Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

737 lines
25 KiB

from collections.abc import Generator
from contextlib import contextmanager
import re
import struct
import tracemalloc
import numpy as np
import pytest
from pandas._libs import hashtable as ht
import pandas as pd
import pandas._testing as tm
from pandas.core.algorithms import isin
@contextmanager
def activated_tracemalloc() -> Generator[None, None, None]:
tracemalloc.start()
try:
yield
finally:
tracemalloc.stop()
def get_allocated_khash_memory():
snapshot = tracemalloc.take_snapshot()
snapshot = snapshot.filter_traces(
(tracemalloc.DomainFilter(True, ht.get_hashtable_trace_domain()),)
)
return sum(x.size for x in snapshot.traces)
@pytest.mark.parametrize(
"table_type, dtype",
[
(ht.PyObjectHashTable, np.object_),
(ht.Complex128HashTable, np.complex128),
(ht.Int64HashTable, np.int64),
(ht.UInt64HashTable, np.uint64),
(ht.Float64HashTable, np.float64),
(ht.Complex64HashTable, np.complex64),
(ht.Int32HashTable, np.int32),
(ht.UInt32HashTable, np.uint32),
(ht.Float32HashTable, np.float32),
(ht.Int16HashTable, np.int16),
(ht.UInt16HashTable, np.uint16),
(ht.Int8HashTable, np.int8),
(ht.UInt8HashTable, np.uint8),
(ht.IntpHashTable, np.intp),
],
)
class TestHashTable:
def test_get_set_contains_len(self, table_type, dtype):
index = 5
table = table_type(55)
assert len(table) == 0
assert index not in table
table.set_item(index, 42)
assert len(table) == 1
assert index in table
assert table.get_item(index) == 42
table.set_item(index + 1, 41)
assert index in table
assert index + 1 in table
assert len(table) == 2
assert table.get_item(index) == 42
assert table.get_item(index + 1) == 41
table.set_item(index, 21)
assert index in table
assert index + 1 in table
assert len(table) == 2
assert table.get_item(index) == 21
assert table.get_item(index + 1) == 41
assert index + 2 not in table
table.set_item(index + 1, 21)
assert index in table
assert index + 1 in table
assert len(table) == 2
assert table.get_item(index) == 21
assert table.get_item(index + 1) == 21
with pytest.raises(KeyError, match=str(index + 2)):
table.get_item(index + 2)
def test_get_set_contains_len_mask(self, table_type, dtype):
if table_type == ht.PyObjectHashTable:
pytest.skip("Mask not supported for object")
index = 5
table = table_type(55, uses_mask=True)
assert len(table) == 0
assert index not in table
table.set_item(index, 42)
assert len(table) == 1
assert index in table
assert table.get_item(index) == 42
with pytest.raises(KeyError, match="NA"):
table.get_na()
table.set_item(index + 1, 41)
table.set_na(41)
assert pd.NA in table
assert index in table
assert index + 1 in table
assert len(table) == 3
assert table.get_item(index) == 42
assert table.get_item(index + 1) == 41
assert table.get_na() == 41
table.set_na(21)
assert index in table
assert index + 1 in table
assert len(table) == 3
assert table.get_item(index + 1) == 41
assert table.get_na() == 21
assert index + 2 not in table
with pytest.raises(KeyError, match=str(index + 2)):
table.get_item(index + 2)
def test_map_keys_to_values(self, table_type, dtype, writable):
# only Int64HashTable has this method
if table_type == ht.Int64HashTable:
N = 77
table = table_type()
keys = np.arange(N).astype(dtype)
vals = np.arange(N).astype(np.int64) + N
keys.flags.writeable = writable
vals.flags.writeable = writable
table.map_keys_to_values(keys, vals)
for i in range(N):
assert table.get_item(keys[i]) == i + N
def test_map_locations(self, table_type, dtype, writable):
N = 8
table = table_type()
keys = (np.arange(N) + N).astype(dtype)
keys.flags.writeable = writable
table.map_locations(keys)
for i in range(N):
assert table.get_item(keys[i]) == i
def test_map_locations_mask(self, table_type, dtype, writable):
if table_type == ht.PyObjectHashTable:
pytest.skip("Mask not supported for object")
N = 3
table = table_type(uses_mask=True)
keys = (np.arange(N) + N).astype(dtype)
keys.flags.writeable = writable
table.map_locations(keys, np.array([False, False, True]))
for i in range(N - 1):
assert table.get_item(keys[i]) == i
with pytest.raises(KeyError, match=re.escape(str(keys[N - 1]))):
table.get_item(keys[N - 1])
assert table.get_na() == 2
