Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

127 lines
4.3 KiB

# pyright: reportMissingImports=false
from __future__ import annotations
from typing import TYPE_CHECKING
from pandas.compat._optional import import_optional_dependency
from pandas.util._decorators import doc
from pandas.core.shared_docs import _shared_docs
from pandas.io.excel._base import BaseExcelReader
if TYPE_CHECKING:
from pyxlsb import Workbook
from pandas._typing import (
FilePath,
ReadBuffer,
Scalar,
StorageOptions,
)
class PyxlsbReader(BaseExcelReader["Workbook"]):
@doc(storage_options=_shared_docs["storage_options"])
def __init__(
self,
filepath_or_buffer: FilePath | ReadBuffer[bytes],
storage_options: StorageOptions | None = None,
engine_kwargs: dict | None = None,
) -> None:
"""
Reader using pyxlsb engine.
Parameters
----------
filepath_or_buffer : str, path object, or Workbook
Object to be parsed.
{storage_options}
engine_kwargs : dict, optional
Arbitrary keyword arguments passed to excel engine.
"""
import_optional_dependency("pyxlsb")
# This will call load_workbook on the filepath or buffer
# And set the result to the book-attribute
super().__init__(
filepath_or_buffer,
storage_options=storage_options,
engine_kwargs=engine_kwargs,
)
@property
def _workbook_class(self) -> type[Workbook]:
from pyxlsb import Workbook
return Workbook
def load_workbook(
self, filepath_or_buffer: FilePath | ReadBuffer[bytes], engine_kwargs
) -> Workbook:
from pyxlsb import open_workbook
# TODO: hack in buffer capability
# This might need some modifications to the Pyxlsb library
# Actual work for opening it is in xlsbpackage.py, line 20-ish
return open_workbook(filepath_or_buffer, **engine_kwargs)
@property
def sheet_names(self) -> list[str]:
return self.book.sheets
def get_sheet_by_name(self, name: str):
self.raise_if_bad_sheet_by_name(name)
return self.book.get_sheet(name)
def get_sheet_by_index(self, index: int):
self.raise_if_bad_sheet_by_index(index)
# pyxlsb sheets are indexed from 1 onwards
# There's a fix for this in the source, but the pypi package doesn't have it
return self.book.get_sheet(index + 1)
def _convert_cell(self, cell) -> Scalar:
# TODO: there is no way to distinguish between floats and datetimes in pyxlsb
# This means that there is no way to read datetime types from an xlsb file yet
if cell.v is None:
return "" # Prevents non-named columns from not showing up as Unnamed: i
if isinstance(cell.v, float):
val = int(cell.v)
if val == cell.v:
return val
else:
return float(cell.v)
return cell.v
def get_sheet_data(
self,
sheet,
file_rows_needed: int | None = None,
) -> list[list[Scalar]]:
data: list[list[Scalar]] = []
previous_row_number = -1
# When sparse=True the rows can have different lengths and empty rows are
# not returned. The cells are namedtuples of row, col, value (r, c, v).
for row in sheet.rows(sparse=True):
row_number = row[0].r
converted_row = [self._convert_cell(cell) for cell in row]
while converted_row and converted_row[-1] == "":
# trim trailing empty elements
converted_row.pop()
if converted_row:
data.extend([[]] * (row_number - previous_row_number - 1))
data.append(converted_row)
previous_row_number = row_number
if file_rows_needed is not None and len(data) >= file_rows_needed:
break
if data:
# extend rows to max_width
max_width = max(len(data_row) for data_row in data)
if min(len(data_row) for data_row in data) < max_width:
empty_cell: list[Scalar] = [""]
data = [
data_row + (max_width - len(data_row)) * empty_cell
for data_row in data
]
return data