Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

686 lines
20 KiB

import numpy as np
import pytest
from pandas import (
DataFrame,
Index,
RangeIndex,
Series,
)
import pandas._testing as tm
def gen_obj(klass, index):
if klass is Series:
obj = Series(np.arange(len(index)), index=index)
else:
obj = DataFrame(
np.random.default_rng(2).standard_normal((len(index), len(index))),
index=index,
columns=index,
)
return obj
class TestFloatIndexers:
def check(self, result, original, indexer, getitem):
"""
comparator for results
we need to take care if we are indexing on a
Series or a frame
"""
if isinstance(original, Series):
expected = original.iloc[indexer]
elif getitem:
expected = original.iloc[:, indexer]
else:
expected = original.iloc[indexer]
tm.assert_almost_equal(result, expected)
@pytest.mark.parametrize(
"index_func",
[
tm.makeStringIndex,
tm.makeCategoricalIndex,
tm.makeDateIndex,
tm.makeTimedeltaIndex,
tm.makePeriodIndex,
],
)
def test_scalar_non_numeric(self, index_func, frame_or_series, indexer_sl):
# GH 4892
# float_indexers should raise exceptions
# on appropriate Index types & accessors
i = index_func(5)
s = gen_obj(frame_or_series, i)
# getting
with pytest.raises(KeyError, match="^3.0$"):
indexer_sl(s)[3.0]
# contains
assert 3.0 not in s
s2 = s.copy()
indexer_sl(s2)[3.0] = 10
if indexer_sl is tm.setitem:
assert 3.0 in s2.axes[-1]
elif indexer_sl is tm.loc:
assert 3.0 in s2.axes[0]
else:
assert 3.0 not in s2.axes[0]
assert 3.0 not in s2.axes[-1]
@pytest.mark.parametrize(
"index_func",
[
tm.makeStringIndex,
tm.makeCategoricalIndex,
tm.makeDateIndex,
tm.makeTimedeltaIndex,
tm.makePeriodIndex,
],
)
def test_scalar_non_numeric_series_fallback(self, index_func):
# fallsback to position selection, series only
i = index_func(5)
s = Series(np.arange(len(i)), index=i)
msg = "Series.__getitem__ treating keys as positions is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
s[3]
with pytest.raises(KeyError, match="^3.0$"):
s[3.0]
def test_scalar_with_mixed(self, indexer_sl):
s2 = Series([1, 2, 3], index=["a", "b", "c"])
s3 = Series([1, 2, 3], index=["a", "b", 1.5])
# lookup in a pure string index with an invalid indexer
with pytest.raises(KeyError, match="^1.0$"):
indexer_sl(s2)[1.0]
with pytest.raises(KeyError, match=r"^1\.0$"):
indexer_sl(s2)[1.0]
result = indexer_sl(s2)["b"]
expected = 2
assert result == expected
# mixed index so we have label
# indexing
with pytest.raises(KeyError, match="^1.0$"):
indexer_sl(s3)[1.0]
if indexer_sl is not tm.loc:
# __getitem__ falls back to positional
msg = "Series.__getitem__ treating keys as positions is deprecated"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = s3[1]
expected = 2
assert result == expected
with pytest.raises(KeyError, match=r"^1\.0$"):
indexer_sl(s3)[1.0]
result = indexer_sl(s3)[1.5]
expected = 3
assert result == expected
@pytest.mark.parametrize("index_func", [tm.makeIntIndex, tm.makeRangeIndex])
def test_scalar_integer(self, index_func, frame_or_series, indexer_sl):
getitem = indexer_sl is not tm.loc
# test how scalar float indexers work on int indexes
# integer index
i = index_func(5)
obj = gen_obj(frame_or_series, i)
# coerce to equal int
result = indexer_sl(obj)[3.0]
self.check(result, obj, 3, getitem)
if isinstance(obj, Series):
def compare(x, y):
assert x == y
expected = 100
else:
compare = tm.assert_series_equal
if getitem:
expected = Series(100, index=range(len(obj)), name=3)
else:
expected = Series(100.0, index=range(len(obj)), name=3)
s2 = obj.copy()
indexer_sl(s2)[3.0] = 100
result = indexer_sl(s2)[3.0]
compare(result, expected)
