You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
239 lines
7.3 KiB
239 lines
7.3 KiB
"""
|
|
This file contains a minimal set of tests for compliance with the extension
|
|
array interface test suite, and should contain no other tests.
|
|
The test suite for the full functionality of the array is located in
|
|
`pandas/tests/arrays/`.
|
|
|
|
The tests in this file are inherited from the BaseExtensionTests, and only
|
|
minimal tweaks should be applied to get the tests passing (by overwriting a
|
|
parent method).
|
|
|
|
Additional tests should either be added to one of the BaseExtensionTests
|
|
classes (if they are relevant for the extension interface for all dtypes), or
|
|
be added to the array-specific tests in `pandas/tests/arrays/`.
|
|
|
|
"""
|
|
import string
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.api.types import is_string_dtype
|
|
from pandas.core.arrays import ArrowStringArray
|
|
from pandas.core.arrays.string_ import StringDtype
|
|
from pandas.tests.extension import base
|
|
|
|
|
|
def split_array(arr):
|
|
if arr.dtype.storage != "pyarrow":
|
|
pytest.skip("only applicable for pyarrow chunked array n/a")
|
|
|
|
def _split_array(arr):
|
|
import pyarrow as pa
|
|
|
|
arrow_array = arr._pa_array
|
|
split = len(arrow_array) // 2
|
|
arrow_array = pa.chunked_array(
|
|
[*arrow_array[:split].chunks, *arrow_array[split:].chunks]
|
|
)
|
|
assert arrow_array.num_chunks == 2
|
|
return type(arr)(arrow_array)
|
|
|
|
return _split_array(arr)
|
|
|
|
|
|
@pytest.fixture(params=[True, False])
|
|
def chunked(request):
|
|
return request.param
|
|
|
|
|
|
@pytest.fixture
|
|
def dtype(string_storage):
|
|
return StringDtype(storage=string_storage)
|
|
|
|
|
|
@pytest.fixture
|
|
def data(dtype, chunked):
|
|
strings = np.random.default_rng(2).choice(list(string.ascii_letters), size=100)
|
|
while strings[0] == strings[1]:
|
|
strings = np.random.default_rng(2).choice(list(string.ascii_letters), size=100)
|
|
|
|
arr = dtype.construct_array_type()._from_sequence(strings)
|
|
return split_array(arr) if chunked else arr
|
|
|
|
|
|
@pytest.fixture
|
|
def data_missing(dtype, chunked):
|
|
"""Length 2 array with [NA, Valid]"""
|
|
arr = dtype.construct_array_type()._from_sequence([pd.NA, "A"])
|
|
return split_array(arr) if chunked else arr
|
|
|
|
|
|
@pytest.fixture
|
|
def data_for_sorting(dtype, chunked):
|
|
arr = dtype.construct_array_type()._from_sequence(["B", "C", "A"])
|
|
return split_array(arr) if chunked else arr
|
|
|
|
|
|
@pytest.fixture
|
|
def data_missing_for_sorting(dtype, chunked):
|
|
arr = dtype.construct_array_type()._from_sequence(["B", pd.NA, "A"])
|
|
return split_array(arr) if chunked else arr
|
|
|
|
|
|
@pytest.fixture
|
|
def data_for_grouping(dtype, chunked):
|
|
arr = dtype.construct_array_type()._from_sequence(
|
|
["B", "B", pd.NA, pd.NA, "A", "A", "B", "C"]
|
|
)
|
|
return split_array(arr) if chunked else arr
|
|
|
|
|
|
class TestDtype(base.BaseDtypeTests):
|
|
def test_eq_with_str(self, dtype):
|
|
assert dtype == f"string[{dtype.storage}]"
|
|
super().test_eq_with_str(dtype)
|
|
|
|
def test_is_not_string_type(self, dtype):
|
|
# Different from BaseDtypeTests.test_is_not_string_type
|
|
# because StringDtype is a string type
|
|
assert is_string_dtype(dtype)
|
|
|
|
|
|
class TestInterface(base.BaseInterfaceTests):
|
|
def test_view(self, data, request, arrow_string_storage):
|
|
if data.dtype.storage in arrow_string_storage:
|
|
pytest.skip(reason="2D support not implemented for ArrowStringArray")
|
|
super().test_view(data)
|
|
|
|
|
|
class TestConstructors(base.BaseConstructorsTests):
|
|
def test_from_dtype(self, data):
|
|
# base test uses string representation of dtype
|
|
pass
|
|
|
|
|
|
class TestReshaping(base.BaseReshapingTests):
