from typing import ( Any, Callable, Literal, ) import numpy as np from pandas._typing import ( WindowingRankType, npt, ) def roll_sum( values: np.ndarray, # const float64_t[:] start: np.ndarray, # np.ndarray[np.int64] end: np.ndarray, # np.ndarray[np.int64] minp: int, # int64_t ) -> np.ndarray: ... # np.ndarray[float] def roll_mean( values: np.ndarray, # const float64_t[:] start: np.ndarray, # np.ndarray[np.int64] end: np.ndarray, # np.ndarray[np.int64] minp: int, # int64_t ) -> np.ndarray: ... # np.ndarray[float] def roll_var( values: np.ndarray, # const float64_t[:] start: np.ndarray, # np.ndarray[np.int64] end: np.ndarray, # np.ndarray[np.int64] minp: int, # int64_t ddof: int = ..., ) -> np.ndarray: ... # np.ndarray[float] def roll_skew( values: np.ndarray, # np.ndarray[np.float64] start: np.ndarray, # np.ndarray[np.int64] end: np.ndarray, # np.ndarray[np.int64] minp: int, # int64_t ) -> np.ndarray: ... # np.ndarray[float] def roll_kurt( values: np.ndarray, # np.ndarray[np.float64] start: np.ndarray, # np.ndarray[np.int64] end: np.ndarray, # np.ndarray[np.int64] minp: int, # int64_t ) -> np.ndarray: ... # np.ndarray[float] def roll_median_c( values: np.ndarray, # np.ndarray[np.float64] start: np.ndarray, # np.ndarray[np.int64] end: np.ndarray, # np.ndarray[np.int64] minp: int, # int64_t ) -> np.ndarray: ... # np.ndarray[float] def roll_max( values: np.ndarray, # np.ndarray[np.float64] start: np.ndarray, # np.ndarray[np.int64] end: np.ndarray, # np.ndarray[np.int64] minp: int, # int64_t ) -> np.ndarray: ... # np.ndarray[float] def roll_min( values: np.ndarray, # np.ndarray[np.float64] start: np.ndarray, # np.ndarray[np.int64] end: np.ndarray, # np.ndarray[np.int64] minp: int, # int64_t ) -> np.ndarray: ... # np.ndarray[float] def roll_quantile( values: np.ndarray, # const float64_t[:] start: np.ndarray, # np.ndarray[np.int64] end: np.ndarray, # np.ndarray[np.int64] minp: int, # int64_t quantile: float, # float64_t interpolation: Literal["linear", "lower", "higher", "nearest", "midpoint"], ) -> np.ndarray: ... # np.ndarray[float] def roll_rank( values: np.ndarray, start: np.ndarray, end: np.ndarray, minp: int, percentile: bool, method: WindowingRankType, ascending: bool, ) -> np.ndarray: ... # np.ndarray[float] def roll_apply( obj: object, start: np.ndarray, # np.ndarray[np.int64] end: np.ndarray, # np.ndarray[np.int64] minp: int, # int64_t function: Callable[..., Any], raw: bool, args: tuple[Any, ...], kwargs: dict[str, Any], ) -> npt.NDArray[np.float64]: ... def roll_weighted_sum( values: np.ndarray, # const float64_t[:] weights: np.ndarray, # const float64_t[:] minp: int, ) -> np.ndarray: ... # np.ndarray[np.float64] def roll_weighted_mean( values: np.ndarray, # const float64_t[:] weights: np.ndarray, # const float64_t[:] minp: int, ) -> np.ndarray: ... # np.ndarray[np.float64] def roll_weighted_var( values: np.ndarray, # const float64_t[:] weights: np.ndarray, # const float64_t[:] minp: int, # int64_t ddof: int, # unsigned int ) -> np.ndarray: ... # np.ndarray[np.float64] def ewm( vals: np.ndarray, # const float64_t[:] start: np.ndarray, # const int64_t[:] end: np.ndarray, # const int64_t[:] minp: int, com: float, # float64_t adjust: bool, ignore_na: bool, deltas: np.ndarray, # const float64_t[:] normalize: bool, ) -> np.ndarray: ... # np.ndarray[np.float64] def ewmcov( input_x: np.ndarray, # const float64_t[:] start: np.ndarray, # const int64_t[:] end: np.ndarray, # const int64_t[:] minp: int, input_y: np.ndarray, # const float64_t[:] com: float, # float64_t adjust: bool, ignore_na: bool, bias: bool, ) -> np.ndarray: ... # np.ndarray[np.float64]