result = indexer_sl(s2)[3]
compare(result, expected)
@pytest.mark.parametrize("index_func", [tm.makeIntIndex, tm.makeRangeIndex])
def test_scalar_integer_contains_float(self, index_func, frame_or_series):
# contains
# integer index
index = index_func(5)
obj = gen_obj(frame_or_series, index)
# coerce to equal int
assert 3.0 in obj
def test_scalar_float(self, frame_or_series):
# scalar float indexers work on a float index
index = Index(np.arange(5.0))
s = gen_obj(frame_or_series, index)
# assert all operations except for iloc are ok
indexer = index[3]
for idxr in [tm.loc, tm.setitem]:
getitem = idxr is not tm.loc
# getting
result = idxr(s)[indexer]
self.check(result, s, 3, getitem)
# setting
s2 = s.copy()
result = idxr(s2)[indexer]
self.check(result, s, 3, getitem)
# random float is a KeyError
with pytest.raises(KeyError, match=r"^3\.5$"):
idxr(s)[3.5]
# contains
assert 3.0 in s
# iloc succeeds with an integer
expected = s.iloc[3]
s2 = s.copy()
s2.iloc[3] = expected
result = s2.iloc[3]
self.check(result, s, 3, False)
@pytest.mark.parametrize(
"index_func",
[
tm.makeStringIndex,
tm.makeDateIndex,
tm.makeTimedeltaIndex,
tm.makePeriodIndex,
],
)
@pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
def test_slice_non_numeric(self, index_func, idx, frame_or_series, indexer_sli):
# GH 4892
# float_indexers should raise exceptions
# on appropriate Index types & accessors
index = index_func(5)
s = gen_obj(frame_or_series, index)
# getitem
if indexer_sli is tm.iloc:
msg = (
"cannot do positional indexing "
rf"on {type(index).__name__} with these indexers \[(3|4)\.0\] of "
"type float"
)
else:
msg = (
"cannot do slice indexing "
rf"on {type(index).__name__} with these indexers "
r"\[(3|4)(\.0)?\] "
r"of type (float|int)"
)
with pytest.raises(TypeError, match=msg):
indexer_sli(s)[idx]
# setitem
if indexer_sli is tm.iloc:
# otherwise we keep the same message as above
msg = "slice indices must be integers or None or have an __index__ method"
with pytest.raises(TypeError, match=msg):
indexer_sli(s)[idx] = 0
def test_slice_integer(self):
# same as above, but for Integer based indexes
# these coerce to a like integer
# oob indicates if we are out of bounds
# of positional indexing
for index, oob in [
(Index(np.arange(5, dtype=np.int64)), False),
(RangeIndex(5), False),
(Index(np.arange(5, dtype=np.int64) + 10), True),
]:
# s is an in-range index
s = Series(range(5), index=index)
# getitem
for idx in [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)]:
result = s.loc[idx]
# these are all label indexing
# except getitem which is positional
# empty
if oob:
indexer = slice(0, 0)
else:
indexer = slice(3, 5)
self.check(result, s, indexer, False)
# getitem out-of-bounds
for idx in [slice(-6, 6), slice(-6.0, 6.0)]:
result = s.loc[idx]
# these are all label indexing
# except getitem which is positional
# empty
if oob:
indexer = slice(0, 0)
else:
indexer = slice(-6, 6)
self.check(result, s, indexer, False)
# positional indexing
msg = (
"cannot do slice indexing "
rf"on {type(index).__name__} with these indexers \[-6\.0\] of "
"type float"
)
with pytest.raises(TypeError, match=msg):
s[slice(-6.0, 6.0)]
# getitem odd floats
for idx, res1 in [
(slice(2.5, 4), slice(3, 5)),
(slice(2, 3.5), slice(2, 4)),
(slice(2.5, 3.5), slice(3, 4)),
]:
result = s.loc[idx]
if oob:
res = slice(0, 0)
else:
res = res1
self.check(result, s, res, False)
# positional indexing
msg = (
"cannot do slice indexing "
rf"on {type(index).__name__} with these indexers \[(2|3)\.5\] of "
"type float"
)
with pytest.raises(TypeError, match=msg):
s[idx]
