You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1672 lines
57 KiB
1672 lines
57 KiB
from __future__ import annotations
|
|
|
|
import abc
|
|
from collections.abc import (
|
|
Hashable,
|
|
Iterable,
|
|
Mapping,
|
|
Sequence,
|
|
)
|
|
import datetime
|
|
from functools import partial
|
|
from io import BytesIO
|
|
import os
|
|
from textwrap import fill
|
|
from typing import (
|
|
IO,
|
|
TYPE_CHECKING,
|
|
Any,
|
|
Callable,
|
|
Generic,
|
|
Literal,
|
|
TypeVar,
|
|
Union,
|
|
cast,
|
|
overload,
|
|
)
|
|
import warnings
|
|
import zipfile
|
|
|
|
from pandas._config import config
|
|
|
|
from pandas._libs import lib
|
|
from pandas._libs.parsers import STR_NA_VALUES
|
|
from pandas.compat._optional import (
|
|
get_version,
|
|
import_optional_dependency,
|
|
)
|
|
from pandas.errors import EmptyDataError
|
|
from pandas.util._decorators import (
|
|
Appender,
|
|
doc,
|
|
)
|
|
from pandas.util._exceptions import find_stack_level
|
|
from pandas.util._validators import check_dtype_backend
|
|
|
|
from pandas.core.dtypes.common import (
|
|
is_bool,
|
|
is_float,
|
|
is_integer,
|
|
is_list_like,
|
|
)
|
|
|
|
from pandas.core.frame import DataFrame
|
|
from pandas.core.shared_docs import _shared_docs
|
|
from pandas.util.version import Version
|
|
|
|
from pandas.io.common import (
|
|
IOHandles,
|
|
get_handle,
|
|
stringify_path,
|
|
validate_header_arg,
|
|
)
|
|
from pandas.io.excel._util import (
|
|
fill_mi_header,
|
|
get_default_engine,
|
|
get_writer,
|
|
maybe_convert_usecols,
|
|
pop_header_name,
|
|
)
|
|
from pandas.io.parsers import TextParser
|
|
from pandas.io.parsers.readers import validate_integer
|
|
|
|
if TYPE_CHECKING:
|
|
from types import TracebackType
|
|
|
|
from pandas._typing import (
|
|
DtypeArg,
|
|
DtypeBackend,
|
|
ExcelWriterIfSheetExists,
|
|
FilePath,
|
|
IntStrT,
|
|
ReadBuffer,
|
|
Self,
|
|
StorageOptions,
|
|
WriteExcelBuffer,
|
|
)
|
|
_read_excel_doc = (
|
|
"""
|
|
Read an Excel file into a pandas DataFrame.
|
|
|
|
Supports `xls`, `xlsx`, `xlsm`, `xlsb`, `odf`, `ods` and `odt` file extensions
|
|
read from a local filesystem or URL. Supports an option to read
|
|
a single sheet or a list of sheets.
|
|
|
|
Parameters
|
|
----------
|
|
io : str, bytes, ExcelFile, xlrd.Book, path object, or file-like object
|
|
Any valid string path is acceptable. The string could be a URL. Valid
|
|
URL schemes include http, ftp, s3, and file. For file URLs, a host is
|
|
expected. A local file could be: ``file://localhost/path/to/table.xlsx``.
|
|
|
|
If you want to pass in a path object, pandas accepts any ``os.PathLike``.
|
|
|
|
By file-like object, we refer to objects with a ``read()`` method,
|
|
such as a file handle (e.g. via builtin ``open`` function)
|
|
or ``StringIO``.
|
|
|
|
.. deprecated:: 2.1.0
|
|
Passing byte strings is deprecated. To read from a
|
|
byte string, wrap it in a ``BytesIO`` object.
|
|
sheet_name : str, int, list, or None, default 0
|
|
Strings are used for sheet names. Integers are used in zero-indexed
|
|
sheet positions (chart sheets do not count as a sheet position).
|
|
Lists of strings/integers are used to request multiple sheets.
|
|
Specify None to get all worksheets.
|
|
|
|
Available cases:
|
|
|
|
* Defaults to ``0``: 1st sheet as a `DataFrame`
|
|
* ``1``: 2nd sheet as a `DataFrame`
|
|
* ``"Sheet1"``: Load sheet with name "Sheet1"
|
|
* ``[0, 1, "Sheet5"]``: Load first, second and sheet named "Sheet5"
|
|
as a dict of `DataFrame`
|
|
* None: All worksheets.
|
|
|
|
header : int, list of int, default 0
|
|
Row (0-indexed) to use for the column labels of the parsed
|
|
DataFrame. If a list of integers is passed those row positions will
|
|
be combined into a ``MultiIndex``. Use None if there is no header.
|
|
names : array-like, default None
|
|
List of column names to use. If file contains no header row,
|
|
then you should explicitly pass header=None.
|
|
index_col : int, str, list of int, default None
|
|
Column (0-indexed) to use as the row labels of the DataFrame.
|
|
Pass None if there is no such column. If a list is passed,
|
|
those columns will be combined into a ``MultiIndex``. If a
|
|
subset of data is selected with ``usecols``, index_col
|
|
is based on the subset.
|
|
|
|
Missing values will be forward filled to allow roundtripping with
|
|
``to_excel`` for ``merged_cells=True``. To avoid forward filling the
|
|
missing values use ``set_index`` after reading the data instead of
|
|
``index_col``.
|
|
usecols : str, list-like, or callable, default None
|
|
* If None, then parse all columns.
|
|
* If str, then indicates comma separated list of Excel column letters
|
|
and column ranges (e.g. "A:E" or "A,C,E:F"). Ranges are inclusive of
|
|
both sides.
|
|
* If list of int, then indicates list of column numbers to be parsed
|
|
(0-indexed).
|
|
* If list of string, then indicates list of column names to be parsed.
|
|
* If callable, then evaluate each column name against it and parse the
|
|
column if the callable returns ``True``.
|
|
|
|
Returns a subset of the columns according to behavior above.
|
|
dtype : Type name or dict of column -> type, default None
|
|
Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32}}
|
|
Use `object` to preserve data as stored in Excel and not interpret dtype.
|
|
If converters are specified, they will be applied INSTEAD
|
|
of dtype conversion.
|
|
engine : str, default None
|
|
If io is not a buffer or path, this must be set to identify io.
|
|
Supported engines: "xlrd", "openpyxl", "odf", "pyxlsb".
|
|
Engine compatibility :
|
|
|
|
- "xlrd" supports old-style Excel files (.xls).
|
|
- "openpyxl" supports newer Excel file formats.
|
|
- "odf" supports OpenDocument file formats (.odf, .ods, .odt).
|
|
- "pyxlsb" supports Binary Excel files.
|
|
|
|
.. versionchanged:: 1.2.0
|
|
The engine `xlrd <https://xlrd.readthedocs.io/en/latest/>`_
|
|
now only supports old-style ``.xls`` files.
|
|
When ``engine=None``, the following logic will be
|
|
used to determine the engine:
|
|
|
|
- If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
|
|
then `odf <https://pypi.org/project/odfpy/>`_ will be used.
|
|
- Otherwise if ``path_or_buffer`` is an xls format,
|
|
``xlrd`` will be used.
|
|
- Otherwise if ``path_or_buffer`` is in xlsb format,
|
|
``pyxlsb`` will be used.
|
|
|
|
.. versionadded:: 1.3.0
|
|
- Otherwise ``openpyxl`` will be used.
|
|
|
|
.. versionchanged:: 1.3.0
|
|
|
|
converters : dict, default None
|
|
Dict of functions for converting values in certain columns. Keys can
|
|
either be integers or column labels, values are functions that take one
|
|
input argument, the Excel cell content, and return the transformed
|
|
content.
|
|
true_values : list, default None
|
|
Values to consider as True.
|
|
false_values : list, default None
|
|
Values to consider as False.
|
|
skiprows : list-like, int, or callable, optional
|
|
Line numbers to skip (0-indexed) or number of lines to skip (int) at the
|
|
start of the file. If callable, the callable function will be evaluated
|
|
against the row indices, returning True if the row should be skipped and
|
|
False otherwise. An example of a valid callable argument would be ``lambda
|
|
x: x in [0, 2]``.
