""" Tests for 2D compatibility. """ import numpy as np import pytest from pandas._libs.missing import is_matching_na from pandas.core.dtypes.common import ( is_bool_dtype, is_integer_dtype, ) import pandas as pd import pandas._testing as tm from pandas.core.arrays.integer import NUMPY_INT_TO_DTYPE class Dim2CompatTests: # Note: these are ONLY for ExtensionArray subclasses that support 2D arrays. # i.e. not for pyarrow-backed EAs. def test_transpose(self, data): arr2d = data.repeat(2).reshape(-1, 2) shape = arr2d.shape assert shape[0] != shape[-1] # otherwise the rest of the test is useless assert arr2d.T.shape == shape[::-1] def test_frame_from_2d_array(self, data): arr2d = data.repeat(2).reshape(-1, 2) df = pd.DataFrame(arr2d) expected = pd.DataFrame({0: arr2d[:, 0], 1: arr2d[:, 1]}) tm.assert_frame_equal(df, expected) def test_swapaxes(self, data): arr2d = data.repeat(2).reshape(-1, 2) result = arr2d.swapaxes(0, 1) expected = arr2d.T tm.assert_extension_array_equal(result, expected) def test_delete_2d(self, data): arr2d = data.repeat(3).reshape(-1, 3) # axis = 0 result = arr2d.delete(1, axis=0) expected = data.delete(1).repeat(3).reshape(-1, 3) tm.assert_extension_array_equal(result, expected) # axis = 1 result = arr2d.delete(1, axis=1) expected = data.repeat(2).reshape(-1, 2) tm.assert_extension_array_equal(result, expected) def test_take_2d(self, data): arr2d = data.reshape(-1, 1) result = arr2d.take([0, 0, -1], axis=0) expected = data.take([0, 0, -1]).reshape(-1, 1) tm.assert_extension_array_equal(result, expected) def test_repr_2d(self, data): # this could fail in a corner case where an element contained the name res = repr(data.reshape(1, -1)) assert res.count(f"<{type(data).__name__}") == 1 res = repr(data.reshape(-1, 1)) assert res.count(f"<{type(data).__name__}") == 1 def test_reshape(self, data): arr2d = data.reshape(-1, 1) assert arr2d.shape == (data.size, 1) assert len(arr2d) == len(data) arr2d = data.reshape((-1, 1)) assert arr2d.shape == (data.size, 1) assert len(arr2d) == len(data) with pytest.raises(ValueError): data.reshape((data.size, 2)) with pytest.raises(ValueError): data.reshape(data.size, 2) def test_getitem_2d(self, data): arr2d = data.reshape(1, -1) result = arr2d[0] tm.assert_extension_array_equal(result, data) with pytest.raises(IndexError): arr2d[1] with pytest.raises(IndexError): arr2d[-2] result = arr2d[:] tm.assert_extension_array_equal(result, arr2d) result = arr2d[:, :] tm.assert_extension_array_equal(result, arr2d) result = arr2d[:, 0] expected = data[[0]] tm.assert_extension_array_equal(result, expected) # dimension-expanding getitem on 1D result = data[:, np.newaxis] tm.assert_extension_array_equal(result, arr2d.T) def test_iter_2d(self, data): arr2d = data.reshape(1, -1) objs = list(iter(arr2d)) assert len(objs) == arr2d.shape[0] for obj in objs: assert isinstance(obj, type(data)) assert obj.dtype == data.dtype assert obj.ndim == 1 assert len(obj) == arr2d.shape[1] def test_tolist_2d(self, data): arr2d = data.reshape(1, -1) result = arr2d.tolist() expected = [data.tolist()] assert isinstance(result, list) assert all(isinstance(x, list) for x in result) assert result == expected def test_concat_2d(self, data): left = type(data)._concat_same_type([data, data]).reshape(-1, 2) right = left.copy() # axis=0 result = left._concat_same_type([left, right], axis=0) expected = data._concat_same_type([data] * 4).reshape(-1, 2) tm.assert_extension_array_equal(result, expected) # axis=1 result = left._concat_same_type([left, right], axis=1) assert result.shape == (len(data), 4) tm.assert_extension_array_equal(result[:, :2], left) tm.assert_extension_array_equal(result[:, 2:], right) # axis > 1 -> invalid msg = "axis 2 is out of bounds for array of dimension 2" with pytest.raises(ValueError, match=msg): left._concat_same_type([left, right], axis=2) @pytest.mark.parametrize("method", ["backfill", "pad"]) def test_fillna_2d_method(self, data_missing, method): # pad_or_backfill is always along axis=0 arr = data_missing.repeat(2).reshape(2, 2) assert arr[0].isna().all() assert not arr[1].isna().any() result = arr._pad_or_backfill(method=method, limit=None) expected = data_missing._pad_or_backfill(method=method).repeat(2).reshape(2, 2) tm.assert_extension_array_equal(result, expected) # Reverse so that backfill is not a no-op. arr2 = arr[::-1] assert not arr2[0].isna().any() assert arr2[1].isna().all() result2 = arr2._pad_or_backfill(method=method, limit=None) expected2 = ( data_missing[::-1]._pad_or_backfill(method=method).repeat(2).reshape(2, 