type=False) self.drop_table(tbl, self.conn) def test_dtype(self): from sqlalchemy import ( TEXT, String, ) from sqlalchemy.schema import MetaData cols = ["A", "B"] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) assert df.to_sql(name="dtype_test", con=self.conn) == 2 assert df.to_sql(name="dtype_test2", con=self.conn, dtype={"B": TEXT}) == 2 meta = MetaData() meta.reflect(bind=self.conn) sqltype = meta.tables["dtype_test2"].columns["B"].type assert isinstance(sqltype, TEXT) msg = "The type of B is not a SQLAlchemy type" with pytest.raises(ValueError, match=msg): df.to_sql(name="error", con=self.conn, dtype={"B": str}) # GH9083 assert ( df.to_sql(name="dtype_test3", con=self.conn, dtype={"B": String(10)}) == 2 ) meta.reflect(bind=self.conn) sqltype = meta.tables["dtype_test3"].columns["B"].type assert isinstance(sqltype, String) assert sqltype.length == 10 # single dtype assert df.to_sql(name="single_dtype_test", con=self.conn, dtype=TEXT) == 2 meta.reflect(bind=self.conn) sqltypea = meta.tables["single_dtype_test"].columns["A"].type sqltypeb = meta.tables["single_dtype_test"].columns["B"].type assert isinstance(sqltypea, TEXT) assert isinstance(sqltypeb, TEXT) def test_notna_dtype(self): from sqlalchemy import ( Boolean, DateTime, Float, Integer, ) from sqlalchemy.schema import MetaData cols = { "Bool": Series([True, None]), "Date": Series([datetime(2012, 5, 1), None]), "Int": Series([1, None], dtype="object"), "Float": Series([1.1, None]), } df = DataFrame(cols) tbl = "notna_dtype_test" assert df.to_sql(name=tbl, con=self.conn) == 2 _ = sql.read_sql_table(tbl, self.conn) meta = MetaData() meta.reflect(bind=self.conn) my_type = Integer if self.flavor == "mysql" else Boolean col_dict = meta.tables[tbl].columns assert isinstance(col_dict["Bool"].type, my_type) assert isinstance(col_dict["Date"].type, DateTime) assert isinstance(col_dict["Int"].type, Integer) assert isinstance(col_dict["Float"].type, Float) def test_double_precision(self): from sqlalchemy import ( BigInteger, Float, Integer, ) from sqlalchemy.schema import MetaData V = 1.23456789101112131415 df = DataFrame( { "f32": Series([V], dtype="float32"), "f64": Series([V], dtype="float64"), "f64_as_f32": Series([V], dtype="float64"), "i32": Series([5], dtype="int32"), "i64": Series([5], dtype="int64"), } ) assert ( df.to_sql( name="test_dtypes", con=self.conn, index=False, if_exists="replace", dtype={"f64_as_f32": Float(precision=23)}, ) == 1 ) res = sql.read_sql_table("test_dtypes", self.conn) # check precision of float64 assert np.round(df["f64"].iloc[0], 14) == np.round(res["f64"].iloc[0], 14) # check sql types meta = MetaData() meta.reflect(bind=self.conn) col_dict = meta.tables["test_dtypes"].columns assert str(col_dict["f32"].type) == str(col_dict["f64_as_f32"].type) assert isinstance(col_dict["f32"].type, Float) assert isinstance(col_dict["f64"].type, Float) assert isinstance(col_dict["i32"].type, Integer) assert isinstance(col_dict["i64"].type, BigInteger) def test_connectable_issue_example(self): # This tests the example raised in issue # https://github.com/pandas-dev/pandas/issues/10104 from sqlalchemy.engine import Engine def test_select(connection): query = "SELECT test_foo_data FROM test_foo_data" return sql.read_sql_query(query, con=connection) def test_append(connection, data): data.to_sql(name="test_foo_data", con=connection, if_exists="append") def test_connectable(conn): # https://github.com/sqlalchemy/sqlalchemy/commit/ # 00b5c10846e800304caa86549ab9da373b42fa5d#r48323973 foo_data = test_select(conn) test_append(conn, foo_data) def main(connectable): if isinstance(connectable, Engine): with connectable.connect() as conn: with conn.begin(): test_connectable(conn) else: test_connectable(connectable) assert ( DataFrame({"test_foo_data": [0, 1, 2]}).to_sql( name="test_foo_data", con=self.conn ) == 3 ) main(self.conn) @pytest.mark.parametrize( "input", [{"foo": [np.inf]}, {"foo": [-np.inf]}, {"foo": [-np.inf], "infe0": ["bar"]}], ) def test_to_sql_with_negative_npinf(self, input, request): # GH 34431 df = DataFrame(input) if self.flavor == "mysql": # GH 36465 # The input {"foo": [-np.inf], "infe0": ["bar"]} does not raise any error # for pymysql version >= 0.10 # TODO(GH#36465): remove this version check after GH 36465 is fixed pymysql = pytest.importorskip("pymysql") if ( Version(pymysql.