|
|
nrows : int, default None
|
|
Number of rows to parse.
|
|
na_values : scalar, str, list-like, or dict, default None
|
|
Additional strings to recognize as NA/NaN. If dict passed, specific
|
|
per-column NA values. By default the following values are interpreted
|
|
as NaN: '"""
|
|
+ fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ")
|
|
+ """'.
|
|
keep_default_na : bool, default True
|
|
Whether or not to include the default NaN values when parsing the data.
|
|
Depending on whether `na_values` is passed in, the behavior is as follows:
|
|
|
|
* If `keep_default_na` is True, and `na_values` are specified, `na_values`
|
|
is appended to the default NaN values used for parsing.
|
|
* If `keep_default_na` is True, and `na_values` are not specified, only
|
|
the default NaN values are used for parsing.
|
|
* If `keep_default_na` is False, and `na_values` are specified, only
|
|
the NaN values specified `na_values` are used for parsing.
|
|
* If `keep_default_na` is False, and `na_values` are not specified, no
|
|
strings will be parsed as NaN.
|
|
|
|
Note that if `na_filter` is passed in as False, the `keep_default_na` and
|
|
`na_values` parameters will be ignored.
|
|
na_filter : bool, default True
|
|
Detect missing value markers (empty strings and the value of na_values). In
|
|
data without any NAs, passing na_filter=False can improve the performance
|
|
of reading a large file.
|
|
verbose : bool, default False
|
|
Indicate number of NA values placed in non-numeric columns.
|
|
parse_dates : bool, list-like, or dict, default False
|
|
The behavior is as follows:
|
|
|
|
* bool. If True -> try parsing the index.
|
|
* list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
|
|
each as a separate date column.
|
|
* list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as
|
|
a single date column.
|
|
* dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call
|
|
result 'foo'
|
|
|
|
If a column or index contains an unparsable date, the entire column or
|
|
index will be returned unaltered as an object data type. If you don`t want to
|
|
parse some cells as date just change their type in Excel to "Text".
|
|
For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``.
|
|
|
|
Note: A fast-path exists for iso8601-formatted dates.
|
|
date_parser : function, optional
|
|
Function to use for converting a sequence of string columns to an array of
|
|
datetime instances. The default uses ``dateutil.parser.parser`` to do the
|
|
conversion. Pandas will try to call `date_parser` in three different ways,
|
|
advancing to the next if an exception occurs: 1) Pass one or more arrays
|
|
(as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
|
|
string values from the columns defined by `parse_dates` into a single array
|
|
and pass that; and 3) call `date_parser` once for each row using one or
|
|
more strings (corresponding to the columns defined by `parse_dates`) as
|
|
arguments.
|
|
|
|
.. deprecated:: 2.0.0
|
|
Use ``date_format`` instead, or read in as ``object`` and then apply
|
|
:func:`to_datetime` as-needed.
|
|
date_format : str or dict of column -> format, default ``None``
|
|
If used in conjunction with ``parse_dates``, will parse dates according to this
|
|
format. For anything more complex,
|
|
please read in as ``object`` and then apply :func:`to_datetime` as-needed.
|
|
|
|
.. versionadded:: 2.0.0
|
|
thousands : str, default None
|
|
Thousands separator for parsing string columns to numeric. Note that
|
|
this parameter is only necessary for columns stored as TEXT in Excel,
|
|
any numeric columns will automatically be parsed, regardless of display
|
|
format.
|
|
decimal : str, default '.'
|
|
Character to recognize as decimal point for parsing string columns to numeric.
|
|
Note that this parameter is only necessary for columns stored as TEXT in Excel,
|
|
any numeric columns will automatically be parsed, regardless of display
|
|
format.(e.g. use ',' for European data).
|
|
|
|
.. versionadded:: 1.4.0
|
|
|
|
comment : str, default None
|
|
Comments out remainder of line. Pass a character or characters to this
|
|
argument to indicate comments in the input file. Any data between the
|
|
comment string and the end of the current line is ignored.
|
|
skipfooter : int, default 0
|
|
Rows at the end to skip (0-indexed).
|
|
{storage_options}
|
|
|
|
.. versionadded:: 1.2.0
|
|
|
|
dtype_backend : {{'numpy_nullable', 'pyarrow'}}, default 'numpy_nullable'
|
|
Back-end data type applied to the resultant :class:`DataFrame`
|
|
(still experimental). Behaviour is as follows:
|
|
|
|
* ``"numpy_nullable"``: returns nullable-dtype-backed :class:`DataFrame`
|
|
(default).
|
|
* ``"pyarrow"``: returns pyarrow-backed nullable :class:`ArrowDtype`
|
|
DataFrame.
|
|
|
|
.. versionadded:: 2.0
|
|
|
|
engine_kwargs : dict, optional
|
|
Arbitrary keyword arguments passed to excel engine.
|
|
|
|
Returns
|
|
-------
|
|
DataFrame or dict of DataFrames
|
|
DataFrame from the passed in Excel file. See notes in sheet_name
|
|
argument for more information on when a dict of DataFrames is returned.
|
|
|
|
See Also
|
|
--------
|
|
DataFrame.to_excel : Write DataFrame to an Excel file.
|
|
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
|
|
read_csv : Read a comma-separated values (csv) file into DataFrame.
|
|
read_fwf : Read a table of fixed-width formatted lines into DataFrame.
|
|
|
|
Notes
|
|
-----
|
|
For specific information on the methods used for each Excel engine, refer to the pandas
|
|
:ref:`user guide <io.excel_reader>`
|
|
|
|
Examples
|
|
--------
|
|
The file can be read using the file name as string or an open file object:
|
|
|
|
>>> pd.read_excel('tmp.xlsx', index_col=0) # doctest: +SKIP
|
|
Name Value
|
|
0 string1 1
|
|
1 string2 2
|
|
2 #Comment 3
|
|
|
|
>>> pd.read_excel(open('tmp.xlsx', 'rb'),
|
|
... sheet_name='Sheet3') # doctest: +SKIP
|
|
Unnamed: 0 Name Value
|
|
0 0 string1 1
|
|
1 1 string2 2
|
|
2 2 #Comment 3
|
|
|
|
Index and header can be specified via the `index_col` and `header` arguments
|
|
|
|
>>> pd.read_excel('tmp.xlsx', index_col=None, header=None) # doctest: +SKIP
|
|
0 1 2
|
|
0 NaN Name Value
|
|
1 0.0 string1 1
|
|
2 1.0 string2 2
|
|
3 2.0 #Comment 3
|
|
|
|
Column types are inferred but can be explicitly specified
|
|
|
|
>>> pd.read_excel('tmp.xlsx', index_col=0,
|
|
... dtype={{'Name': str, 'Value': float}}) # doctest: +SKIP
|
|
Name Value
|
|
0 string1 1.0
|
|
1 string2 2.0
|
|
2 #Comment 3.0
|
|
|
|
True, False, and NA values, and thousands separators have defaults,
|
|
but can be explicitly specified, too. Supply the values you would like
|
|
as strings or lists of strings!