def test_lookup(self, table_type, dtype, writable):
N = 3
table = table_type()
keys = (np.arange(N) + N).astype(dtype)
keys.flags.writeable = writable
table.map_locations(keys)
result = table.lookup(keys)
expected = np.arange(N)
tm.assert_numpy_array_equal(result.astype(np.int64), expected.astype(np.int64))
def test_lookup_wrong(self, table_type, dtype):
if dtype in (np.int8, np.uint8):
N = 100
else:
N = 512
table = table_type()
keys = (np.arange(N) + N).astype(dtype)
table.map_locations(keys)
wrong_keys = np.arange(N).astype(dtype)
result = table.lookup(wrong_keys)
assert np.all(result == -1)
def test_lookup_mask(self, table_type, dtype, writable):
if table_type == ht.PyObjectHashTable:
pytest.skip("Mask not supported for object")
N = 3
table = table_type(uses_mask=True)
keys = (np.arange(N) + N).astype(dtype)
mask = np.array([False, True, False])
keys.flags.writeable = writable
table.map_locations(keys, mask)
result = table.lookup(keys, mask)
expected = np.arange(N)
tm.assert_numpy_array_equal(result.astype(np.int64), expected.astype(np.int64))
result = table.lookup(np.array([1 + N]).astype(dtype), np.array([False]))
tm.assert_numpy_array_equal(
result.astype(np.int64), np.array([-1], dtype=np.int64)
)
def test_unique(self, table_type, dtype, writable):
if dtype in (np.int8, np.uint8):
N = 88
else:
N = 1000
table = table_type()
expected = (np.arange(N) + N).astype(dtype)
keys = np.repeat(expected, 5)
keys.flags.writeable = writable
unique = table.unique(keys)
tm.assert_numpy_array_equal(unique, expected)
def test_tracemalloc_works(self, table_type, dtype):
if dtype in (np.int8, np.uint8):
N = 256
else:
N = 30000
keys = np.arange(N).astype(dtype)
with activated_tracemalloc():
table = table_type()
table.map_locations(keys)
used = get_allocated_khash_memory()
my_size = table.sizeof()
assert used == my_size
del table
assert get_allocated_khash_memory() == 0
def test_tracemalloc_for_empty(self, table_type, dtype):
with activated_tracemalloc():
table = table_type()
used = get_allocated_khash_memory()
my_size = table.sizeof()
assert used == my_size
del table
assert get_allocated_khash_memory() == 0
def test_get_state(self, table_type, dtype):
table = table_type(1000)
state = table.get_state()
assert state["size"] == 0
assert state["n_occupied"] == 0
assert "n_buckets" in state
assert "upper_bound" in state
@pytest.mark.parametrize("N", range(1, 110))
def test_no_reallocation(self, table_type, dtype, N):
keys = np.arange(N).astype(dtype)
preallocated_table = table_type(N)
n_buckets_start = preallocated_table.get_state()["n_buckets"]
preallocated_table.map_locations(keys)
n_buckets_end = preallocated_table.get_state()["n_buckets"]
# original number of buckets was enough:
assert n_buckets_start == n_buckets_end
# check with clean table (not too much preallocated)
clean_table = table_type()
clean_table.map_locations(keys)
assert n_buckets_start == clean_table.get_state()["n_buckets"]
class TestHashTableUnsorted:
# TODO: moved from test_algos; may be redundancies with other tests
def test_string_hashtable_set_item_signature(self):
# GH#30419 fix typing in StringHashTable.set_item to prevent segfault
tbl = ht.StringHashTable()
tbl.set_item("key", 1)
assert tbl.get_item("key") == 1
with pytest.raises(TypeError, match="'key' has incorrect type"):
# key arg typed as string, not object
tbl.set_item(4, 6)
with pytest.raises(TypeError, match="'val' has incorrect type"):
tbl.get_item(4)
def test_lookup_nan(self, writable):
# GH#21688 ensure we can deal with readonly memory views
xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3])
xs.setflags(write=writable)
m = ht.Float64HashTable()
m.map_locations(xs)
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp))
def test_add_signed_zeros(self):
# GH#21866 inconsistent hash-function for float64
# default hash-function would lead to different hash-buckets
# for 0.0 and -0.0 if there are more than 2^30 hash-buckets
# but this would mean 16GB
N = 4 # 12 * 10**8 would trigger the error, if you have enough memory
m = ht.Float64HashTable(N)
m.set_item(0.0, 0)
m.set_item(-0.0, 0)
assert len(m) == 1 # 0.0 and -0.0 are equivalent
def test_add_different_nans(self):