2) ) tm.assert_extension_array_equal(result2, expected2) @pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"]) def test_reductions_2d_axis_none(self, data, method): arr2d = data.reshape(1, -1) err_expected = None err_result = None try: expected = getattr(data, method)() except Exception as err: # if the 1D reduction is invalid, the 2D reduction should be as well err_expected = err try: result = getattr(arr2d, method)(axis=None) except Exception as err2: err_result = err2 else: result = getattr(arr2d, method)(axis=None) if err_result is not None or err_expected is not None: assert type(err_result) == type(err_expected) return assert is_matching_na(result, expected) or result == expected @pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"]) @pytest.mark.parametrize("min_count", [0, 1]) def test_reductions_2d_axis0(self, data, method, min_count): if min_count == 1 and method not in ["sum", "prod"]: pytest.skip(f"min_count not relevant for {method}") arr2d = data.reshape(1, -1) kwargs = {} if method in ["std", "var"]: # pass ddof=0 so we get all-zero std instead of all-NA std kwargs["ddof"] = 0 elif method in ["prod", "sum"]: kwargs["min_count"] = min_count try: result = getattr(arr2d, method)(axis=0, **kwargs) except Exception as err: try: getattr(data, method)() except Exception as err2: assert type(err) == type(err2) return else: raise AssertionError("Both reductions should raise or neither") def get_reduction_result_dtype(dtype): # windows and 32bit builds will in some cases have int32/uint32 # where other builds will have int64/uint64. if dtype.itemsize == 8: return dtype elif dtype.kind in "ib": return NUMPY_INT_TO_DTYPE[np.dtype(int)] else: # i.e. dtype.kind == "u" return NUMPY_INT_TO_DTYPE[np.dtype(np.uint)] if method in ["sum", "prod"]: # std and var are not dtype-preserving expected = data if data.dtype.kind in "iub": dtype = get_reduction_result_dtype(data.dtype) expected = data.astype(dtype) assert dtype == expected.dtype if min_count == 0: fill_value = 1 if method == "prod" else 0 expected = expected.fillna(fill_value) tm.assert_extension_array_equal(result, expected) elif method == "median": # std and var are not dtype-preserving expected = data tm.assert_extension_array_equal(result, expected) elif method in ["mean", "std", "var"]: if is_integer_dtype(data) or is_bool_dtype(data): data = data.astype("Float64") if method == "mean": tm.assert_extension_array_equal(result, data) else: tm.assert_extension_array_equal(result, data - data) @pytest.mark.parametrize("method", ["mean", "median", "var", "std", "sum", "prod"]) def test_reductions_2d_axis1(self, data, method): arr2d = data.reshape(1, -1) try: result = getattr(arr2d, method)(axis=1) except Exception as err: try: getattr(data, method)() except Exception as err2: assert type(err) == type(err2) return else: raise AssertionError("Both reductions should raise or neither") # not necessarily type/dtype-preserving, so weaker assertions assert result.shape == (1,) expected_scalar = getattr(data, method)() res = result[0] assert is_matching_na(res, expected_scalar) or res == expected_scalar class NDArrayBacked2DTests(Dim2CompatTests): # More specific tests for NDArrayBackedExtensionArray subclasses def test_copy_order(self, data): # We should be matching numpy semantics for the "order" keyword in 'copy' arr2d = data.repeat(2).reshape(-1, 2) assert arr2d._ndarray.flags["C_CONTIGUOUS"] res = arr2d.copy() assert res._ndarray.flags["C_CONTIGUOUS"] res = arr2d[::2, ::2].copy() assert res._ndarray.flags["C_CONTIGUOUS"] res = arr2d.copy("F") assert not res._ndarray.flags["C_CONTIGUOUS"] assert res._ndarray.flags["F_CONTIGUOUS"] res = arr2d.copy("K") assert res._ndarray.flags["C_CONTIGUOUS"] res = arr2d.T.copy("K") assert not res._ndarray.flags["C_CONTIGUOUS"] assert res._ndarray.flags["F_CONTIGUOUS"] # order not accepted by numpy msg = r"order must be one of 'C', 'F', 'A', or 'K' \(got 'Q'\)" with pytest.raises(ValueError, match=msg): arr2d.copy("Q") # neither contiguity arr_nc = arr2d[::2] assert not arr_nc._ndarray.flags["C_CONTIGUOUS"] assert not arr_nc._ndarray.flags["F_CONTIGUOUS"] assert arr_nc.copy()._ndarray.flags["C_CONTIGUOUS"] assert not arr_nc.copy()._ndarray.flags["F_CONTIGUOUS"] assert arr_nc.copy("C")._ndarray.flags["C_CONTIGUOUS"] assert not arr_nc.copy("C")._ndarray.flags["F_CONTIGUOUS"] assert not arr_nc.copy("F")._ndarray.flags["C_CONTIGUOUS"] assert arr_nc.copy("F")._ndarray.flags["F_CONTIGUOUS"] assert arr_nc.copy("K")._ndarray.flags["C_CONTIGUOUS"] assert not arr_nc.copy("K")._ndarray.flags["F_CONTIGUOUS"]