__version__) < Version("1.0.3") and "infe0" in df.columns ): mark = pytest.mark.xfail(reason="GH 36465") request.node.add_marker(mark) msg = "inf cannot be used with MySQL" with pytest.raises(ValueError, match=msg): df.to_sql(name="foobar", con=self.conn, index=False) else: assert df.to_sql(name="foobar", con=self.conn, index=False) == 1 res = sql.read_sql_table("foobar", self.conn) tm.assert_equal(df, res) def test_temporary_table(self): from sqlalchemy import ( Column, Integer, Unicode, select, ) from sqlalchemy.orm import ( Session, declarative_base, ) test_data = "Hello, World!" expected = DataFrame({"spam": [test_data]}) Base = declarative_base() class Temporary(Base): __tablename__ = "temp_test" __table_args__ = {"prefixes": ["TEMPORARY"]} id = Column(Integer, primary_key=True) spam = Column(Unicode(30), nullable=False) with Session(self.conn) as session: with session.begin(): conn = session.connection() Temporary.__table__.create(conn) session.add(Temporary(spam=test_data)) session.flush() df = sql.read_sql_query(sql=select(Temporary.spam), con=conn) tm.assert_frame_equal(df, expected) # -- SQL Engine tests (in the base class for now) def test_invalid_engine(self, test_frame1): msg = "engine must be one of 'auto', 'sqlalchemy'" with pytest.raises(ValueError, match=msg): self._to_sql_with_sql_engine(test_frame1, "bad_engine") def test_options_sqlalchemy(self, test_frame1): # use the set option with pd.option_context("io.sql.engine", "sqlalchemy"): self._to_sql_with_sql_engine(test_frame1) def test_options_auto(self, test_frame1): # use the set option with pd.option_context("io.sql.engine", "auto"): self._to_sql_with_sql_engine(test_frame1) def test_options_get_engine(self): assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine) with pd.option_context("io.sql.engine", "sqlalchemy"): assert isinstance(get_engine("auto"), SQLAlchemyEngine) assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine) with pd.option_context("io.sql.engine", "auto"): assert isinstance(get_engine("auto"), SQLAlchemyEngine) assert isinstance(get_engine("sqlalchemy"), SQLAlchemyEngine) def test_get_engine_auto_error_message(self): # Expect different error messages from get_engine(engine="auto") # if engines aren't installed vs. are installed but bad version pass # TODO(GH#36893) fill this in when we add more engines @pytest.mark.parametrize("func", ["read_sql", "read_sql_query"]) def test_read_sql_dtype_backend(self, string_storage, func, dtype_backend): # GH#50048 table = "test" df = self.dtype_backend_data() df.to_sql(name=table, con=self.conn, index=False, if_exists="replace") with pd.option_context("mode.string_storage", string_storage): result = getattr(pd, func)( f"Select * from {table}", self.conn, dtype_backend=dtype_backend ) expected = self.dtype_backend_expected(string_storage, dtype_backend) tm.assert_frame_equal(result, expected) with pd.option_context("mode.string_storage", string_storage): iterator = getattr(pd, func)( f"Select * from {table}", con=self.conn, dtype_backend=dtype_backend, chunksize=3, ) expected = self.dtype_backend_expected(string_storage, dtype_backend) for result in iterator: tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("func", ["read_sql", "read_sql_table"]) def test_read_sql_dtype_backend_table(self, string_storage, func, dtype_backend): # GH#50048 table = "test" df = self.dtype_backend_data() df.to_sql(name=table, con=self.conn, index=False, if_exists="replace") with pd.option_context("mode.string_storage", string_storage): result = getattr(pd, func)(table, self.conn, dtype_backend=dtype_backend) expected = self.dtype_backend_expected(string_storage, dtype_backend) tm.assert_frame_equal(result, expected) with pd.option_context("mode.string_storage", string_storage): iterator = getattr(pd, func)( table, self.conn, dtype_backend=dtype_backend, chunksize=3, ) expected = self.dtype_backend_expected(string_storage, dtype_backend) for result in iterator: tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("func", ["read_sql", "read_sql_table", "read_sql_query"]) def test_read_sql_invalid_dtype_backend_table(self, func): table = "test" df = self.dtype_backend_data() df.to_sql(name=table, con=self.conn, index=False, if_exists="replace") msg = ( "dtype_backend numpy is invalid, only 'numpy_nullable' and " "'pyarrow' are allowed." ) with pytest.raises(ValueError, match=msg): getattr(pd, func)(table, self.conn, dtype_backend="numpy") def dtype_backend_data(self) -> DataFrame: return DataFrame( { "a": Series([1, np.nan, 3], dtype="Int64"), "b": Series([1, 2, 3], dtype="Int64"), "c": Series([1.5, np.nan, 2.5], dtype="Float64"), "d": Series([1.5, 2.0, 2.5], dtype="Float64"), "e": [True, False, None], "f": [True, False, True], "g": ["a", "b", "c"], "h": ["a", "b", None], } ) def dtype_backend_expected(self, storage, dtype_backend) -> DataFrame: string_array: StringArray | ArrowStringArray string_array_na: StringArray | ArrowStringArray if storage == "python": string_array = StringArray(np.array(["a", "b", "c"], dtype=np.object_)) string_array_na = StringArray(np.array(["a", "b", pd.NA], dtype=np.object_)) else: pa = pytest.importorskip("pyarrow") string_array = ArrowStringArray(pa.array(["a", "b", "c"])) string_array_na = ArrowStringArray(pa.array(["a", "b", None])) df = DataFrame( { "a": Series([1, np.nan, 3], dtype="Int64"), "b": Series([1, 2, 3], dtype="Int64"), "c": Series([1.5, np.nan, 2.5], dtype="Float64"), "d": Series([1.5, 2.0, 2.5], dtype="Float64"), "e": Series([True, False, pd.NA], dtype="boolean"), "f": Series([True, False, True], dtype="boolean"), "g": string_array, "h": string_array_na, } ) if dtype_backend == "pyarrow": pa = pytest.importorskip("pyarrow") from pandas.arrays import ArrowExtensionArray df = DataFrame( { col: ArrowExtensionArray(pa.array(df[col], from_pandas=True)) for col in df.columns } ) return df def test_chunksize_empty_dtypes(self): # GH#50245 dtypes = {"a": "int64", "b": "object"} df = DataFrame(columns=["a", "b"]).astype(dtypes) expected = df.copy() df.to_sql(name="test", con=self.conn, index=False, if_exists="replace") for result in read_sql_query( "SELECT * FROM test", self.conn, dtype=dtypes, chunksize=1, ): tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("dtype_backend", [lib.no_default, "numpy_nullable"]) @pytest.mark.parametrize("func", ["read_sql", "read_sql_query"]) def test_read_sql_dtype(self, func, dtype_backend): # GH#50797 table = "test" df = DataFrame({"a": [1, 2, 3], "b": 5}) df.to_sql(name=table, con=self.conn, index=False, if_exists="replace") result = getattr(pd, func)( f"Select * from {table}", self.conn, dtype={"a": np.float64}, dtype_backend=dtype_backend, ) expected = DataFrame( { "a": Series([1, 2, 3], dtype=np.float64), "b": Series( [5, 5, 5], dtype="int64" if not dtype_backend == "numpy_nullable" else "Int64", ), } ) tm.assert_frame_equal(result, expected) class TestSQLiteAlchemy(_TestSQLAlchemy): """ Test the sqlalchemy backend against an in-memory sqlite database. """ flavor = "sqlite" @classmethod def setup_engine(cls): cls.engine = sqlalchemy.create_engine("sqlite:///:memory:") @classmethod def setup_driver(cls): # sqlite3 is built-in cls.driver = None def test_keyword_deprecation(self): # GH 54397 msg = ( "Starting with pandas version 3.0 all arguments of to_sql except for the " "arguments 'name' and 'con' will be keyword-only." ) df = DataFrame([{"A": 1, "B": 2, "C": 3}, {"A": 1, "B": 2, "C": 