|
|
|
|
>>> pd.read_excel('tmp.xlsx', index_col=0,
|
|
... na_values=['string1', 'string2']) # doctest: +SKIP
|
|
Name Value
|
|
0 NaN 1
|
|
1 NaN 2
|
|
2 #Comment 3
|
|
|
|
Comment lines in the excel input file can be skipped using the `comment` kwarg
|
|
|
|
>>> pd.read_excel('tmp.xlsx', index_col=0, comment='#') # doctest: +SKIP
|
|
Name Value
|
|
0 string1 1.0
|
|
1 string2 2.0
|
|
2 None NaN
|
|
"""
|
|
)
|
|
|
|
|
|
@overload
|
|
def read_excel(
|
|
io,
|
|
# sheet name is str or int -> DataFrame
|
|
sheet_name: str | int = ...,
|
|
*,
|
|
header: int | Sequence[int] | None = ...,
|
|
names: list[str] | None = ...,
|
|
index_col: int | Sequence[int] | None = ...,
|
|
usecols: int
|
|
| str
|
|
| Sequence[int]
|
|
| Sequence[str]
|
|
| Callable[[str], bool]
|
|
| None = ...,
|
|
dtype: DtypeArg | None = ...,
|
|
engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb"] | None = ...,
|
|
converters: dict[str, Callable] | dict[int, Callable] | None = ...,
|
|
true_values: Iterable[Hashable] | None = ...,
|
|
false_values: Iterable[Hashable] | None = ...,
|
|
skiprows: Sequence[int] | int | Callable[[int], object] | None = ...,
|
|
nrows: int | None = ...,
|
|
na_values=...,
|
|
keep_default_na: bool = ...,
|
|
na_filter: bool = ...,
|
|
verbose: bool = ...,
|
|
parse_dates: list | dict | bool = ...,
|
|
date_parser: Callable | lib.NoDefault = ...,
|
|
date_format: dict[Hashable, str] | str | None = ...,
|
|
thousands: str | None = ...,
|
|
decimal: str = ...,
|
|
comment: str | None = ...,
|
|
skipfooter: int = ...,
|
|
storage_options: StorageOptions = ...,
|
|
dtype_backend: DtypeBackend | lib.NoDefault = ...,
|
|
) -> DataFrame:
|
|
...
|
|
|
|
|
|
@overload
|
|
def read_excel(
|
|
io,
|
|
# sheet name is list or None -> dict[IntStrT, DataFrame]
|
|
sheet_name: list[IntStrT] | None,
|
|
*,
|
|
header: int | Sequence[int] | None = ...,
|
|
names: list[str] | None = ...,
|
|
index_col: int | Sequence[int] | None = ...,
|
|
usecols: int
|
|
| str
|
|
| Sequence[int]
|
|
| Sequence[str]
|
|
| Callable[[str], bool]
|
|
| None = ...,
|
|
dtype: DtypeArg | None = ...,
|
|
engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb"] | None = ...,
|
|
converters: dict[str, Callable] | dict[int, Callable] | None = ...,
|
|
true_values: Iterable[Hashable] | None = ...,
|
|
false_values: Iterable[Hashable] | None = ...,
|
|
skiprows: Sequence[int] | int | Callable[[int], object] | None = ...,
|
|
nrows: int | None = ...,
|
|
na_values=...,
|
|
keep_default_na: bool = ...,
|
|
na_filter: bool = ...,
|
|
verbose: bool = ...,
|
|
parse_dates: list | dict | bool = ...,
|
|
date_parser: Callable | lib.NoDefault = ...,
|
|
date_format: dict[Hashable, str] | str | None = ...,
|
|
thousands: str | None = ...,
|
|
decimal: str = ...,
|
|
comment: str | None = ...,
|
|
skipfooter: int = ...,
|
|
storage_options: StorageOptions = ...,
|
|
dtype_backend: DtypeBackend | lib.NoDefault = ...,
|
|
) -> dict[IntStrT, DataFrame]:
|
|
...
|
|
|
|
|
|
@doc(storage_options=_shared_docs["storage_options"])
|
|
@Appender(_read_excel_doc)
|
|
def read_excel(
|
|
io,
|
|
sheet_name: str | int | list[IntStrT] | None = 0,
|
|
*,
|
|
header: int | Sequence[int] | None = 0,
|
|
names: list[str] | None = None,
|
|
index_col: int | Sequence[int] | None = None,
|
|
usecols: int
|
|
| str
|
|
| Sequence[int]
|
|
| Sequence[str]
|
|
| Callable[[str], bool]
|
|
| None = None,
|
|
dtype: DtypeArg | None = None,
|
|
engine: Literal["xlrd", "openpyxl", "odf", "pyxlsb"] | None = None,
|
|
converters: dict[str, Callable] | dict[int, Callable] | None = None,
|
|
true_values: Iterable[Hashable] | None = None,
|
|
false_values: Iterable[Hashable] | None = None,
|
|
skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
|
|
nrows: int | None = None,
|
|
na_values=None,
|
|
keep_default_na: bool = True,
|
|
na_filter: bool = True,
|
|
verbose: bool = False,
|
|
parse_dates: list | dict | bool = False,
|
|
date_parser: Callable | lib.NoDefault = lib.no_default,
|
|
date_format: dict[Hashable, str] | str | None = None,
|
|
thousands: str | None = None,
|
|
decimal: str = ".",
|
|
comment: str | None = None,
|
|
skipfooter: int = 0,
|
|
storage_options: StorageOptions | None = None,
|
|
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
|
engine_kwargs: dict | None = None,
|
|
) -> DataFrame | dict[IntStrT, DataFrame]:
|
|
check_dtype_backend(dtype_backend)
|
|
should_close = False
|
|
if engine_kwargs is None:
|
|
engine_kwargs = {}
|
|
|
|
if not isinstance(io, ExcelFile):
|
|
should_close = True
|
|
io = ExcelFile(
|
|
io,
|
|
storage_options=storage_options,
|
|
engine=engine,
|
|
engine_kwargs=engine_kwargs,
|
|
)
|
|
elif engine and engine != io.engine:
|
|
raise ValueError(
|
|
"Engine should not be specified when passing "
|
|
"an ExcelFile - ExcelFile already has the engine set"
|
|
)
|
|
|
|
try:
|
|
data = io.parse(
|
|
sheet_name=sheet_name,
|
|
header=header,
|
|
names=names,
|
|
index_col=index_col,
|
|
usecols=usecols,
|
|
dtype=dtype,
|
|
converters=converters,
|
|
true_values=true_values,
|
|
false_values=false_values,
|
|
skiprows=skiprows,
|
|
nrows=nrows,
|
|
na_values=na_values,
|
|
keep_default_na=keep_default_na,
|
|
na_filter=na_filter,
|
|
verbose=verbose,
|
|
parse_dates=parse_dates,
|
|
date_parser=date_parser,
|
|
date_format=date_format,
|
|
thousands=thousands,
|
|
decimal=decimal,
|
|
comment=comment,
|
|
skipfooter=skipfooter,
|
|
dtype_backend=dtype_backend,
|
|
)
|
|
finally:
|
|
# make sure to close opened file handles
|
|
if should_close:
|
|
io.close()
|
|
return data
|
|
|
|
|
|
_WorkbookT = TypeVar("_WorkbookT")
|
|
|
|
|
|
class BaseExcelReader(Generic[_WorkbookT], metaclass=abc.ABCMeta):
|
|
book: _WorkbookT
|
|
|
|
def __init__(
|
|
self,
|
|
filepath_or_buffer,
|
|
storage_options: StorageOptions | None = None,
|
|
engine_kwargs: dict | None = None,
|
|
) -> None:
|
|
if engine_kwargs is None:
|
|
engine_kwargs = {}
|
|
|
|
# First argument can also be bytes, so create a buffer
|
|
if isinstance(filepath_or_buffer, bytes):
|
|
filepath_or_buffer = BytesIO(filepath_or_buffer)
|
|
|
|
self.handles = IOHandles(
|
|
handle=filepath_or_buffer, compression={"method": None}
|
|
)
|
|
if not isinstance(filepath_or_buffer, (ExcelFile, self._workbook_class)):
|
|
self.handles = get_handle(
|
|
filepath_or_buffer, "rb", storage_options=storage_options, is_text=False
|
|
)
|
|
|
|
if isinstance(self.handles.handle, self._workbook_class):
|
|
self.book = self.handles.handle
|
|
elif hasattr(self.handles.handle, "read"):
|
|
# N.B. xlrd.Book has a read attribute too
|
|
self.handles.handle.seek(0)
|
|
try:
|
|
self.book = self.load_workbook(self.handles.handle, engine_kwargs)
|
|
except Exception:
|
|
self.close()
|
|
raise
|
|
else:
|
|
raise ValueError(
|
|
"Must explicitly set engine if not passing in buffer or path for io."