@pytest.mark.parametrize("idx", [slice(2, 4.0), slice(2.0, 4), slice(2.0, 4.0)])
def test_integer_positional_indexing(self, idx):
"""make sure that we are raising on positional indexing
w.r.t. an integer index
"""
s = Series(range(2, 6), index=range(2, 6))
result = s[2:4]
expected = s.iloc[2:4]
tm.assert_series_equal(result, expected)
klass = RangeIndex
msg = (
"cannot do (slice|positional) indexing "
rf"on {klass.__name__} with these indexers \[(2|4)\.0\] of "
"type float"
)
with pytest.raises(TypeError, match=msg):
s[idx]
with pytest.raises(TypeError, match=msg):
s.iloc[idx]
@pytest.mark.parametrize("index_func", [tm.makeIntIndex, tm.makeRangeIndex])
def test_slice_integer_frame_getitem(self, index_func):
# similar to above, but on the getitem dim (of a DataFrame)
index = index_func(5)
s = DataFrame(np.random.default_rng(2).standard_normal((5, 2)), index=index)
# getitem
for idx in [slice(0.0, 1), slice(0, 1.0), slice(0.0, 1.0)]:
result = s.loc[idx]
indexer = slice(0, 2)
self.check(result, s, indexer, False)
# positional indexing
msg = (
"cannot do slice indexing "
rf"on {type(index).__name__} with these indexers \[(0|1)\.0\] of "
"type float"
)
with pytest.raises(TypeError, match=msg):
s[idx]
# getitem out-of-bounds
for idx in [slice(-10, 10), slice(-10.0, 10.0)]:
result = s.loc[idx]
self.check(result, s, slice(-10, 10), True)
# positional indexing
msg = (
"cannot do slice indexing "
rf"on {type(index).__name__} with these indexers \[-10\.0\] of "
"type float"
)
with pytest.raises(TypeError, match=msg):
s[slice(-10.0, 10.0)]
# getitem odd floats
for idx, res in [
(slice(0.5, 1), slice(1, 2)),
(slice(0, 0.5), slice(0, 1)),
(slice(0.5, 1.5), slice(1, 2)),
]:
result = s.loc[idx]
self.check(result, s, res, False)
# positional indexing
msg = (
"cannot do slice indexing "
rf"on {type(index).__name__} with these indexers \[0\.5\] of "
"type float"
)
with pytest.raises(TypeError, match=msg):
s[idx]
@pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
@pytest.mark.parametrize("index_func", [tm.makeIntIndex, tm.makeRangeIndex])
def test_float_slice_getitem_with_integer_index_raises(self, idx, index_func):
# similar to above, but on the getitem dim (of a DataFrame)
index = index_func(5)
s = DataFrame(np.random.default_rng(2).standard_normal((5, 2)), index=index)
# setitem
sc = s.copy()
sc.loc[idx] = 0
result = sc.loc[idx].values.ravel()
assert (result == 0).all()
# positional indexing
msg = (
"cannot do slice indexing "
rf"on {type(index).__name__} with these indexers \[(3|4)\.0\] of "
"type float"
)
with pytest.raises(TypeError, match=msg):
s[idx] = 0
with pytest.raises(TypeError, match=msg):
s[idx]
@pytest.mark.parametrize("idx", [slice(3.0, 4), slice(3, 4.0), slice(3.0, 4.0)])
def test_slice_float(self, idx, frame_or_series, indexer_sl):
# same as above, but for floats
index = Index(np.arange(5.0)) + 0.1
s = gen_obj(frame_or_series, index)
expected = s.iloc[3:4]
# getitem
result = indexer_sl(s)[idx]
assert isinstance(result, type(s))
tm.assert_equal(result, expected)
# setitem
s2 = s.copy()
indexer_sl(s2)[idx] = 0
result = indexer_sl(s2)[idx].values.ravel()
assert (result == 0).all()
def test_floating_index_doc_example(self):
index = Index([1.5, 2, 3, 4.5, 5])
s = Series(range(5), index=index)
assert s[3] == 2
assert s.loc[3] == 2
assert s.iloc[3] == 3
def test_floating_misc(self, indexer_sl):
# related 236
# scalar/slicing of a float index
s = Series(np.arange(5), index=np.arange(5) * 2.5, dtype=np.int64)
# label based slicing
result = indexer_sl(s)[1.0:3.0]
expected = Series(1, index=[2.5])
tm.assert_series_equal(result, expected)