3}]) df.to_sql("example", self.conn) with tm.assert_produces_warning(FutureWarning, match=msg): df.to_sql("example", self.conn, None, if_exists="replace") def test_default_type_conversion(self): df = sql.read_sql_table("types", self.conn) assert issubclass(df.FloatCol.dtype.type, np.floating) assert issubclass(df.IntCol.dtype.type, np.integer) # sqlite has no boolean type, so integer type is returned assert issubclass(df.BoolCol.dtype.type, np.integer) # Int column with NA values stays as float assert issubclass(df.IntColWithNull.dtype.type, np.floating) # Non-native Bool column with NA values stays as float assert issubclass(df.BoolColWithNull.dtype.type, np.floating) def test_default_date_load(self): df = sql.read_sql_table("types", self.conn) # IMPORTANT - sqlite has no native date type, so shouldn't parse, but assert not issubclass(df.DateCol.dtype.type, np.datetime64) def test_bigint_warning(self): # test no warning for BIGINT (to support int64) is raised (GH7433) df = DataFrame({"a": [1, 2]}, dtype="int64") assert df.to_sql(name="test_bigintwarning", con=self.conn, index=False) == 2 with tm.assert_produces_warning(None): sql.read_sql_table("test_bigintwarning", self.conn) def test_valueerror_exception(self): df = DataFrame({"col1": [1, 2], "col2": [3, 4]}) with pytest.raises(ValueError, match="Empty table name specified"): df.to_sql(name="", con=self.conn, if_exists="replace", index=False) def test_row_object_is_named_tuple(self): # GH 40682 # Test for the is_named_tuple() function # Placed here due to its usage of sqlalchemy from sqlalchemy import ( Column, Integer, String, ) from sqlalchemy.orm import ( declarative_base, sessionmaker, ) BaseModel = declarative_base() class Test(BaseModel): __tablename__ = "test_frame" id = Column(Integer, primary_key=True) string_column = Column(String(50)) with self.conn.begin(): BaseModel.metadata.create_all(self.conn) Session = sessionmaker(bind=self.conn) with Session() as session: df = DataFrame({"id": [0, 1], "string_column": ["hello", "world"]}) assert ( df.to_sql( name="test_frame", con=self.conn, index=False, if_exists="replace" ) == 2 ) session.commit() test_query = session.query(Test.id, Test.string_column) df = DataFrame(test_query) assert list(df.columns) == ["id", "string_column"] def dtype_backend_expected(self, storage, dtype_backend) -> DataFrame: df = super().dtype_backend_expected(storage, dtype_backend) if dtype_backend == "numpy_nullable": df = df.astype({"e": "Int64", "f": "Int64"}) else: df = df.astype({"e": "int64[pyarrow]", "f": "int64[pyarrow]"}) return df @pytest.mark.parametrize("func", ["read_sql", "read_sql_table"]) def test_read_sql_dtype_backend_table(self, string_storage, func): # GH#50048 Not supported for sqlite pass def test_read_sql_string_inference(self): # GH#54430 pytest.importorskip("pyarrow") table = "test" df = DataFrame({"a": ["x", "y"]}) df.to_sql(table, con=self.conn, index=False, if_exists="replace") with pd.option_context("future.infer_string", True): result = read_sql_table(table, self.conn) dtype = "string[pyarrow_numpy]" expected = DataFrame( {"a": ["x", "y"]}, dtype=dtype, columns=Index(["a"], dtype=dtype) ) tm.assert_frame_equal(result, expected) @pytest.mark.db class TestMySQLAlchemy(_TestSQLAlchemy): """ Test the sqlalchemy backend against an MySQL database. """ flavor = "mysql" port = 3306 @classmethod def setup_engine(cls): cls.engine = sqlalchemy.create_engine( f"mysql+{cls.driver}://root@localhost:{cls.port}/pandas", connect_args=cls.connect_args, ) @classmethod def setup_driver(cls): pymysql = pytest.importorskip("pymysql") cls.driver = "pymysql" cls.connect_args = {"client_flag": pymysql.constants.CLIENT.MULTI_STATEMENTS} def test_default_type_conversion(self): pass def dtype_backend_expected(self, storage, dtype_backend) -> DataFrame: df = super().dtype_backend_expected(storage, dtype_backend) if dtype_backend == "numpy_nullable": df = df.astype({"e": "Int64", "f": "Int64"}) else: