You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
4.3 KiB
140 lines
4.3 KiB
from __future__ import annotations
|
|
|
|
from datetime import time
|
|
from typing import TYPE_CHECKING
|
|
|
|
import numpy as np
|
|
|
|
from pandas.compat._optional import import_optional_dependency
|
|
from pandas.util._decorators import doc
|
|
|
|
from pandas.core.shared_docs import _shared_docs
|
|
|
|
from pandas.io.excel._base import BaseExcelReader
|
|
|
|
if TYPE_CHECKING:
|
|
from xlrd import Book
|
|
|
|
from pandas._typing import (
|
|
Scalar,
|
|
StorageOptions,
|
|
)
|
|
|
|
|
|
class XlrdReader(BaseExcelReader["Book"]):
|
|
@doc(storage_options=_shared_docs["storage_options"])
|
|
def __init__(
|
|
self,
|
|
filepath_or_buffer,
|
|
storage_options: StorageOptions | None = None,
|
|
engine_kwargs: dict | None = None,
|
|
) -> None:
|
|
"""
|
|
Reader using xlrd engine.
|
|
|
|
Parameters
|
|
----------
|
|
filepath_or_buffer : str, path object or Workbook
|
|
Object to be parsed.
|
|
{storage_options}
|
|
engine_kwargs : dict, optional
|
|
Arbitrary keyword arguments passed to excel engine.
|
|
"""
|
|
err_msg = "Install xlrd >= 2.0.1 for xls Excel support"
|
|
import_optional_dependency("xlrd", extra=err_msg)
|
|
super().__init__(
|
|
filepath_or_buffer,
|
|
storage_options=storage_options,
|
|
engine_kwargs=engine_kwargs,
|
|
)
|
|
|
|
@property
|
|
def _workbook_class(self) -> type[Book]:
|
|
from xlrd import Book
|
|
|
|
return Book
|
|
|
|
def load_workbook(self, filepath_or_buffer, engine_kwargs) -> Book:
|
|
from xlrd import open_workbook
|
|
|
|
if hasattr(filepath_or_buffer, "read"):
|
|
data = filepath_or_buffer.read()
|
|
return open_workbook(file_contents=data, **engine_kwargs)
|
|
else:
|
|
return open_workbook(filepath_or_buffer, **engine_kwargs)
|
|
|
|
@property
|
|
def sheet_names(self):
|
|
return self.book.sheet_names()
|
|
|
|
def get_sheet_by_name(self, name):
|
|
self.raise_if_bad_sheet_by_name(name)
|
|
return self.book.sheet_by_name(name)
|
|
|
|
def get_sheet_by_index(self, index):
|
|
self.raise_if_bad_sheet_by_index(index)
|
|
return self.book.sheet_by_index(index)
|
|
|
|
def get_sheet_data(
|
|
self, sheet, file_rows_needed: int | None = None
|
|
) -> list[list[Scalar]]:
|
|
from xlrd import (
|
|
XL_CELL_BOOLEAN,
|
|
XL_CELL_DATE,
|
|
XL_CELL_ERROR,
|
|
XL_CELL_NUMBER,
|
|
xldate,
|
|
)
|
|
|
|
epoch1904 = self.book.datemode
|
|
|
|
def _parse_cell(cell_contents, cell_typ):
|
|
"""
|
|
converts the contents of the cell into a pandas appropriate object
|
|
"""
|
|
if cell_typ == XL_CELL_DATE:
|
|
# Use the newer xlrd datetime handling.
|
|
try:
|
|
cell_contents = xldate.xldate_as_datetime(cell_contents, epoch1904)
|
|
except OverflowError:
|
|
return cell_contents
|
|
|
|
# Excel doesn't distinguish between dates and time,
|
|
# so we treat dates on the epoch as times only.
|
|
# Also, Excel supports 1900 and 1904 epochs.
|
|
year = (cell_contents.timetuple())[0:3]
|
|
if (not epoch1904 and year == (1899, 12, 31)) or (
|
|
epoch1904 and year == (1904, 1, 1)
|
|
):
|
|
cell_contents = time(
|
|
cell_contents.hour,
|
|
cell_contents.minute,
|
|
cell_contents.second,
|
|
cell_contents.microsecond,
|
|
)
|
|
|
|
elif cell_typ == XL_CELL_ERROR:
|
|
cell_contents = np.nan
|
|
elif cell_typ == XL_CELL_BOOLEAN:
|
|
cell_contents = bool(cell_contents)
|
|
elif cell_typ == XL_CELL_NUMBER:
|
|
# GH5394 - Excel 'numbers' are always floats
|
|
# it's a minimal perf hit and less surprising
|
|
val = int(cell_contents)
|
|
if val == cell_contents:
|
|
cell_contents = val
|
|
return cell_contents
|
|
|
|
data = []
|
|
|
|
nrows = sheet.nrows
|
|
if file_rows_needed is not None:
|
|
nrows = min(nrows, file_rows_needed)
|
|
for i in range(nrows):
|
|
row = [
|
|
_parse_cell(value, typ)
|
|
for value, typ in zip(sheet.row_values(i), sheet.row_types(i))
|
|
]
|
|
data.append(row)
|
|
|
|
return data
|
|
|