|
|
)
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def _workbook_class(self) -> type[_WorkbookT]:
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def load_workbook(self, filepath_or_buffer, engine_kwargs) -> _WorkbookT:
|
|
pass
|
|
|
|
def close(self) -> None:
|
|
if hasattr(self, "book"):
|
|
if hasattr(self.book, "close"):
|
|
# pyxlsb: opens a TemporaryFile
|
|
# openpyxl: https://stackoverflow.com/questions/31416842/
|
|
# openpyxl-does-not-close-excel-workbook-in-read-only-mode
|
|
self.book.close()
|
|
elif hasattr(self.book, "release_resources"):
|
|
# xlrd
|
|
# https://github.com/python-excel/xlrd/blob/2.0.1/xlrd/book.py#L548
|
|
self.book.release_resources()
|
|
self.handles.close()
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def sheet_names(self) -> list[str]:
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def get_sheet_by_name(self, name: str):
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def get_sheet_by_index(self, index: int):
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def get_sheet_data(self, sheet, rows: int | None = None):
|
|
pass
|
|
|
|
def raise_if_bad_sheet_by_index(self, index: int) -> None:
|
|
n_sheets = len(self.sheet_names)
|
|
if index >= n_sheets:
|
|
raise ValueError(
|
|
f"Worksheet index {index} is invalid, {n_sheets} worksheets found"
|
|
)
|
|
|
|
def raise_if_bad_sheet_by_name(self, name: str) -> None:
|
|
if name not in self.sheet_names:
|
|
raise ValueError(f"Worksheet named '{name}' not found")
|
|
|
|
def _check_skiprows_func(
|
|
self,
|
|
skiprows: Callable,
|
|
rows_to_use: int,
|
|
) -> int:
|
|
"""
|
|
Determine how many file rows are required to obtain `nrows` data
|
|
rows when `skiprows` is a function.
|
|
|
|
Parameters
|
|
----------
|
|
skiprows : function
|
|
The function passed to read_excel by the user.
|
|
rows_to_use : int
|
|
The number of rows that will be needed for the header and
|
|
the data.
|
|
|
|
Returns
|
|
-------
|
|
int
|
|
"""
|
|
i = 0
|
|
rows_used_so_far = 0
|
|
while rows_used_so_far < rows_to_use:
|
|
if not skiprows(i):
|
|
rows_used_so_far += 1
|
|
i += 1
|
|
return i
|
|
|
|
def _calc_rows(
|
|
self,
|
|
header: int | Sequence[int] | None,
|
|
index_col: int | Sequence[int] | None,
|
|
skiprows: Sequence[int] | int | Callable[[int], object] | None,
|
|
nrows: int | None,
|
|
) -> int | None:
|
|
"""
|
|
If nrows specified, find the number of rows needed from the
|
|
file, otherwise return None.
|
|
|
|
|
|
Parameters
|
|
----------
|
|
header : int, list of int, or None
|
|
See read_excel docstring.
|
|
index_col : int, list of int, or None
|
|
See read_excel docstring.
|
|
skiprows : list-like, int, callable, or None
|
|
See read_excel docstring.
|
|
nrows : int or None
|
|
See read_excel docstring.
|
|
|
|
Returns
|
|
-------
|
|
int or None
|
|
"""
|
|
if nrows is None:
|
|
return None
|
|
if header is None:
|
|
header_rows = 1
|
|
elif is_integer(header):
|
|
header = cast(int, header)
|
|
header_rows = 1 + header
|
|
else:
|
|
header = cast(Sequence, header)
|
|
header_rows = 1 + header[-1]
|
|
# If there is a MultiIndex header and an index then there is also
|
|
# a row containing just the index name(s)
|
|
if is_list_like(header) and index_col is not None:
|
|
header = cast(Sequence, header)
|
|
if len(header) > 1:
|
|
header_rows += 1
|
|
if skiprows is None:
|
|
return header_rows + nrows
|
|
if is_integer(skiprows):
|
|
skiprows = cast(int, skiprows)
|
|
return header_rows + nrows + skiprows
|
|
if is_list_like(skiprows):
|
|
|
|
def f(skiprows: Sequence, x: int) -> bool:
|
|
return x in skiprows
|
|
|
|
skiprows = cast(Sequence, skiprows)
|
|
return self._check_skiprows_func(partial(f, skiprows), header_rows + nrows)
|
|
if callable(skiprows):
|
|
return self._check_skiprows_func(
|
|
skiprows,
|
|
header_rows + nrows,
|
|
)
|
|
# else unexpected skiprows type: read_excel will not optimize
|
|
# the number of rows read from file
|
|
return None
|
|
|
|
def parse(
|
|
self,
|
|
sheet_name: str | int | list[int] | list[str] | None = 0,
|
|
header: int | Sequence[int] | None = 0,
|
|
names=None,
|
|
index_col: int | Sequence[int] | None = None,
|
|
usecols=None,
|
|
dtype: DtypeArg | None = None,
|
|
true_values: Iterable[Hashable] | None = None,
|
|
false_values: Iterable[Hashable] | None = None,
|
|
skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
|
|
nrows: int | None = None,
|
|
na_values=None,
|
|
verbose: bool = False,
|
|
parse_dates: list | dict | bool = False,
|
|
date_parser: Callable | lib.NoDefault = lib.no_default,
|
|
date_format: dict[Hashable, str] | str | None = None,
|
|
thousands: str | None = None,
|
|
decimal: str = ".",
|
|
comment: str | None = None,
|
|
skipfooter: int = 0,
|
|
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
|
**kwds,
|
|
):
|
|
validate_header_arg(header)
|
|
validate_integer("nrows", nrows)
|
|
|
|
ret_dict = False
|
|
|
|
# Keep sheetname to maintain backwards compatibility.
|
|
sheets: list[int] | list[str]
|
|
if isinstance(sheet_name, list):
|
|
sheets = sheet_name
|
|
ret_dict = True
|
|
elif sheet_name is None:
|
|
sheets = self.sheet_names
|
|
ret_dict = True
|
|
elif isinstance(sheet_name, str):
|
|
sheets = [sheet_name]
|
|
else:
|
|
sheets = [sheet_name]
|
|
|
|
# handle same-type duplicates.
|
|
sheets = cast(Union[list[int], list[str]], list(dict.fromkeys(sheets).keys()))
|
|
|
|
output = {}
|
|
|
|
last_sheetname = None
|
|
for asheetname in sheets:
|
|
last_sheetname = asheetname
|
|
if verbose:
|
|
print(f"Reading sheet {asheetname}")
|
|
|
|
if isinstance(asheetname, str):
|
|
sheet = self.get_sheet_by_name(asheetname)
|
|
else: # assume an integer if not a string
|
|
sheet = self.get_sheet_by_index(asheetname)
|
|
|
|
file_rows_needed = self._calc_rows(header, index_col, skiprows, nrows)
|
|
data = self.get_sheet_data(sheet, file_rows_needed)
|
|
if hasattr(sheet, "close"):
|
|
# pyxlsb opens two TemporaryFiles
|
|
sheet.close()
|
|
usecols = maybe_convert_usecols(usecols)
|
|
|
|
if not data:
|
|
output[asheetname] = DataFrame()
|
|
continue
|
|
|
|
is_list_header = False
|
|
is_len_one_list_header = False
|
|
if is_list_like(header):
|
|
assert isinstance(header, Sequence)
|
|
is_list_header = True
|
|
if len(header) == 1:
|
|
is_len_one_list_header = True
|
|
|
|
if is_len_one_list_header:
|
|
header = cast(Sequence[int], header)[0]
|
|
|
|
# forward fill and pull out names for MultiIndex column
|
|
header_names = None
|
|
if header is not None and is_list_like(header):
|
|
assert isinstance(header, Sequence)
|
|
|
|
header_names = []
|
|
control_row = [True] * len(data[0])
|
|
|
|
for row in header:
|
|
if is_integer(skiprows):
|
|
assert isinstance(skiprows, int)
|
|
row += skiprows
|
|
|
|
if row > len(data) - 1:
|
|
raise ValueError(
|
|
f"header index {row} exceeds maximum index "
|
|
f"{len(data) - 1} of data.",
|
|
)
|
|
|
|
data[row], control_row = fill_mi_header(data[row], control_row)
|
|
|
|
if index_col is not None:
|
|
header_name, _ = pop_header_name(data[row], index_col)
|
|
header_names.append(header_name)
|
|
|
|
# If there is a MultiIndex header and an index then there is also
|
|
# a row containing just the index name(s)
|
|
has_index_names = False
|
|
if is_list_header and not is_len_one_list_header and index_col is not None:
|
|
index_col_list: Sequence[int]
|
|
if isinstance(index_col, int):
|
|
index_col_list = [index_col]
|
|
else:
|
|
assert isinstance(index_col, Sequence)
|
|
index_col_list = index_col
|
|
|
|
# We have to handle mi without names. If any of the entries in the data
|
|
# columns are not empty, this is a regular row
|
|
assert isinstance(header, Sequence)
|
|
if len(header) < len(data):
|
|
potential_index_names = data[len(header)]
|
|
potential_data = [
|
|
x
|
|
for i, x in enumerate(potential_index_names)
|
|
if not control_row[i] and i not in index_col_list
|
|
]
|
|
has_index_names = all(x == "" or x is None for x in potential_data)
|
|
|
|
if is_list_like(index_col):