# GH#21866 inconsistent hash-function for float64
# create different nans from bit-patterns:
NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0]
NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0]
assert NAN1 != NAN1
assert NAN2 != NAN2
# default hash function would lead to different hash-buckets
# for NAN1 and NAN2 even if there are only 4 buckets:
m = ht.Float64HashTable()
m.set_item(NAN1, 0)
m.set_item(NAN2, 0)
assert len(m) == 1 # NAN1 and NAN2 are equivalent
def test_lookup_overflow(self, writable):
xs = np.array([1, 2, 2**63], dtype=np.uint64)
# GH 21688 ensure we can deal with readonly memory views
xs.setflags(write=writable)
m = ht.UInt64HashTable()
m.map_locations(xs)
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp))
@pytest.mark.parametrize("nvals", [0, 10]) # resizing to 0 is special case
@pytest.mark.parametrize(
"htable, uniques, dtype, safely_resizes",
[
(ht.PyObjectHashTable, ht.ObjectVector, "object", False),
(ht.StringHashTable, ht.ObjectVector, "object", True),
(ht.Float64HashTable, ht.Float64Vector, "float64", False),
(ht.Int64HashTable, ht.Int64Vector, "int64", False),
(ht.Int32HashTable, ht.Int32Vector, "int32", False),
(ht.UInt64HashTable, ht.UInt64Vector, "uint64", False),
],
)
def test_vector_resize(
self, writable, htable, uniques, dtype, safely_resizes, nvals
):
# Test for memory errors after internal vector
# reallocations (GH 7157)
# Changed from using np.random.default_rng(2).rand to range
# which could cause flaky CI failures when safely_resizes=False
vals = np.array(range(1000), dtype=dtype)
# GH 21688 ensures we can deal with read-only memory views
vals.setflags(write=writable)
# initialise instances; cannot initialise in parametrization,
# as otherwise external views would be held on the array (which is
# one of the things this test is checking)
htable = htable()
uniques = uniques()
# get_labels may append to uniques
htable.get_labels(vals[:nvals], uniques, 0, -1)
# to_array() sets an external_view_exists flag on uniques.
tmp = uniques.to_array()
oldshape = tmp.shape
# subsequent get_labels() calls can no longer append to it
# (except for StringHashTables + ObjectVector)
if safely_resizes:
htable.get_labels(vals, uniques, 0, -1)
else:
with pytest.raises(ValueError, match="external reference.*"):
htable.get_labels(vals, uniques, 0, -1)
uniques.to_array() # should not raise here
assert tmp.shape == oldshape
@pytest.mark.parametrize(
"hashtable",
[
ht.PyObjectHashTable,
ht.StringHashTable,
ht.Float64HashTable,
ht.Int64HashTable,
ht.Int32HashTable,
ht.UInt64HashTable,
],
)
def test_hashtable_large_sizehint(self, hashtable):
# GH#22729 smoketest for not raising when passing a large size_hint
size_hint = np.iinfo(np.uint32).max + 1
hashtable(size_hint=size_hint)
class TestPyObjectHashTableWithNans:
def test_nan_float(self):
nan1 = float("nan")
nan2 = float("nan")
assert nan1 is not nan2
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
def test_nan_complex_both(self):
nan1 = complex(float("nan"), float("nan"))
nan2 = complex(float("nan"), float("nan"))
assert nan1 is not nan2
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
def test_nan_complex_real(self):
nan1 = complex(float("nan"), 1)
nan2 = complex(float("nan"), 1)
other = complex(float("nan"), 2)
assert nan1 is not nan2
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
with pytest.raises(KeyError, match=None) as error:
table.get_item(other)
assert str(error.value) == str(other)
def test_nan_complex_imag(self):
nan1 = complex(1, float("nan"))
nan2 = complex(1, float("nan"))
other = complex(2, float("nan"))
assert nan1 is not nan2
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
with pytest.raises(KeyError, match=None) as error:
table.get_item(other)
assert str(error.value) == str(other)
def test_nan_in_tuple(self):
nan1 = (float("nan"),)
nan2 = (float("nan"),)
assert nan1[0] is not nan2[0]
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
def test_nan_in_nested_tuple(self):
nan1 = (1, (2, (float("nan"),)))
nan2 = (1, (2, (float("nan"),)))
other = (1, 2)
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
with pytest.raises(KeyError, match=None) as error:
table.get_item(other)