# exact indexing when found
result = indexer_sl(s)[5.0]
assert result == 2
result = indexer_sl(s)[5]
assert result == 2
# value not found (and no fallbacking at all)
# scalar integers
with pytest.raises(KeyError, match=r"^4$"):
indexer_sl(s)[4]
# fancy floats/integers create the correct entry (as nan)
# fancy tests
expected = Series([2, 0], index=Index([5.0, 0.0], dtype=np.float64))
for fancy_idx in [[5.0, 0.0], np.array([5.0, 0.0])]: # float
tm.assert_series_equal(indexer_sl(s)[fancy_idx], expected)
expected = Series([2, 0], index=Index([5, 0], dtype="float64"))
for fancy_idx in [[5, 0], np.array([5, 0])]:
tm.assert_series_equal(indexer_sl(s)[fancy_idx], expected)
warn = FutureWarning if indexer_sl is tm.setitem else None
msg = r"The behavior of obj\[i:j\] with a float-dtype index"
# all should return the same as we are slicing 'the same'
with tm.assert_produces_warning(warn, match=msg):
result1 = indexer_sl(s)[2:5]
result2 = indexer_sl(s)[2.0:5.0]
result3 = indexer_sl(s)[2.0:5]
result4 = indexer_sl(s)[2.1:5]
tm.assert_series_equal(result1, result2)
tm.assert_series_equal(result1, result3)
tm.assert_series_equal(result1, result4)
expected = Series([1, 2], index=[2.5, 5.0])
with tm.assert_produces_warning(warn, match=msg):
result = indexer_sl(s)[2:5]
tm.assert_series_equal(result, expected)
# list selection
result1 = indexer_sl(s)[[0.0, 5, 10]]
result2 = s.iloc[[0, 2, 4]]
tm.assert_series_equal(result1, result2)
with pytest.raises(KeyError, match="not in index"):
indexer_sl(s)[[1.6, 5, 10]]
with pytest.raises(KeyError, match="not in index"):
indexer_sl(s)[[0, 1, 2]]
result = indexer_sl(s)[[2.5, 5]]
tm.assert_series_equal(result, Series([1, 2], index=[2.5, 5.0]))
result = indexer_sl(s)[[2.5]]
tm.assert_series_equal(result, Series([1], index=[2.5]))
def test_floatindex_slicing_bug(self, float_numpy_dtype):
# GH 5557, related to slicing a float index
dtype = float_numpy_dtype
ser = {
256: 2321.0,
1: 78.0,
2: 2716.0,
3: 0.0,
4: 369.0,
5: 0.0,
6: 269.0,
7: 0.0,
8: 0.0,
9: 0.0,
10: 3536.0,
11: 0.0,
12: 24.0,
13: 0.0,
14: 931.0,
15: 0.0,
16: 101.0,
17: 78.0,
18: 9643.0,
19: 0.0,
20: 0.0,
21: 0.0,
22: 63761.0,
23: 0.0,
24: 446.0,
25: 0.0,
26: 34773.0,
27: 0.0,
28: 729.0,
29: 78.0,
30: 0.0,
31: 0.0,
32: 3374.0,
33: 0.0,
34: 1391.0,
35: 0.0,
36: 361.0,
37: 0.0,
38: 61808.0,
39: 0.0,
40: 0.0,
41: 0.0,
42: 6677.0,
43: 0.0,
44: 802.0,
45: 0.0,
46: 2691.0,
47: 0.0,
48: 3582.0,
49: 0.0,
50: 734.0,
51: 0.0,
52: 627.0,
53: 70.0,
54: 2584.0,
55: 0.0,
56: 324.0,
57: 0.0,
58: 605.0,
59: 0.0,
60: 0.0,
61: 0.0,
62: 3989.0,
63: 10.0,
64: 42.0,
65: 0.0,
66: 904.0,
67: 0.0,
68: 88.0,
69: 70.0,
70: 8172.0,
71: 0.0,
72: 0.0,
73: 0.0,
74: 64902.0,
75: 0.0,
76: 347.0,
77: 0.0,
78: 36605.0,
79: 0.0,
80: 379.0,
81: 70.0,
82: 0.0,
83: 0.0,
84: 3001.0,
85: 0.0,
86: 1630.0,
87: 7.0,
88: 364.0,
89: 0.0,
90: 67404.0,
91: 9.0,
92: 0.0,
93: 0.0,
94: 7685.0,
95: 0.0,
96: 1017.0,
97: 0.0,
98: 2831.0,
99: 0.0,
100: 2963.0,
101: 0.0,
102: 854.0,
103: 0.0,
104: 0.0,
105: 0.0,
106: 0.0,
107: 0.0,
108: 0.0,
109: 0.0,
110: 0.0,
111: 0.0,
112: 0.0,
113: 0.0,
114: 0.0,
115: 0.0,
116: 0.0,
117: 0.0,
118: 0.0,
119: 0.0,
120: 0.0,
121: 0.0,
122: 0.0,
123: 0.0,
124: 0.0,
125: 0.0,
126: 67744.0,
127: 22.0,
128: 264.0,
129: 0.0,
260: 197.0,
268: 0.0,
265: 0.0,
269: 0.0,
261: 0.0,
266: 1198.0,
267: 0.0,
262: 2629.0,
258: 775.0,
257: 0.0,
263: 0.0,
259: 0.0,
264: 163.0,
250: 10326.0,
251: 0.0,
252: 1228.0,
253: 0.0,
254: 2769.0,
255: 0.0,
}
# smoke test for the repr
s = Series(ser, dtype=dtype)
result = s.value_counts()
assert result.index.dtype == dtype
str(result)