df = df.astype({"e": "int64[pyarrow]", "f": "int64[pyarrow]"}) return df @pytest.mark.db class TestPostgreSQLAlchemy(_TestSQLAlchemy): """ Test the sqlalchemy backend against an PostgreSQL database. """ flavor = "postgresql" port = 5432 @classmethod def setup_engine(cls): cls.engine = sqlalchemy.create_engine( f"postgresql+{cls.driver}://postgres:postgres@localhost:{cls.port}/pandas" ) @classmethod def setup_driver(cls): pytest.importorskip("psycopg2") cls.driver = "psycopg2" def test_schema_support(self): from sqlalchemy.engine import Engine # only test this for postgresql (schema's not supported in # mysql/sqlite) df = DataFrame({"col1": [1, 2], "col2": [0.1, 0.2], "col3": ["a", "n"]}) # create a schema with self.conn.begin(): self.conn.exec_driver_sql("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.exec_driver_sql("CREATE SCHEMA other;") # write dataframe to different schema's assert df.to_sql(name="test_schema_public", con=self.conn, index=False) == 2 assert ( df.to_sql( name="test_schema_public_explicit", con=self.conn, index=False, schema="public", ) == 2 ) assert ( df.to_sql( name="test_schema_other", con=self.conn, index=False, schema="other" ) == 2 ) # read dataframes back in res1 = sql.read_sql_table("test_schema_public", self.conn) tm.assert_frame_equal(df, res1) res2 = sql.read_sql_table("test_schema_public_explicit", self.conn) tm.assert_frame_equal(df, res2) res3 = sql.read_sql_table( "test_schema_public_explicit", self.conn, schema="public" ) tm.assert_frame_equal(df, res3) res4 = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(df, res4) msg = "Table test_schema_other not found" with pytest.raises(ValueError, match=msg): sql.read_sql_table("test_schema_other", self.conn, schema="public") # different if_exists options # create a schema with self.conn.begin(): self.conn.exec_driver_sql("DROP SCHEMA IF EXISTS other CASCADE;") self.conn.exec_driver_sql("CREATE SCHEMA other;") # write dataframe with different if_exists options assert ( df.to_sql( name="test_schema_other", con=self.conn, schema="other", index=False ) == 2 ) df.to_sql( name="test_schema_other", con=self.conn, schema="other", index=False, if_exists="replace", ) assert ( df.to_sql( name="test_schema_other", con=self.conn, schema="other", index=False, if_exists="append", ) == 2 ) res = sql.read_sql_table("test_schema_other", self.conn, schema="other") tm.assert_frame_equal(concat([df, df], ignore_index=True), res) # specifying schema in user-provided meta # The schema won't be applied on another Connection # because of transactional schemas if isinstance(self.conn, Engine): engine2 = self.connect() pdsql = sql.SQLDatabase(engine2, schema="other") assert pdsql.to_sql(df, "test_schema_other2", index=False) == 2 assert ( pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="replace") == 2 ) assert ( pdsql.to_sql(df, "test_schema_other2", index=False, if_exists="append") == 2 ) res1 = sql.read_sql_table("test_schema_other2", self.conn, schema="other") res2 = pdsql.read_table("test_schema_other2") tm.assert_frame_equal(res1, res2) def test_self_join_date_columns(self): # GH 44421 from sqlalchemy.engine import Engine from sqlalchemy.sql import text create_table = text( """ CREATE TABLE person ( id serial constraint person_pkey primary key, created_dt timestamp with time zone ); INSERT INTO person VALUES (1, '2021-01-01T00:00:00Z'); """ ) if isinstance(self.conn, Engine): with self.conn.connect() as con: with con.begin(): con.execute(create_table) else: with self.conn.begin(): self.conn.execute(create_table) sql_query = ( 'SELECT * FROM "person" AS p1 INNER JOIN "person" AS p2 ON p1.id = p2.id;' ) result = pd.read_sql(sql_query, self.conn) expected = DataFrame( [[1, Timestamp("2021", tz="UTC")] * 2], columns=["id", "created_dt"] * 2 ) tm.assert_frame_equal(result, expected) # Cleanup with sql.SQLDatabase(self.conn, need_transaction=True) as pandasSQL: pandasSQL.drop_table("person") # ----------------------------------------------------------------------------- # -- Test Sqlite / MySQL fallback class TestSQLiteFallback(SQLiteMixIn, PandasSQLTest): """ Test the fallback mode against an in-memory sqlite database. """ flavor = "sqlite" @pytest.fixture(autouse=True) def setup_method(self, iris_path, types_data): self.conn = self.connect() self.load_iris_data(iris_path) self.load_types_data(types_data) self.pandasSQL = sql.SQLiteDatabase(self.conn) def test_read_sql_parameter(self, sql_strings): self._read_sql_iris_parameter(sql_strings) def test_read_sql_named_parameter(self, sql_strings): self._read_sql_iris_named_parameter(sql_strings) def test_to_sql_empty(self, test_frame1): self._to_sql_empty(test_frame1) def test_create_and_drop_table(self): temp_frame = DataFrame( {"one": [1.0, 2.0, 3.0, 4.0], "two": [4.0, 3.0, 2.0, 1.0]} ) assert self.pandasSQL.to_sql(temp_frame, "drop_test_frame") == 4 assert self.pandasSQL.has_table("drop_test_frame") self.pandasSQL.drop_table("drop_test_frame") assert not self.pandasSQL.has_table("drop_test_frame") def test_roundtrip(self, test_frame1): self._roundtrip(test_frame1) def test_execute_sql(self): self._execute_sql() def test_datetime_date(self): # test support for datetime.date df = DataFrame([date(2014, 1, 1), date(2014, 1, 2)], columns=["a"]) assert df.to_sql(name="test_date", con=self.conn, index=False) == 2 res = read_sql_query("SELECT * FROM test_date", self.conn) if self.flavor == "sqlite": # comes back as strings tm.assert_frame_equal(res, df.astype(str)) elif self.flavor == "mysql": tm.assert_frame_equal(res, df) @pytest.mark.parametrize("tz_aware", [False, True]) def test_datetime_time(self, tz_aware): # test support for datetime.time, GH #8341 if not tz_aware: tz_times = [time(9, 0, 0), time(9, 1, 30)] else: tz_dt = date_range("2013-01-01 09:00:00", periods=2, tz="US/Pacific") tz_times = Series(tz_dt.to_pydatetime()).map(lambda dt: dt.timetz()) df = DataFrame(tz_times, columns=["a"]) assert df.to_sql(name="test_time", con=self.conn, index=False) == 2 res = read_sql_query("SELECT * FROM test_time", self.conn) if self.flavor == "sqlite": # comes back as strings expected = df.map(lambda _: _.strftime("%H:%M:%S.%f")) tm.assert_frame_equal(res, expected) def _get_index_columns(self, tbl_name): ixs = sql.read_sql_query( "SELECT * FROM sqlite_master WHERE type = 'index' " f"AND tbl_name = '{tbl_name}'", self.conn, ) ix_cols = [] for ix_name in ixs.name: ix_info = sql.read_sql_query(f"PRAGMA index_info({ix_name})", self.conn) ix_cols.append(ix_info.name.tolist()) return ix_cols def test_to_sql_save_index(self): self._to_sql_save_index() def test_transactions(self): self._transaction_test() def _get_sqlite_column_type(self, table, column): recs = self.conn.execute(f"PRAGMA table_info({table})") for cid, name, ctype, not_null, default, pk in recs: if name == column: return ctype raise ValueError(f"Table {table}, column {column} not found") def test_dtype(self): if self.flavor == "mysql": pytest.skip("Not applicable to MySQL legacy") cols = ["A", "B"] data = [(0.8, True), (0.9, None)] df = DataFrame(data, columns=cols) assert df.to_sql(name="dtype_test", con=self.conn) == 2 assert df.to_sql(name="dtype_test2", con=self.conn, dtype={"B": "STRING"}) == 2 # sqlite stores Boolean values as INTEGER assert self._get_sqlite_column_type("dtype_test", "B") == "INTEGER" assert self._get_sqlite_column_type("dtype_test2", "B") == "STRING" msg = r"B \(\) not a string" with pytest.raises(ValueError, match=msg): df.to_sql(name="error", con=self.conn, dtype={"B": bool}) # single dtype assert df.to_sql(name="single_dtype_test", con=self.conn, dtype="STRING") == 2 assert self._get_sqlite_column_type("single_dtype_test", "A") == "STRING" assert self._get_sqlite_column_type("single_dtype_test", "B") == "STRING" def test_notna_dtype(self): if self.flavor == "mysql": pytest.skip("Not applicable to MySQL legacy") cols = { "Bool": Series([True, None]), "Date": Series([datetime(2012, 5, 1), None]), "Int": Series([1, None], dtype="object"), "Float": Series([1.1, None]), } df = DataFrame(cols) tbl = "notna_dtype_test" assert df.to_sql(name=tbl, con=self.conn) == 2 assert self._get_sqlite_column_type(tbl, "Bool") == "INTEGER" assert self._get_sqlite_column_type(tbl, "Date") == "TIMESTAMP" assert self._get_sqlite_column_type(tbl, "Int") == "INTEGER" assert self._get_sqlite_column_type(tbl, "Float") == "REAL" def test_illegal_names(self): # For sqlite, these should work fine df = DataFrame([[1, 2], [3, 4]], columns=["a", "b"]) msg = "Empty table or column name specified" with pytest.raises(ValueError, match=msg): df.to_sql(name="", con=self.conn) for ndx, weird_name in enumerate( [ "test_weird_name]", "test_weird_name[", "test_weird_name`", 'test_weird_name"', "test_weird_name'", "_b.test_weird_name_01-30", '"_b.test_weird_name_01-30"', "99beginswithnumber", "12345", "\xe9", ] ): assert df.to_sql(name=weird_name, con=self.conn) == 2 sql.table_exists(weird_name, self.conn) df2 = DataFrame([[1, 2], [3, 4]], columns=["a", weird_name]) c_tbl = f"test_weird_col_name{ndx:d}" assert df2.to_sql(name=c_tbl, con=self.conn) == 2 sql.table_exists(c_tbl, self.conn) # ----------------------------------------------------------------------------- # -- Old tests from 0.13.1 (before refactor using sqlalchemy) _formatters = { datetime: "'{}'".format, str: "'{}'".format, np.str_: "'{}'".format, bytes: "'{}'".format, float: "{:.8f}".format, int: "{:d}".format, type(None): lambda x: "NULL", np.float64: "{:.10f}".format, bool: "'{!s}'".format, } def format_query(sql, *args): processed_args = [] for arg in args: if isinstance(arg, float) and isna(arg): arg = None formatter = _formatters[type(arg)] processed_args.append(formatter(arg)) return sql % tuple(processed_args) def tquery(query, con=None): """Replace removed sql.tquery function""" with sql.pandasSQL_builder(con) as pandas_sql: res = pandas_sql.execute(query).fetchall() return None if res is None else list(res) class TestXSQLite: def drop_table(self, table_name, conn): cur = conn.cursor() cur.execute(f"DROP TABLE IF EXISTS {sql._get_valid_sqlite_name(table_name)}") conn.commit() def test_basic(self, sqlite_buildin): frame = tm.makeTimeDataFrame() assert ( sql.to_sql(frame, name="test_table", con=sqlite_buildin, index=False) == 30 ) result = sql.read_sql("select * from test_table", sqlite_buildin) # HACK! Change this once indexes are handled properly. result.index = frame.index expected = frame tm.assert_frame_equal(result, frame) frame["txt"] = ["a"] * len(frame) frame2 = frame.copy() new_idx = Index(np.arange(len(frame2)), dtype=np.int64) + 10 frame2["Idx"] = new_idx.copy() assert ( sql.to_sql(frame2, name="test_table2", con=sqlite_buildin, index=False) == 30 ) result = sql.read_sql( "select * from test_table2", sqlite_buildin, index_col="Idx" ) expected = frame.copy() expected.index = new_idx expected.index.name = "Idx" tm.assert_frame_equal(expected, result) def test_write_row_by_row(self, sqlite_buildin): frame = tm.makeTimeDataFrame() frame.iloc[0, 0] = np.nan create_sql = sql.get_schema(frame, "test") cur = sqlite_buildin.cursor() cur.execute(create_sql) ins = "INSERT INTO test VALUES (%s, %s, %s, %s)" for _, row in frame.iterrows(): fmt_sql = format_query(ins, *row) tquery(fmt_sql, con=sqlite_buildin) sqlite_buildin.commit() result = sql.read_sql("select * from test", con=sqlite_buildin) result.index = frame.index tm.assert_frame_equal(result, frame, rtol=1e-3) def test_execute(self, sqlite_buildin): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test") cur = sqlite_buildin.cursor() cur.execute(create_sql) ins = "INSERT INTO test VALUES (?, ?, ?, ?)" row = frame.iloc[0] with sql.pandasSQL_builder(sqlite_buildin) as pandas_sql: pandas_sql.execute(ins, tuple(row)) sqlite_buildin.commit() result = sql.read_sql("select * from