|
|
# Forward fill values for MultiIndex index.
|
|
if header is None:
|
|
offset = 0
|
|
elif isinstance(header, int):
|
|
offset = 1 + header
|
|
else:
|
|
offset = 1 + max(header)
|
|
|
|
# GH34673: if MultiIndex names present and not defined in the header,
|
|
# offset needs to be incremented so that forward filling starts
|
|
# from the first MI value instead of the name
|
|
if has_index_names:
|
|
offset += 1
|
|
|
|
# Check if we have an empty dataset
|
|
# before trying to collect data.
|
|
if offset < len(data):
|
|
assert isinstance(index_col, Sequence)
|
|
|
|
for col in index_col:
|
|
last = data[offset][col]
|
|
|
|
for row in range(offset + 1, len(data)):
|
|
if data[row][col] == "" or data[row][col] is None:
|
|
data[row][col] = last
|
|
else:
|
|
last = data[row][col]
|
|
|
|
# GH 12292 : error when read one empty column from excel file
|
|
try:
|
|
parser = TextParser(
|
|
data,
|
|
names=names,
|
|
header=header,
|
|
index_col=index_col,
|
|
has_index_names=has_index_names,
|
|
dtype=dtype,
|
|
true_values=true_values,
|
|
false_values=false_values,
|
|
skiprows=skiprows,
|
|
nrows=nrows,
|
|
na_values=na_values,
|
|
skip_blank_lines=False, # GH 39808
|
|
parse_dates=parse_dates,
|
|
date_parser=date_parser,
|
|
date_format=date_format,
|
|
thousands=thousands,
|
|
decimal=decimal,
|
|
comment=comment,
|
|
skipfooter=skipfooter,
|
|
usecols=usecols,
|
|
dtype_backend=dtype_backend,
|
|
**kwds,
|
|
)
|
|
|
|
output[asheetname] = parser.read(nrows=nrows)
|
|
|
|
if header_names:
|
|
output[asheetname].columns = output[asheetname].columns.set_names(
|
|
header_names
|
|
)
|
|
|
|
except EmptyDataError:
|
|
# No Data, return an empty DataFrame
|
|
output[asheetname] = DataFrame()
|
|
|
|
except Exception as err:
|
|
err.args = (f"{err.args[0]} (sheet: {asheetname})", *err.args[1:])
|
|
raise err
|
|
|
|
if last_sheetname is None:
|
|
raise ValueError("Sheet name is an empty list")
|
|
|
|
if ret_dict:
|
|
return output
|
|
else:
|
|
return output[last_sheetname]
|
|
|
|
|
|
@doc(storage_options=_shared_docs["storage_options"])
|
|
class ExcelWriter(Generic[_WorkbookT], metaclass=abc.ABCMeta):
|
|
"""
|
|
Class for writing DataFrame objects into excel sheets.
|
|
|
|
Default is to use:
|
|
|
|
* `xlsxwriter <https://pypi.org/project/XlsxWriter/>`__ for xlsx files if xlsxwriter
|
|
is installed otherwise `openpyxl <https://pypi.org/project/openpyxl/>`__
|
|
* `odswriter <https://pypi.org/project/odswriter/>`__ for ods files
|
|
|
|
See ``DataFrame.to_excel`` for typical usage.
|
|
|
|
The writer should be used as a context manager. Otherwise, call `close()` to save
|
|
and close any opened file handles.
|
|
|
|
Parameters
|
|
----------
|
|
path : str or typing.BinaryIO
|
|
Path to xls or xlsx or ods file.
|
|
engine : str (optional)
|
|
Engine to use for writing. If None, defaults to
|
|
``io.excel.<extension>.writer``. NOTE: can only be passed as a keyword
|
|
argument.
|
|
date_format : str, default None
|
|
Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
|
|
datetime_format : str, default None
|
|
Format string for datetime objects written into Excel files.
|
|
(e.g. 'YYYY-MM-DD HH:MM:SS').
|
|
mode : {{'w', 'a'}}, default 'w'
|
|
File mode to use (write or append). Append does not work with fsspec URLs.
|
|
{storage_options}
|
|
|
|
.. versionadded:: 1.2.0
|
|
|
|
if_sheet_exists : {{'error', 'new', 'replace', 'overlay'}}, default 'error'
|
|
How to behave when trying to write to a sheet that already
|
|
exists (append mode only).
|
|
|
|
* error: raise a ValueError.
|
|
* new: Create a new sheet, with a name determined by the engine.
|
|
* replace: Delete the contents of the sheet before writing to it.
|
|
* overlay: Write contents to the existing sheet without first removing,
|
|
but possibly over top of, the existing contents.
|
|
|
|
.. versionadded:: 1.3.0
|
|
|
|
.. versionchanged:: 1.4.0
|
|
|
|
Added ``overlay`` option
|
|
|
|
engine_kwargs : dict, optional
|
|
Keyword arguments to be passed into the engine. These will be passed to
|
|
the following functions of the respective engines:
|
|
|
|
* xlsxwriter: ``xlsxwriter.Workbook(file, **engine_kwargs)``
|
|
* openpyxl (write mode): ``openpyxl.Workbook(**engine_kwargs)``
|
|
* openpyxl (append mode): ``openpyxl.load_workbook(file, **engine_kwargs)``
|
|
* odswriter: ``odf.opendocument.OpenDocumentSpreadsheet(**engine_kwargs)``
|
|
|
|
.. versionadded:: 1.3.0
|
|
|
|
Notes
|
|
-----
|
|
For compatibility with CSV writers, ExcelWriter serializes lists
|
|
and dicts to strings before writing.
