import numpy as np import pytest import pandas as pd import pandas._testing as tm class BaseSetitemTests: @pytest.fixture( params=[ lambda x: x.index, lambda x: list(x.index), lambda x: slice(None), lambda x: slice(0, len(x)), lambda x: range(len(x)), lambda x: list(range(len(x))), lambda x: np.ones(len(x), dtype=bool), ], ids=[ "index", "list[index]", "null_slice", "full_slice", "range", "list(range)", "mask", ], ) def full_indexer(self, request): """ Fixture for an indexer to pass to obj.loc to get/set the full length of the object. In some cases, assumes that obj.index is the default RangeIndex. """ return request.param @pytest.fixture(autouse=True) def skip_if_immutable(self, dtype, request): if dtype._is_immutable: node = request.node if node.name.split("[")[0] == "test_is_immutable": # This fixture is auto-used, but we want to not-skip # test_is_immutable. return pytest.skip("__setitem__ test not applicable with immutable dtype") def test_is_immutable(self, data): if data.dtype._is_immutable: with pytest.raises(TypeError): data[0] = data[0] else: data[0] = data[1] assert data[0] == data[1] def test_setitem_scalar_series(self, data, box_in_series): if box_in_series: data = pd.Series(data) data[0] = data[1] assert data[0] == data[1] def test_setitem_sequence(self, data, box_in_series): if box_in_series: data = pd.Series(data) original = data.copy() data[[0, 1]] = [data[1], data[0]] assert data[0] == original[1] assert data[1] == original[0] def test_setitem_sequence_mismatched_length_raises(self, data, as_array): ser = pd.Series(data) original = ser.copy() value = [data[0]] if as_array: value = data._from_sequence(value) xpr = "cannot set using a {} indexer with a different length" with pytest.raises(ValueError, match=xpr.format("list-like")): ser[[0, 1]] = value # Ensure no modifications made before the exception tm.assert_series_equal(ser, original) with pytest.raises(ValueError, match=xpr.format("slice")): ser[slice(3)] = value tm.assert_series_equal(ser, original) def test_setitem_empty_indexer(self, data, box_in_series): if box_in_series: data = pd.Series(data) original = data.copy() data[np.array([], dtype=int)] = [] tm.assert_equal(data, original) def test_setitem_sequence_broadcasts(self, data, box_in_series): if box_in_series: data = pd.Series(data) data[[0, 1]] = data[2] assert data[0] == data[2] assert data[1] == data[2] @pytest.mark.parametrize("setter", ["loc", "iloc"]) def test_setitem_scalar(self, data, setter): arr = pd.Series(data) setter = getattr(arr, setter) setter[0] = data[1] assert arr[0] == data[1] def test_setitem_loc_scalar_mixed(self, data): df = pd.DataFrame({"A": np.arange(len(data)), "B": data}) df.loc[0, "B"] = data[1] assert df.loc[0, "B"] == data[1] def test_setitem_loc_scalar_single(self, data): df = pd.DataFrame({"B": data}) df.loc[10, "B"] = data[1] assert df.loc[10, "B"] == data[1] def test_setitem_loc_scalar_multiple_homogoneous(self, data): df = pd.DataFrame({"A": data, "B": data}) df.loc[10, "B"] = data[1] assert df.loc[10, "B"] == data[1] def test_setitem_iloc_scalar_mixed(self, data): df = pd.DataFrame({"A": np.arange(len(data)), "B": data}) df.iloc[0, 1] = data[1] assert df.loc[0, "B"] == data[1] def test_setitem_iloc_scalar_single(self, data): df = pd.DataFrame({"B": data}) df.iloc[10, 0] = data[1] assert df.loc[10, "B"] == data[1] def test_setitem_iloc_scalar_multiple_homogoneous(self, data): df = pd.DataFrame({"A": data, "B": data}) df.iloc[10, 1] = data[1] assert df.loc[10, "B"] == data[1] @pytest.mark.parametrize( "mask", [ np.array([True, True, True, False, False]), pd.array([True, True, True, False, False], dtype="boolean"), pd.array([True, True, True, pd.NA, pd.NA], dtype="boolean"), ], ids=["numpy-array", "boolean-array", "boolean-array-na"], ) def test_setitem_mask(self, data, mask, box_in_series): arr = data[:5].copy() expected = arr.take([0, 0, 0, 3, 4]) if box_in_series: arr = pd.Series(arr) expected = pd.Series(expected) arr[mask] = data[0] tm.assert_equal(expected, arr) def test_setitem_mask_raises(self, data, box_in_series): # wrong length mask = np.array([True, False]) if box_in_series: data = pd.Series(data) with pytest.raises(IndexError, match="wrong length"): data[mask] = data[0] mask = pd.array(mask, dtype="boolean") with pytest.raises(IndexError, match="wrong length"): data[mask] = data[0] def test_setitem_mask_boolean_array_with_na(self, data, box_in_series): mask = pd.array(np.zeros(data.shape, dtype="bool"), dtype="boolean") mask[:3] = True mask[3:5] = pd.NA if box_in_series: data = pd.Series(data) data[mask] = data[0] assert (data[:3] == data[0]).all() @pytest.mark.parametrize( "idx", [[0, 1, 2], pd.array([0, 1, 2], dtype="Int64"), np.array([0, 1, 2])], ids=["list", "integer-array", "numpy-array"], ) def test_setitem_integer_array(self, data, idx, box_in_series): arr = data[:5].copy() expected = data.take([0, 0, 0, 3, 4]) if box_in_series: arr = pd.Series(arr) expected = pd.Series(expected) arr[idx] = arr[0] tm.assert_equal(arr, expected) @pytest.mark.parametrize( "idx, box_in_series", [ ([0, 1, 2, pd.NA], False), pytest.param( [0, 1, 2, pd.NA], True, marks=pytest.mark.xfail(reason="GH-31948") ), (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False), (pd.array([0, 1, 2, pd.NA], dtype="Int64"), False), ], ids=["list-False", "list-True", "integer-array-False", "integer-array-True"], ) def test_setitem_integer_with_missing_raises(self, data, idx, box_in_series): arr = data.copy() # TODO(xfail) this raises KeyError about labels not found (it tries label-based) # for list of labels with Series if box_in_series: arr = pd.Series(data, index=[chr(100 + i) for i in range(len(data))]) msg = "Cannot index with an integer indexer containing NA values" with pytest.raises(ValueError, match=msg): arr[idx] = arr[0] @pytest.mark.parametrize("as_callable", [True, False]) @pytest.mark.parametrize("setter", ["loc", None]) def test_setitem_mask_aligned(self, data, as_callable, setter): ser = pd.Series(data) mask = np.zeros(len(data), dtype=bool) mask[:2] = True if as_callable: mask2 = lambda x: mask else: mask2 = mask if setter: # loc target = getattr(ser, setter) else: # Series.__setitem__ target = ser target[mask2] = data[5:7] ser[mask2] = data[5:7] assert ser[0] == data[5] assert ser[1] == data[6] @pytest.mark.parametrize("setter", ["loc", None]) def test_setitem_mask_broadcast(self, data, setter): ser = pd.Series(data) mask = np.zeros(len(data), dtype=bool) mask[:2] = True if setter: # loc target = getattr(ser, setter) else: # __setitem__ target = ser target[mask] = data[10] assert ser[0] == data[10] assert ser[1] == data[10] def test_setitem_expand_columns(self, data): df = pd.DataFrame({"A": data}) result = df.copy() result["B"] = 1 expected = pd.DataFrame({"A": data, "B": [1] * len(data)}) tm.assert_frame_equal(result, expected) result = df.copy() result.loc[:, "B"] = 1 tm.assert_frame_equal(result, expected) # overwrite with new type result["B"] = data expected = pd.DataFrame({"A": data, "B": data}) tm.assert_frame_equal(result, expected) def test_setitem_expand_with_extension(self, data): df = pd.DataFrame({"A": [1] * len(data)}) result = df.copy() result["B"] = data expected = pd.DataFrame({"A": [1] * len(data), "B": data}) tm.assert_frame_equal(result, expected) result = df.copy() result.loc[:, "B"] = data tm.assert_frame_equal(result, expected) def test_setitem_frame_invalid_length(self, data): df = pd.DataFrame({"A": [1] * len(data)}) xpr = ( rf"Length of values \({len(data[:5])}\) " rf"does not match length of index \({len(df)}\)" ) with pytest.raises(ValueError, match=xpr): df["B"] = data[:5] def test_setitem_tuple_index(self, data): ser = pd.Series(data[:2], index=[(0, 0), (0, 1)]) expected = pd.Series(data.take([1, 1]), index=ser.index) ser[(0, 0)] = data[1] tm.assert_series_equal(ser, expected) def