assert str(error.value) == str(other)
def test_hash_equal_tuple_with_nans():
a = (float("nan"), (float("nan"), float("nan")))
b = (float("nan"), (float("nan"), float("nan")))
assert ht.object_hash(a) == ht.object_hash(b)
assert ht.objects_are_equal(a, b)
def test_get_labels_groupby_for_Int64(writable):
table = ht.Int64HashTable()
vals = np.array([1, 2, -1, 2, 1, -1], dtype=np.int64)
vals.flags.writeable = writable
arr, unique = table.get_labels_groupby(vals)
expected_arr = np.array([0, 1, -1, 1, 0, -1], dtype=np.intp)
expected_unique = np.array([1, 2], dtype=np.int64)
tm.assert_numpy_array_equal(arr, expected_arr)
tm.assert_numpy_array_equal(unique, expected_unique)
def test_tracemalloc_works_for_StringHashTable():
N = 1000
keys = np.arange(N).astype(np.str_).astype(np.object_)
with activated_tracemalloc():
table = ht.StringHashTable()
table.map_locations(keys)
used = get_allocated_khash_memory()
my_size = table.sizeof()
assert used == my_size
del table
assert get_allocated_khash_memory() == 0
def test_tracemalloc_for_empty_StringHashTable():
with activated_tracemalloc():
table = ht.StringHashTable()
used = get_allocated_khash_memory()
my_size = table.sizeof()
assert used == my_size
del table
assert get_allocated_khash_memory() == 0
@pytest.mark.parametrize("N", range(1, 110))
def test_no_reallocation_StringHashTable(N):
keys = np.arange(N).astype(np.str_).astype(np.object_)
preallocated_table = ht.StringHashTable(N)
n_buckets_start = preallocated_table.get_state()["n_buckets"]
preallocated_table.map_locations(keys)
n_buckets_end = preallocated_table.get_state()["n_buckets"]
# original number of buckets was enough:
assert n_buckets_start == n_buckets_end
# check with clean table (not too much preallocated)
clean_table = ht.StringHashTable()
clean_table.map_locations(keys)
assert n_buckets_start == clean_table.get_state()["n_buckets"]
@pytest.mark.parametrize(
"table_type, dtype",
[
(ht.Float64HashTable, np.float64),
(ht.Float32HashTable, np.float32),
(ht.Complex128HashTable, np.complex128),
(ht.Complex64HashTable, np.complex64),
],
)
class TestHashTableWithNans:
def test_get_set_contains_len(self, table_type, dtype):
index = float("nan")
table = table_type()
assert index not in table
table.set_item(index, 42)
assert len(table) == 1
assert index in table
assert table.get_item(index) == 42
table.set_item(index, 41)
assert len(table) == 1
assert index in table
assert table.get_item(index) == 41
def test_map_locations(self, table_type, dtype):
N = 10
table = table_type()
keys = np.full(N, np.nan, dtype=dtype)
table.map_locations(keys)
assert len(table) == 1
assert table.get_item(np.nan) == N - 1
def test_unique(self, table_type, dtype):
N = 1020
table = table_type()
keys = np.full(N, np.nan, dtype=dtype)
unique = table.unique(keys)
assert np.all(np.isnan(unique)) and len(unique) == 1
def test_unique_for_nan_objects_floats():
table = ht.PyObjectHashTable()
keys = np.array([float("nan") for i in range(50)], dtype=np.object_)
unique = table.unique(keys)
assert len(unique) == 1
def test_unique_for_nan_objects_complex():
table = ht.PyObjectHashTable()
keys = np.array([complex(float("nan"), 1.0) for i in range(50)], dtype=np.object_)
unique = table.unique(keys)
assert len(unique) == 1
def test_unique_for_nan_objects_tuple():
table = ht.PyObjectHashTable()
keys = np.array(
[1] + [(1.0, (float("nan"), 1.0)) for i in range(50)], dtype=np.object_
)
unique = table.unique(keys)
assert len(unique) == 2
@pytest.mark.parametrize(
"dtype",
[
np.object_,
np.complex128,
np.int64,
np.uint64,
np.float64,
np.complex64,
np.int32,
np.uint32,
np.float32,
np.int16,
np.uint16,
np.int8,
np.uint8,
np.intp,
],
)
class TestHelpFunctions:
def test_value_count(self, dtype, writable):
N = 43
expected = (np.arange(N) + N).astype(dtype)
values = np.repeat(expected, 5)
values.flags.writeable = writable
keys, counts = ht.value_count(values, False)
tm.assert_numpy_array_equal(np.sort(keys), expected)
assert np.all(counts == 5)
def test_value_count_stable(self, dtype, writable):
# GH12679
values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype)
values.flags.writeable = writable
keys, counts = ht.value_count(values, False)