|
|
|
|
Examples
|
|
--------
|
|
Default usage:
|
|
|
|
>>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP
|
|
>>> with pd.ExcelWriter("path_to_file.xlsx") as writer:
|
|
... df.to_excel(writer) # doctest: +SKIP
|
|
|
|
To write to separate sheets in a single file:
|
|
|
|
>>> df1 = pd.DataFrame([["AAA", "BBB"]], columns=["Spam", "Egg"]) # doctest: +SKIP
|
|
>>> df2 = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP
|
|
>>> with pd.ExcelWriter("path_to_file.xlsx") as writer:
|
|
... df1.to_excel(writer, sheet_name="Sheet1") # doctest: +SKIP
|
|
... df2.to_excel(writer, sheet_name="Sheet2") # doctest: +SKIP
|
|
|
|
You can set the date format or datetime format:
|
|
|
|
>>> from datetime import date, datetime # doctest: +SKIP
|
|
>>> df = pd.DataFrame(
|
|
... [
|
|
... [date(2014, 1, 31), date(1999, 9, 24)],
|
|
... [datetime(1998, 5, 26, 23, 33, 4), datetime(2014, 2, 28, 13, 5, 13)],
|
|
... ],
|
|
... index=["Date", "Datetime"],
|
|
... columns=["X", "Y"],
|
|
... ) # doctest: +SKIP
|
|
>>> with pd.ExcelWriter(
|
|
... "path_to_file.xlsx",
|
|
... date_format="YYYY-MM-DD",
|
|
... datetime_format="YYYY-MM-DD HH:MM:SS"
|
|
... ) as writer:
|
|
... df.to_excel(writer) # doctest: +SKIP
|
|
|
|
You can also append to an existing Excel file:
|
|
|
|
>>> with pd.ExcelWriter("path_to_file.xlsx", mode="a", engine="openpyxl") as writer:
|
|
... df.to_excel(writer, sheet_name="Sheet3") # doctest: +SKIP
|
|
|
|
Here, the `if_sheet_exists` parameter can be set to replace a sheet if it
|
|
already exists:
|
|
|
|
>>> with ExcelWriter(
|
|
... "path_to_file.xlsx",
|
|
... mode="a",
|
|
... engine="openpyxl",
|
|
... if_sheet_exists="replace",
|
|
... ) as writer:
|
|
... df.to_excel(writer, sheet_name="Sheet1") # doctest: +SKIP
|
|
|
|
You can also write multiple DataFrames to a single sheet. Note that the
|
|
``if_sheet_exists`` parameter needs to be set to ``overlay``:
|
|
|
|
>>> with ExcelWriter("path_to_file.xlsx",
|
|
... mode="a",
|
|
... engine="openpyxl",
|
|
... if_sheet_exists="overlay",
|
|
... ) as writer:
|
|
... df1.to_excel(writer, sheet_name="Sheet1")
|
|
... df2.to_excel(writer, sheet_name="Sheet1", startcol=3) # doctest: +SKIP
|
|
|
|
You can store Excel file in RAM:
|
|
|
|
>>> import io
|
|
>>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"])
|
|
>>> buffer = io.BytesIO()
|
|
>>> with pd.ExcelWriter(buffer) as writer:
|
|
... df.to_excel(writer)
|
|
|
|
You can pack Excel file into zip archive:
|
|
|
|
>>> import zipfile # doctest: +SKIP
|
|
>>> df = pd.DataFrame([["ABC", "XYZ"]], columns=["Foo", "Bar"]) # doctest: +SKIP
|
|
>>> with zipfile.ZipFile("path_to_file.zip", "w") as zf:
|
|
... with zf.open("filename.xlsx", "w") as buffer:
|
|
... with pd.ExcelWriter(buffer) as writer:
|
|
... df.to_excel(writer) # doctest: +SKIP
|
|
|
|
You can specify additional arguments to the underlying engine:
|
|
|
|
>>> with pd.ExcelWriter(
|
|
... "path_to_file.xlsx",
|
|
... engine="xlsxwriter",
|
|
... engine_kwargs={{"options": {{"nan_inf_to_errors": True}}}}
|
|
... ) as writer:
|
|
... df.to_excel(writer) # doctest: +SKIP
|
|
|
|
In append mode, ``engine_kwargs`` are passed through to
|
|
openpyxl's ``load_workbook``:
|
|
|
|
>>> with pd.ExcelWriter(
|
|
... "path_to_file.xlsx",
|
|
... engine="openpyxl",
|
|
... mode="a",
|
|
... engine_kwargs={{"keep_vba": True}}
|
|
... ) as writer:
|
|
... df.to_excel(writer, sheet_name="Sheet2") # doctest: +SKIP
|
|
"""
|
|
|
|
# Defining an ExcelWriter implementation (see abstract methods for more...)
|
|
|
|
# - Mandatory
|
|
# - ``write_cells(self, cells, sheet_name=None, startrow=0, startcol=0)``
|
|
# --> called to write additional DataFrames to disk
|
|
# - ``_supported_extensions`` (tuple of supported extensions), used to
|
|
# check that engine supports the given extension.
|
|
# - ``_engine`` - string that gives the engine name. Necessary to
|
|
# instantiate class directly and bypass ``ExcelWriterMeta`` engine
|
|
# lookup.
|
|
# - ``save(self)`` --> called to save file to disk
|
|
# - Mostly mandatory (i.e. should at least exist)
|
|
# - book, cur_sheet, path
|
|
|
|
# - Optional:
|
|
# - ``__init__(self, path, engine=None, **kwargs)`` --> always called
|
|
# with path as first argument.
|
|
|
|
# You also need to register the class with ``register_writer()``.
|
|
# Technically, ExcelWriter implementations don't need to subclass
|
|
# ExcelWriter.
|
|
|
|
_engine: str
|
|
_supported_extensions: tuple[str, ...]
|
|
|
|
def __new__(
|
|
cls,
|
|
path: FilePath | WriteExcelBuffer | ExcelWriter,
|
|
engine: str | None = None,
|
|
date_format: str | None = None,
|
|
datetime_format: str | None = None,
|
|
mode: str = "w",
|
|
storage_options: StorageOptions | None = None,
|
|
if_sheet_exists: ExcelWriterIfSheetExists | None = None,
|
|
engine_kwargs: dict | None = None,
|
|
) -> Self:
|
|
# only switch class if generic(ExcelWriter)
|
|
if cls is ExcelWriter:
|
|
if engine is None or (isinstance(engine, str) and engine == "auto"):
|
|
if isinstance(path, str):
|
|
ext = os.path.splitext(path)[-1][1:]
|
|
else:
|
|
ext = "xlsx"
|
|
|
|
try:
|
|
engine = config.get_option(f"io.excel.{ext}.writer", silent=True)
|
|
if engine == "auto":
|
|
engine = get_default_engine(ext, mode="writer")
|
|
except KeyError as err:
|
|
raise ValueError(f"No engine for filetype: '{ext}'") from err
|
|
|
|
# for mypy
|
|
assert engine is not None
|
|
# error: Incompatible types in assignment (expression has type
|
|
# "type[ExcelWriter[Any]]", variable has type "type[Self]")
|
|
cls = get_writer(engine) # type: ignore[assignment]
|
|
|
|
return object.__new__(cls)
|
|
|
|
# declare external properties you can count on
|
|
_path = None
|
|
|
|
@property
|
|
def supported_extensions(self) -> tuple[str, ...]:
|
|
"""Extensions that writer engine supports."""
|
|
return self._supported_extensions
|
|
|
|
@property
|
|
def engine(self) -> str:
|
|
"""Name of engine."""
|
|
return self._engine
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def sheets(self) -> dict[str, Any]:
|
|
"""Mapping of sheet names to sheet objects."""
|
|
|
|
@property
|
|
@abc.abstractmethod
|
|
def book(self) -> _WorkbookT:
|
|
"""
|
|
Book instance. Class type will depend on the engine used.
|
|
|
|
This attribute can be used to access engine-specific features.
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def _write_cells(
|
|
self,
|
|
cells,
|
|
sheet_name: str | None = None,
|
|
startrow: int = 0,
|
|
startcol: int = 0,
|
|
freeze_panes: tuple[int, int] | None = None,
|
|
) -> None:
|
|
"""
|
|
Write given formatted cells into Excel an excel sheet
|
|
|
|
Parameters
|
|
----------
|
|
cells : generator
|
|
cell of formatted data to save to Excel sheet
|
|
sheet_name : str, default None
|
|
Name of Excel sheet, if None, then use self.cur_sheet
|
|
startrow : upper left cell row to dump data frame
|
|
startcol : upper left cell column to dump data frame
|
|
freeze_panes: int tuple of length 2
|
|
contains the bottom-most row and right-most column to freeze
|
|
"""
|
|
|
|
@abc.abstractmethod
|
|
def _save(self) -> None:
|
|
"""
|
|
Save workbook to disk.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
path: FilePath | WriteExcelBuffer | ExcelWriter,
|
|
engine: str | None = None,
|
|
date_format: str | None = None,
|
|
datetime_format: str | None = None,
|
|
mode: str = "w",
|
|
storage_options: StorageOptions | None = None,
|
|
if_sheet_exists: ExcelWriterIfSheetExists | None = None,
|
|
engine_kwargs: dict[str, Any] | None = None,
|
|
) -> None:
|
|
# validate that this engine can handle the extension
|
|
if isinstance(path, str):
|
|
ext = os.path.splitext(path)[-1]
|
|
self.check_extension(ext)
|
|
|
|
# use mode to open the file
|
|
if "b" not in mode:
|
|
mode += "b"
|
|
# use "a" for the user to append data to excel but internally use "r+" to let
|
|
# the excel backend first read the existing file and then write any data to it
|
|
mode = mode.replace("a", "r+")
|
|
|
|
if if_sheet_exists not in (None, "error", "new", "replace", "overlay"):
|
|
raise ValueError(
|
|
f"'{if_sheet_exists}' is not valid for if_sheet_exists. "
|
|
"Valid options are 'error', 'new', 'replace' and 'overlay'."