|
|
def test_transpose(self, data, request, arrow_string_storage):
|
|
if data.dtype.storage in arrow_string_storage:
|
|
pytest.skip(reason="2D support not implemented for ArrowStringArray")
|
|
super().test_transpose(data)
|
|
|
|
|
|
class TestGetitem(base.BaseGetitemTests):
|
|
pass
|
|
|
|
|
|
class TestSetitem(base.BaseSetitemTests):
|
|
def test_setitem_preserves_views(self, data, request, arrow_string_storage):
|
|
if data.dtype.storage in arrow_string_storage:
|
|
pytest.skip(reason="2D support not implemented for ArrowStringArray")
|
|
super().test_setitem_preserves_views(data)
|
|
|
|
|
|
class TestIndex(base.BaseIndexTests):
|
|
pass
|
|
|
|
|
|
class TestMissing(base.BaseMissingTests):
|
|
def test_dropna_array(self, data_missing):
|
|
result = data_missing.dropna()
|
|
expected = data_missing[[1]]
|
|
tm.assert_extension_array_equal(result, expected)
|
|
|
|
def test_fillna_no_op_returns_copy(self, data):
|
|
data = data[~data.isna()]
|
|
|
|
valid = data[0]
|
|
result = data.fillna(valid)
|
|
assert result is not data
|
|
tm.assert_extension_array_equal(result, data)
|
|
|
|
result = data.fillna(method="backfill")
|
|
assert result is not data
|
|
tm.assert_extension_array_equal(result, data)
|
|
|
|
|
|
class TestReduce(base.BaseReduceTests):
|
|
def _supports_reduction(self, ser: pd.Series, op_name: str) -> bool:
|
|
return (
|
|
ser.dtype.storage == "pyarrow_numpy" # type: ignore[union-attr]
|
|
and op_name in ("any", "all")
|
|
)
|
|
|
|
@pytest.mark.parametrize("skipna", [True, False])
|
|
def test_reduce_series_numeric(self, data, all_numeric_reductions, skipna):
|
|
op_name = all_numeric_reductions
|
|
|
|
if op_name in ["min", "max"]:
|
|
return None
|
|
|
|
ser = pd.Series(data)
|
|
with pytest.raises(TypeError):
|
|
getattr(ser, op_name)(skipna=skipna)
|
|
|
|
|
|
class TestMethods(base.BaseMethodsTests):
|
|
pass
|
|
|
|
|
|
class TestCasting(base.BaseCastingTests):
|
|
pass
|
|
|
|
|
|
class TestComparisonOps(base.BaseComparisonOpsTests):
|
|
def _cast_pointwise_result(self, op_name: str, obj, other, pointwise_result):
|
|
dtype = tm.get_dtype(obj)
|
|
# error: Item "dtype[Any]" of "dtype[Any] | ExtensionDtype" has no
|
|
# attribute "storage"
|
|
if dtype.storage == "pyarrow": # type: ignore[union-attr]
|
|
cast_to = "boolean[pyarrow]"
|
|
elif dtype.storage == "pyarrow_numpy": # type: ignore[union-attr]
|
|
cast_to = np.bool_ # type: ignore[assignment]
|
|
else:
|
|
cast_to = "boolean"
|
|
return pointwise_result.astype(cast_to)
|
|
|
|
def test_compare_scalar(self, data, comparison_op):
|
|
ser = pd.Series(data)
|
|
self._compare_other(ser, data, comparison_op, "abc")
|
|
|
|
|
|
class TestParsing(base.BaseParsingTests):
|
|
pass
|
|
|
|
|
|
class TestPrinting(base.BasePrintingTests):
|
|
pass
|
|
|
|
|
|
class TestGroupBy(base.BaseGroupbyTests):
|
|
@pytest.mark.filterwarnings("ignore:Falling back:pandas.errors.PerformanceWarning")
|
|
def test_groupby_extension_apply(self, data_for_grouping, groupby_apply_op):
|
|
super().test_groupby_extension_apply(data_for_grouping, groupby_apply_op)
|
|
|
|
|
|
class Test2DCompat(base.Dim2CompatTests):
|
|
@pytest.fixture(autouse=True)
|
|
def arrow_not_supported(self, data, request):
|
|
if isinstance(data, ArrowStringArray):
|
|
pytest.skip(reason="2D support not implemented for ArrowStringArray")
|
|
|
|
|
|
def test_searchsorted_with_na_raises(data_for_sorting, as_series):
|
|
# GH50447
|
|
b, c, a = data_for_sorting
|
|
arr = data_for_sorting.take([2, 0, 1]) # to get [a, b, c]
|
|
arr[-1] = pd.NA
|
|
|
|
if as_series:
|
|
arr = pd.Series(arr)
|
|
|
|
msg = (
|
|
"searchsorted requires array to be sorted, "
|
|
"which is impossible with NAs present."
|
|
)
|
|
with pytest.raises(ValueError, match=msg):
|
|
arr.searchsorted(b)
|
|
|