test_setitem_slice(self, data, box_in_series): arr = data[:5].copy() expected = data.take([0, 0, 0, 3, 4]) if box_in_series: arr = pd.Series(arr) expected = pd.Series(expected) arr[:3] = data[0] tm.assert_equal(arr, expected) def test_setitem_loc_iloc_slice(self, data): arr = data[:5].copy() s = pd.Series(arr, index=["a", "b", "c", "d", "e"]) expected = pd.Series(data.take([0, 0, 0, 3, 4]), index=s.index) result = s.copy() result.iloc[:3] = data[0] tm.assert_equal(result, expected) result = s.copy() result.loc[:"c"] = data[0] tm.assert_equal(result, expected) def test_setitem_slice_mismatch_length_raises(self, data): arr = data[:5] with pytest.raises(ValueError): arr[:1] = arr[:2] def test_setitem_slice_array(self, data): arr = data[:5].copy() arr[:5] = data[-5:] tm.assert_extension_array_equal(arr, data[-5:]) def test_setitem_scalar_key_sequence_raise(self, data): arr = data[:5].copy() with pytest.raises(ValueError): arr[0] = arr[[0, 1]] def test_setitem_preserves_views(self, data): # GH#28150 setitem shouldn't swap the underlying data view1 = data.view() view2 = data[:] data[0] = data[1] assert view1[0] == data[1] assert view2[0] == data[1] def test_setitem_with_expansion_dataframe_column(self, data, full_indexer): # https://github.com/pandas-dev/pandas/issues/32395 df = expected = pd.DataFrame({"data": pd.Series(data)}) result = pd.DataFrame(index=df.index) key = full_indexer(df) result.loc[key, "data"] = df["data"] tm.assert_frame_equal(result, expected) def test_setitem_with_expansion_row(self, data, na_value): df = pd.DataFrame({"data": data[:1]}) df.loc[1, "data"] = data[1] expected = pd.DataFrame({"data": data[:2]}) tm.assert_frame_equal(df, expected) # https://github.com/pandas-dev/pandas/issues/47284 df.loc[2, "data"] = na_value expected = pd.DataFrame( {"data": pd.Series([data[0], data[1], na_value], dtype=data.dtype)} ) tm.assert_frame_equal(df, expected) def test_setitem_series(self, data, full_indexer): # https://github.com/pandas-dev/pandas/issues/32395 ser = pd.Series(data, name="data") result = pd.Series(index=ser.index, dtype=object, name="data") # because result has object dtype, the attempt to do setting inplace # is successful, and object dtype is retained key = full_indexer(ser) result.loc[key] = ser expected = pd.Series( data.astype(object), index=ser.index, name="data", dtype=object ) tm.assert_series_equal(result, expected) def test_setitem_frame_2d_values(self, data): # GH#44514 df = pd.DataFrame({"A": data}) # Avoiding using_array_manager fixture # https://github.com/pandas-dev/pandas/pull/44514#discussion_r754002410 using_array_manager = isinstance(df._mgr, pd.core.internals.ArrayManager) using_copy_on_write = pd.options.mode.copy_on_write blk_data = df._mgr.arrays[0] orig = df.copy() df.iloc[:] = df tm.assert_frame_equal(df, orig) df.iloc[:-1] = df.iloc[:-1] tm.assert_frame_equal(df, orig) df.iloc[:] = df.values tm.assert_frame_equal(df, orig) if not using_array_manager and not using_copy_on_write: # GH#33457 Check that this setting occurred in-place # FIXME(ArrayManager): this should work there too assert df._mgr.arrays[0] is blk_data df.iloc[:-1] = df.values[:-1] tm.assert_frame_equal(df, orig) def test_delitem_series(self, data): # GH#40763 ser = pd.Series(data, name="data") taker = np.arange(len(ser)) taker = np.delete(taker, 1) expected = ser[taker] del ser[1] tm.assert_series_equal(ser, expected) def test_setitem_invalid(self, data, invalid_scalar): msg = "" # messages vary by subclass, so we do not test it with pytest.raises((ValueError, TypeError), match=msg): data[0] = invalid_scalar with pytest.raises((ValueError, TypeError), match=msg): data[:] = invalid_scalar def test_setitem_2d_values(self, data): # GH50085 original = data.copy() df = pd.DataFrame({"a": data, "b": data}) df.loc[[0, 1], :] = df.loc[[1, 0], :].values assert (df.loc[0, :] == original[1]).all() assert (df.loc[1, :] == original[0]).all()