|
|
)
|
|
if if_sheet_exists and "r+" not in mode:
|
|
raise ValueError("if_sheet_exists is only valid in append mode (mode='a')")
|
|
if if_sheet_exists is None:
|
|
if_sheet_exists = "error"
|
|
self._if_sheet_exists = if_sheet_exists
|
|
|
|
# cast ExcelWriter to avoid adding 'if self._handles is not None'
|
|
self._handles = IOHandles(
|
|
cast(IO[bytes], path), compression={"compression": None}
|
|
)
|
|
if not isinstance(path, ExcelWriter):
|
|
self._handles = get_handle(
|
|
path, mode, storage_options=storage_options, is_text=False
|
|
)
|
|
self._cur_sheet = None
|
|
|
|
if date_format is None:
|
|
self._date_format = "YYYY-MM-DD"
|
|
else:
|
|
self._date_format = date_format
|
|
if datetime_format is None:
|
|
self._datetime_format = "YYYY-MM-DD HH:MM:SS"
|
|
else:
|
|
self._datetime_format = datetime_format
|
|
|
|
self._mode = mode
|
|
|
|
@property
|
|
def date_format(self) -> str:
|
|
"""
|
|
Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
|
|
"""
|
|
return self._date_format
|
|
|
|
@property
|
|
def datetime_format(self) -> str:
|
|
"""
|
|
Format string for dates written into Excel files (e.g. 'YYYY-MM-DD').
|
|
"""
|
|
return self._datetime_format
|
|
|
|
@property
|
|
def if_sheet_exists(self) -> str:
|
|
"""
|
|
How to behave when writing to a sheet that already exists in append mode.
|
|
"""
|
|
return self._if_sheet_exists
|
|
|
|
def __fspath__(self) -> str:
|
|
return getattr(self._handles.handle, "name", "")
|
|
|
|
def _get_sheet_name(self, sheet_name: str | None) -> str:
|
|
if sheet_name is None:
|
|
sheet_name = self._cur_sheet
|
|
if sheet_name is None: # pragma: no cover
|
|
raise ValueError("Must pass explicit sheet_name or set _cur_sheet property")
|
|
return sheet_name
|
|
|
|
def _value_with_fmt(
|
|
self, val
|
|
) -> tuple[
|
|
int | float | bool | str | datetime.datetime | datetime.date, str | None
|
|
]:
|
|
"""
|
|
Convert numpy types to Python types for the Excel writers.
|
|
|
|
Parameters
|
|
----------
|
|
val : object
|
|
Value to be written into cells
|
|
|
|
Returns
|
|
-------
|
|
Tuple with the first element being the converted value and the second
|
|
being an optional format
|
|
"""
|
|
fmt = None
|
|
|
|
if is_integer(val):
|
|
val = int(val)
|
|
elif is_float(val):
|
|
val = float(val)
|
|
elif is_bool(val):
|
|
val = bool(val)
|
|
elif isinstance(val, datetime.datetime):
|
|
fmt = self._datetime_format
|
|
elif isinstance(val, datetime.date):
|
|
fmt = self._date_format
|
|
elif isinstance(val, datetime.timedelta):
|
|
val = val.total_seconds() / 86400
|
|
fmt = "0"
|
|
else:
|
|
val = str(val)
|
|
|
|
return val, fmt
|
|
|
|
@classmethod
|
|
def check_extension(cls, ext: str) -> Literal[True]:
|
|
"""
|
|
checks that path's extension against the Writer's supported
|
|
extensions. If it isn't supported, raises UnsupportedFiletypeError.
|
|
"""
|
|
if ext.startswith("."):
|
|
ext = ext[1:]
|
|
if not any(ext in extension for extension in cls._supported_extensions):
|
|
raise ValueError(f"Invalid extension for engine '{cls.engine}': '{ext}'")
|
|
return True
|
|
|
|
# Allow use as a contextmanager
|
|
def __enter__(self) -> Self:
|
|
return self
|
|
|
|
def __exit__(
|
|
self,
|
|
exc_type: type[BaseException] | None,
|
|
exc_value: BaseException | None,
|
|
traceback: TracebackType | None,
|
|
) -> None:
|
|
self.close()
|
|
|
|
def close(self) -> None:
|
|
"""synonym for save, to make it more file-like"""
|
|
self._save()
|
|
self._handles.close()
|
|
|
|
|
|
XLS_SIGNATURES = (
|
|
b"\x09\x00\x04\x00\x07\x00\x10\x00", # BIFF2
|
|
b"\x09\x02\x06\x00\x00\x00\x10\x00", # BIFF3
|
|
b"\x09\x04\x06\x00\x00\x00\x10\x00", # BIFF4
|
|
b"\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1", # Compound File Binary
|
|
)
|
|
ZIP_SIGNATURE = b"PK\x03\x04"
|
|
PEEK_SIZE = max(map(len, XLS_SIGNATURES + (ZIP_SIGNATURE,)))
|
|
|
|
|
|
@doc(storage_options=_shared_docs["storage_options"])
|
|
def inspect_excel_format(
|
|
content_or_path: FilePath | ReadBuffer[bytes],
|
|
storage_options: StorageOptions | None = None,
|
|
) -> str | None:
|
|
"""
|
|
Inspect the path or content of an excel file and get its format.
|
|
|
|
Adopted from xlrd: https://github.com/python-excel/xlrd.
|
|
|
|
Parameters
|
|
----------
|
|
content_or_path : str or file-like object
|
|
Path to file or content of file to inspect. May be a URL.
|
|
{storage_options}
|
|
|
|
Returns
|
|
-------
|
|
str or None
|
|
Format of file if it can be determined.
|
|
|
|
Raises
|
|
------
|
|
ValueError
|
|
If resulting stream is empty.
|
|
BadZipFile
|
|
If resulting stream does not have an XLS signature and is not a valid zipfile.
|
|
"""
|
|
if isinstance(content_or_path, bytes):
|
|
content_or_path = BytesIO(content_or_path)
|
|
|
|
with get_handle(
|
|
content_or_path, "rb", storage_options=storage_options, is_text=False
|
|
) as handle:
|
|
stream = handle.handle
|
|
stream.seek(0)
|
|
buf = stream.read(PEEK_SIZE)
|
|
if buf is None:
|
|
raise ValueError("stream is empty")
|
|
assert isinstance(buf, bytes)
|
|
peek = buf
|
|
stream.seek(0)
|
|
|
|
if any(peek.startswith(sig) for sig in XLS_SIGNATURES):
|
|
return "xls"
|
|
elif not peek.startswith(ZIP_SIGNATURE):
|
|
return None
|
|
|
|
with zipfile.ZipFile(stream) as zf:
|
|
# Workaround for some third party files that use forward slashes and
|
|
# lower case names.
|
|
component_names = [
|
|
name.replace("\\", "/").lower() for name in zf.namelist()
|
|
]
|
|
|
|
if "xl/workbook.xml" in component_names:
|
|
return "xlsx"
|
|
if "xl/workbook.bin" in component_names:
|
|
return "xlsb"
|
|
if "content.xml" in component_names:
|
|
return "ods"
|
|
return "zip"
|
|
|
|
|
|
class ExcelFile:
|
|
"""
|
|
Class for parsing tabular Excel sheets into DataFrame objects.
|
|
|
|
See read_excel for more documentation.
|
|
|
|
Parameters
|
|
----------
|
|
path_or_buffer : str, bytes, path object (pathlib.Path or py._path.local.LocalPath),
|
|
A file-like object, xlrd workbook or openpyxl workbook.
|
|
If a string or path object, expected to be a path to a
|
|
.xls, .xlsx, .xlsb, .xlsm, .odf, .ods, or .odt file.
|
|
engine : str, default None
|
|
If io is not a buffer or path, this must be set to identify io.
