from typing import Literal import numpy as np from pandas._typing import npt def group_median_float64( out: np.ndarray, # ndarray[float64_t, ndim=2] counts: npt.NDArray[np.int64], values: np.ndarray, # ndarray[float64_t, ndim=2] labels: npt.NDArray[np.int64], min_count: int = ..., # Py_ssize_t mask: np.ndarray | None = ..., result_mask: np.ndarray | None = ..., ) -> None: ... def group_cumprod( out: np.ndarray, # float64_t[:, ::1] values: np.ndarray, # const float64_t[:, :] labels: np.ndarray, # const int64_t[:] ngroups: int, is_datetimelike: bool, skipna: bool = ..., mask: np.ndarray | None = ..., result_mask: np.ndarray | None = ..., ) -> None: ... def group_cumsum( out: np.ndarray, # int64float_t[:, ::1] values: np.ndarray, # ndarray[int64float_t, ndim=2] labels: np.ndarray, # const int64_t[:] ngroups: int, is_datetimelike: bool, skipna: bool = ..., mask: np.ndarray | None = ..., result_mask: np.ndarray | None = ..., ) -> None: ... def group_shift_indexer( out: np.ndarray, # int64_t[::1] labels: np.ndarray, # const int64_t[:] ngroups: int, periods: int, ) -> None: ... def group_fillna_indexer( out: np.ndarray, # ndarray[intp_t] labels: np.ndarray, # ndarray[int64_t] sorted_labels: npt.NDArray[np.intp], mask: npt.NDArray[np.uint8], direction: Literal["ffill", "bfill"], limit: int, # int64_t dropna: bool, ) -> None: ... def group_any_all( out: np.ndarray, # uint8_t[::1] values: np.ndarray, # const uint8_t[::1] labels: np.ndarray, # const int64_t[:] mask: np.ndarray, # const uint8_t[::1] val_test: Literal["any", "all"], skipna: bool, nullable: bool, ) -> None: ... def group_sum( out: np.ndarray, # complexfloatingintuint_t[:, ::1] counts: np.ndarray, # int64_t[::1] values: np.ndarray, # ndarray[complexfloatingintuint_t, ndim=2] labels: np.ndarray, # const intp_t[:] mask: np.ndarray | None, result_mask: np.ndarray | None = ..., min_count: int = ..., is_datetimelike: bool = ..., ) -> None: ... def group_prod( out: np.ndarray, # int64float_t[:, ::1] counts: np.ndarray, # int64_t[::1] values: np.ndarray, # ndarray[int64float_t, ndim=2] labels: np.ndarray, # const intp_t[:] mask: np.ndarray | None, result_mask: np.ndarray | None = ..., min_count: int = ..., ) -> None: ... def group_var( out: np.ndarray, # floating[:, ::1] counts: np.ndarray, # int64_t[::1] values: np.ndarray, # ndarray[floating, ndim=2] labels: np.ndarray, # const intp_t[:] min_count: int = ..., # Py_ssize_t ddof: int = ..., # int64_t mask: np.ndarray | None = ..., result_mask: np.ndarray | None = ..., is_datetimelike: bool = ..., name: str = ..., ) -> None: ... def group_skew( out: np.ndarray, # float64_t[:, ::1] counts: np.ndarray, # int64_t[::1] values: np.ndarray, # ndarray[float64_T, ndim=2] labels: np.ndarray, # const intp_t[::1] mask: np.ndarray | None = ..., result_mask: np.ndarray | None = ..., skipna: bool = ..., ) -> None: ... def group_mean( out: np.ndarray, # floating[:, ::1] counts: np.ndarray, # int64_t[::1] values: np.ndarray, # ndarray[floating, ndim=2] labels: np.ndarray, # const intp_t[:] min_count: int = ..., # Py_ssize_t is_datetimelike: bool = ..., # bint mask: np.ndarray | None = ..., result_mask: np.ndarray | None = ..., ) -> None: ... def group_ohlc( out: np.ndarray, # floatingintuint_t[:, ::1] counts: np.ndarray, # int64_t[::1] values: np.ndarray, # ndarray[floatingintuint_t, ndim=2] labels: np.ndarray, # const intp_t[:] min_count: int = ..., mask: np.ndarray | None = ..., result_mask: np.ndarray | None = ..., ) -> None: ... def group_quantile( out: npt.NDArray[np.float64], values: np.ndarray, # ndarray[numeric, ndim=1] labels: npt.NDArray[np.intp], mask: npt.NDArray[np.uint8], qs: npt.NDArray[np.float64], # const starts: npt.NDArray[np.int64], ends: npt.NDArray[np.int64], interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"], result_mask: np.ndarray | None, is_datetimelike: bool, ) -> None: ... def group_last( out: np.ndarray, # rank_t[:, ::1] counts: np.ndarray, # int64_t[::1] values: np.ndarray, # ndarray[rank_t, ndim=2] labels: np.ndarray, # const int64_t[:] mask: npt.NDArray[np.bool_] | None, result_mask: npt.NDArray[np.bool_] | None = ..., min_count: int = ..., # Py_ssize_t is_datetimelike: bool = ..., ) -> None: ... def group_nth( out: np.ndarray, # rank_t[:, ::1] counts: np.ndarray, # int64_t[::1] values: np.ndarray, # ndarray[rank_t, ndim=2] labels: np.ndarray, # const int64_t[:] mask: npt.NDArray[np.bool_] | None, result_mask: npt.NDArray[np.bool_] | None = ..., min_count: int = ..., # int64_t rank: int = ..., # int64_t is_datetimelike: bool = ..., ) -> None: ... def group_rank( out: np.ndarray, # float64_t[:, ::1] values: np.ndarray, # ndarray[rank_t, ndim=2] labels: np.ndarray, # const int64_t[:] ngroups: int, is_datetimelike: bool, ties_method: Literal["average", "min", "max", "first", "dense"] = ..., ascending: bool = ..., pct: bool = ..., na_option: Literal["keep", "top", "bottom"] = ..., mask: npt.NDArray[np.bool_] | None = ..., ) -> None: ... def group_max( out: np.ndarray, # groupby_t[:, ::1] counts: np.ndarray, # int64_t[::1] values: np.ndarray, # ndarray[groupby_t, ndim=2] labels: np.ndarray, # const int64_t[:] min_count: int = ..., is_datetimelike: bool = ..., mask: np.ndarray | None = ..., result_mask: np.ndarray | None = ..., ) -> None: ... def group_min( out: np.ndarray, # groupby_t[:, ::1] counts: np.ndarray, # int64_t[::1] values: np.ndarray, # ndarray[groupby_t, ndim=2] labels: np.ndarray, # const int64_t[:] min_count: int = ..., is_datetimelike: bool = ..., mask: np.ndarray | None = ..., result_mask: np.ndarray | None = ..., ) -> None: ... def group_cummin( out: np.ndarray, # groupby_t[:, ::1] values: np.ndarray, # ndarray[groupby_t, ndim=2] labels: np.ndarray, # const int64_t[:] ngroups: int, is_datetimelike: bool, mask: np.ndarray | None = ..., result_mask: np.ndarray | None = ..., skipna: bool = ..., ) -> None: ... def group_cummax( out: np.ndarray, # groupby_t[:, ::1] values: np.ndarray, # ndarray[groupby_t, ndim=2] labels: np.ndarray, # const int64_t[:] ngroups: int, is_datetimelike: bool, mask: np.ndarray | None = ..., result_mask: np.ndarray | None = ..., skipna: bool = ..., ) -> None: ...