test", sqlite_buildin) result.index = frame.index[:1] tm.assert_frame_equal(result, frame[:1]) def test_schema(self, sqlite_buildin): frame = tm.makeTimeDataFrame() create_sql = sql.get_schema(frame, "test") lines = create_sql.splitlines() for line in lines: tokens = line.split(" ") if len(tokens) == 2 and tokens[0] == "A": assert tokens[1] == "DATETIME" create_sql = sql.get_schema(frame, "test", keys=["A", "B"]) lines = create_sql.splitlines() assert 'PRIMARY KEY ("A", "B")' in create_sql cur = sqlite_buildin.cursor() cur.execute(create_sql) def test_execute_fail(self, sqlite_buildin): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ cur = sqlite_buildin.cursor() cur.execute(create_sql) with sql.pandasSQL_builder(sqlite_buildin) as pandas_sql: pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)') pandas_sql.execute('INSERT INTO test VALUES("foo", "baz", 2.567)') with pytest.raises(sql.DatabaseError, match="Execution failed on sql"): pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 7)') def test_execute_closed_connection(self): create_sql = """ CREATE TABLE test ( a TEXT, b TEXT, c REAL, PRIMARY KEY (a, b) ); """ with contextlib.closing(sqlite3.connect(":memory:")) as conn: cur = conn.cursor() cur.execute(create_sql) with sql.pandasSQL_builder(conn) as pandas_sql: pandas_sql.execute('INSERT INTO test VALUES("foo", "bar", 1.234)') msg = "Cannot operate on a closed database." with pytest.raises(sqlite3.ProgrammingError, match=msg): tquery("select * from test", con=conn) def test_keyword_as_column_names(self, sqlite_buildin): df = DataFrame({"From": np.ones(5)}) assert sql.to_sql(df, con=sqlite_buildin, name="testkeywords", index=False) == 5 def test_onecolumn_of_integer(self, sqlite_buildin): # GH 3628 # a column_of_integers dataframe should transfer well to sql mono_df = DataFrame([1, 2], columns=["c0"]) assert sql.to_sql(mono_df, con=sqlite_buildin, name="mono_df", index=False) == 2 # computing the sum via sql con_x = sqlite_buildin the_sum = sum(my_c0[0] for my_c0 in con_x.execute("select * from mono_df")) # it should not fail, and gives 3 ( Issue #3628 ) assert the_sum == 3 result = sql.read_sql("select * from mono_df", con_x) tm.assert_frame_equal(result, mono_df) def test_if_exists(self, sqlite_buildin): df_if_exists_1 = DataFrame({"col1": [1, 2], "col2": ["A", "B"]}) df_if_exists_2 = DataFrame({"col1": [3, 4, 5], "col2": ["C", "D", "E"]}) table_name = "table_if_exists" sql_select = f"SELECT * FROM {table_name}" msg = "'notvalidvalue' is not valid for if_exists" with pytest.raises(ValueError, match=msg): sql.to_sql( frame=df_if_exists_1, con=sqlite_buildin, name=table_name, if_exists="notvalidvalue", ) self.drop_table(table_name, sqlite_buildin) # test if_exists='fail' sql.to_sql( frame=df_if_exists_1, con=sqlite_buildin, name=table_name, if_exists="fail" ) msg = "Table 'table_if_exists' already exists" with pytest.raises(ValueError, match=msg): sql.to_sql( frame=df_if_exists_1, con=sqlite_buildin, name=table_name, if_exists="fail", ) # test if_exists='replace' sql.to_sql( frame=df_if_exists_1, con=sqlite_buildin, name=table_name, if_exists="replace", index=False, ) assert tquery(sql_select, con=sqlite_buildin) == [(1, "A"), (2, "B")] assert ( sql.to_sql( frame=df_if_exists_2, con=sqlite_buildin, name=table_name, if_exists="replace", index=False, ) == 3 ) assert tquery(sql_select, con=sqlite_buildin) == [(3, "C"), (4, "D"), (5, "E")] self.drop_table(table_name, sqlite_buildin) # test if_exists='append' assert ( sql.to_sql( frame=df_if_exists_1, con=sqlite_buildin, name=table_name, if_exists="fail", index=False, ) == 2 ) assert tquery(sql_select, con=sqlite_buildin) == [(1, "A"), (2, "B")] assert ( sql.to_sql( frame=df_if_exists_2, con=sqlite_buildin, name=table_name, if_exists="append", index=False, ) == 3 ) assert tquery(sql_select, con=sqlite_buildin) == [ (1, "A"), (2, "B"), (3, "C"), (4, "D"), (5, "E"), ] self.drop_table(table_name, sqlite_buildin)