|
|
Supported engines: ``xlrd``, ``openpyxl``, ``odf``, ``pyxlsb``
|
|
Engine compatibility :
|
|
|
|
- ``xlrd`` supports old-style Excel files (.xls).
|
|
- ``openpyxl`` supports newer Excel file formats.
|
|
- ``odf`` supports OpenDocument file formats (.odf, .ods, .odt).
|
|
- ``pyxlsb`` supports Binary Excel files.
|
|
|
|
.. versionchanged:: 1.2.0
|
|
|
|
The engine `xlrd <https://xlrd.readthedocs.io/en/latest/>`_
|
|
now only supports old-style ``.xls`` files.
|
|
When ``engine=None``, the following logic will be
|
|
used to determine the engine:
|
|
|
|
- If ``path_or_buffer`` is an OpenDocument format (.odf, .ods, .odt),
|
|
then `odf <https://pypi.org/project/odfpy/>`_ will be used.
|
|
- Otherwise if ``path_or_buffer`` is an xls format,
|
|
``xlrd`` will be used.
|
|
- Otherwise if ``path_or_buffer`` is in xlsb format,
|
|
`pyxlsb <https://pypi.org/project/pyxlsb/>`_ will be used.
|
|
|
|
.. versionadded:: 1.3.0
|
|
|
|
- Otherwise if `openpyxl <https://pypi.org/project/openpyxl/>`_ is installed,
|
|
then ``openpyxl`` will be used.
|
|
- Otherwise if ``xlrd >= 2.0`` is installed, a ``ValueError`` will be raised.
|
|
|
|
.. warning::
|
|
|
|
Please do not report issues when using ``xlrd`` to read ``.xlsx`` files.
|
|
This is not supported, switch to using ``openpyxl`` instead.
|
|
engine_kwargs : dict, optional
|
|
Arbitrary keyword arguments passed to excel engine.
|
|
|
|
Examples
|
|
--------
|
|
>>> file = pd.ExcelFile('myfile.xlsx') # doctest: +SKIP
|
|
>>> with pd.ExcelFile("myfile.xls") as xls: # doctest: +SKIP
|
|
... df1 = pd.read_excel(xls, "Sheet1") # doctest: +SKIP
|
|
"""
|
|
|
|
from pandas.io.excel._odfreader import ODFReader
|
|
from pandas.io.excel._openpyxl import OpenpyxlReader
|
|
from pandas.io.excel._pyxlsb import PyxlsbReader
|
|
from pandas.io.excel._xlrd import XlrdReader
|
|
|
|
_engines: Mapping[str, Any] = {
|
|
"xlrd": XlrdReader,
|
|
"openpyxl": OpenpyxlReader,
|
|
"odf": ODFReader,
|
|
"pyxlsb": PyxlsbReader,
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
path_or_buffer,
|
|
engine: str | None = None,
|
|
storage_options: StorageOptions | None = None,
|
|
engine_kwargs: dict | None = None,
|
|
) -> None:
|
|
if engine_kwargs is None:
|
|
engine_kwargs = {}
|
|
|
|
if engine is not None and engine not in self._engines:
|
|
raise ValueError(f"Unknown engine: {engine}")
|
|
|
|
# First argument can also be bytes, so create a buffer
|
|
if isinstance(path_or_buffer, bytes):
|
|
path_or_buffer = BytesIO(path_or_buffer)
|
|
warnings.warn(
|
|
"Passing bytes to 'read_excel' is deprecated and "
|
|
"will be removed in a future version. To read from a "
|
|
"byte string, wrap it in a `BytesIO` object.",
|
|
FutureWarning,
|
|
stacklevel=find_stack_level(),
|
|
)
|
|
|
|
# Could be a str, ExcelFile, Book, etc.
|
|
self.io = path_or_buffer
|
|
# Always a string
|
|
self._io = stringify_path(path_or_buffer)
|
|
|
|
# Determine xlrd version if installed
|
|
if import_optional_dependency("xlrd", errors="ignore") is None:
|
|
xlrd_version = None
|
|
else:
|
|
import xlrd
|
|
|
|
xlrd_version = Version(get_version(xlrd))
|
|
|
|
if engine is None:
|
|
# Only determine ext if it is needed
|
|
ext: str | None
|
|
if xlrd_version is not None and isinstance(path_or_buffer, xlrd.Book):
|
|
ext = "xls"
|
|
else:
|
|
ext = inspect_excel_format(
|
|
content_or_path=path_or_buffer, storage_options=storage_options
|
|
)
|
|
if ext is None:
|
|
raise ValueError(
|
|
"Excel file format cannot be determined, you must specify "
|
|
"an engine manually."
|
|
)
|
|
|
|
engine = config.get_option(f"io.excel.{ext}.reader", silent=True)
|
|
if engine == "auto":
|
|
engine = get_default_engine(ext, mode="reader")
|
|
|
|
assert engine is not None
|
|
self.engine = engine
|
|
self.storage_options = storage_options
|
|
|
|
self._reader = self._engines[engine](
|
|
self._io,
|
|
storage_options=storage_options,
|
|
engine_kwargs=engine_kwargs,
|
|
)
|
|
|
|
def __fspath__(self):
|
|
return self._io
|
|
|
|
def parse(
|
|
self,
|
|
sheet_name: str | int | list[int] | list[str] | None = 0,
|
|
header: int | Sequence[int] | None = 0,
|
|
names=None,
|
|
index_col: int | Sequence[int] | None = None,
|
|
usecols=None,
|
|
converters=None,
|
|
true_values: Iterable[Hashable] | None = None,
|
|
false_values: Iterable[Hashable] | None = None,
|
|
skiprows: Sequence[int] | int | Callable[[int], object] | None = None,
|
|
nrows: int | None = None,
|
|
na_values=None,
|
|
parse_dates: list | dict | bool = False,
|
|
date_parser: Callable | lib.NoDefault = lib.no_default,
|
|
date_format: str | dict[Hashable, str] | None = None,
|
|
thousands: str | None = None,
|
|
comment: str | None = None,
|
|
skipfooter: int = 0,
|
|
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
|
|
**kwds,
|
|
) -> DataFrame | dict[str, DataFrame] | dict[int, DataFrame]:
|
|
"""
|
|
Parse specified sheet(s) into a DataFrame.
|
|
|
|
Equivalent to read_excel(ExcelFile, ...) See the read_excel
|
|
docstring for more info on accepted parameters.
|
|
|
|
Returns
|
|
-------
|
|
DataFrame or dict of DataFrames
|
|
DataFrame from the passed in Excel file.
|
|
|
|
Examples
|
|
--------
|
|
>>> df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], columns=['A', 'B', 'C'])
|
|
>>> df.to_excel('myfile.xlsx') # doctest: +SKIP
|
|
>>> file = pd.ExcelFile('myfile.xlsx') # doctest: +SKIP
|
|
>>> file.parse() # doctest: +SKIP
|
|
"""
|
|
return self._reader.parse(
|
|
sheet_name=sheet_name,
|
|
header=header,
|
|
names=names,
|
|
index_col=index_col,
|
|
usecols=usecols,
|
|
converters=converters,
|
|
true_values=true_values,
|
|
false_values=false_values,
|
|
skiprows=skiprows,
|
|
nrows=nrows,
|
|
na_values=na_values,
|
|
parse_dates=parse_dates,
|
|
date_parser=date_parser,
|
|
date_format=date_format,
|
|
thousands=thousands,
|
|
comment=comment,
|
|
skipfooter=skipfooter,
|
|
dtype_backend=dtype_backend,
|
|
**kwds,
|
|
)
|
|
|
|
@property
|
|
def book(self):
|
|
return self._reader.book
|
|
|
|
@property
|
|
def sheet_names(self):
|
|
return self._reader.sheet_names
|
|
|
|
def close(self) -> None:
|
|
"""close io if necessary"""
|
|
self._reader.close()
|
|
|
|
def __enter__(self) -> Self:
|
|
return self
|
|
|
|
def __exit__(
|
|
self,
|
|
exc_type: type[BaseException] | None,
|
|
exc_value: BaseException | None,
|
|
traceback: TracebackType | None,
|
|
) -> None:
|
|
self.close()
|
|
|