tm.assert_numpy_array_equal(keys, values)
assert np.all(counts == 1)
def test_duplicated_first(self, dtype, writable):
N = 100
values = np.repeat(np.arange(N).astype(dtype), 5)
values.flags.writeable = writable
result = ht.duplicated(values)
expected = np.ones_like(values, dtype=np.bool_)
expected[::5] = False
tm.assert_numpy_array_equal(result, expected)
def test_ismember_yes(self, dtype, writable):
N = 127
arr = np.arange(N).astype(dtype)
values = np.arange(N).astype(dtype)
arr.flags.writeable = writable
values.flags.writeable = writable
result = ht.ismember(arr, values)
expected = np.ones_like(values, dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)
def test_ismember_no(self, dtype):
N = 17
arr = np.arange(N).astype(dtype)
values = (np.arange(N) + N).astype(dtype)
result = ht.ismember(arr, values)
expected = np.zeros_like(values, dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)
def test_mode(self, dtype, writable):
if dtype in (np.int8, np.uint8):
N = 53
else:
N = 11111
values = np.repeat(np.arange(N).astype(dtype), 5)
values[0] = 42
values.flags.writeable = writable
result = ht.mode(values, False)
assert result == 42
def test_mode_stable(self, dtype, writable):
values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype)
values.flags.writeable = writable
keys = ht.mode(values, False)
tm.assert_numpy_array_equal(keys, values)
def test_modes_with_nans():
# GH42688, nans aren't mangled
nulls = [pd.NA, np.nan, pd.NaT, None]
values = np.array([True] + nulls * 2, dtype=np.object_)
modes = ht.mode(values, False)
assert modes.size == len(nulls)
def test_unique_label_indices_intp(writable):
keys = np.array([1, 2, 2, 2, 1, 3], dtype=np.intp)
keys.flags.writeable = writable
result = ht.unique_label_indices(keys)
expected = np.array([0, 1, 5], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
def test_unique_label_indices():
a = np.random.default_rng(2).integers(1, 1 << 10, 1 << 15).astype(np.intp)
left = ht.unique_label_indices(a)
right = np.unique(a, return_index=True)[1]
tm.assert_numpy_array_equal(left, right, check_dtype=False)
a[np.random.default_rng(2).choice(len(a), 10)] = -1
left = ht.unique_label_indices(a)
right = np.unique(a, return_index=True)[1][1:]
tm.assert_numpy_array_equal(left, right, check_dtype=False)
@pytest.mark.parametrize(
"dtype",
[
np.float64,
np.float32,
np.complex128,
np.complex64,
],
)
class TestHelpFunctionsWithNans:
def test_value_count(self, dtype):
values = np.array([np.nan, np.nan, np.nan], dtype=dtype)
keys, counts = ht.value_count(values, True)
assert len(keys) == 0
keys, counts = ht.value_count(values, False)
assert len(keys) == 1 and np.all(np.isnan(keys))
assert counts[0] == 3
def test_duplicated_first(self, dtype):
values = np.array([np.nan, np.nan, np.nan], dtype=dtype)
result = ht.duplicated(values)
expected = np.array([False, True, True])
tm.assert_numpy_array_equal(result, expected)
def test_ismember_yes(self, dtype):
arr = np.array([np.nan, np.nan, np.nan], dtype=dtype)
values = np.array([np.nan, np.nan], dtype=dtype)
result = ht.ismember(arr, values)
expected = np.array([True, True, True], dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)
def test_ismember_no(self, dtype):
arr = np.array([np.nan, np.nan, np.nan], dtype=dtype)
values = np.array([1], dtype=dtype)
result = ht.ismember(arr, values)
expected = np.array([False, False, False], dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)
def test_mode(self, dtype):
values = np.array([42, np.nan, np.nan, np.nan], dtype=dtype)
assert ht.mode(values, True) == 42
assert np.isnan(ht.mode(values, False))
def test_ismember_tuple_with_nans():
# GH-41836
values = [("a", float("nan")), ("b", 1)]
comps = [("a", float("nan"))]
msg = "isin with argument that is not not a Series"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = isin(values, comps)
expected = np.array([True, False], dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)
def test_float_complex_int_are_equal_as_objects():
values = ["a", 5, 5.0, 5.0 + 0j]
comps = list(range(129))
result = isin(np.array(values, dtype=object), np.asarray(comps))
expected = np.array([False, True, True, True], dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)