You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
326 lines
10 KiB
326 lines
10 KiB
"""
|
|
Module for formatting output data into CSV files.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
from collections.abc import (
|
|
Hashable,
|
|
Iterable,
|
|
Iterator,
|
|
Sequence,
|
|
)
|
|
import csv as csvlib
|
|
import os
|
|
from typing import (
|
|
TYPE_CHECKING,
|
|
Any,
|
|
cast,
|
|
)
|
|
|
|
import numpy as np
|
|
|
|
from pandas._libs import writers as libwriters
|
|
from pandas.util._decorators import cache_readonly
|
|
|
|
from pandas.core.dtypes.generic import (
|
|
ABCDatetimeIndex,
|
|
ABCIndex,
|
|
ABCMultiIndex,
|
|
ABCPeriodIndex,
|
|
)
|
|
from pandas.core.dtypes.missing import notna
|
|
|
|
from pandas.core.indexes.api import Index
|
|
|
|
from pandas.io.common import get_handle
|
|
|
|
if TYPE_CHECKING:
|
|
from pandas._typing import (
|
|
CompressionOptions,
|
|
FilePath,
|
|
FloatFormatType,
|
|
IndexLabel,
|
|
StorageOptions,
|
|
WriteBuffer,
|
|
)
|
|
|
|
from pandas.io.formats.format import DataFrameFormatter
|
|
|
|
|
|
_DEFAULT_CHUNKSIZE_CELLS = 100_000
|
|
|
|
|
|
class CSVFormatter:
|
|
cols: np.ndarray
|
|
|
|
def __init__(
|
|
self,
|
|
formatter: DataFrameFormatter,
|
|
path_or_buf: FilePath | WriteBuffer[str] | WriteBuffer[bytes] = "",
|
|
sep: str = ",",
|
|
cols: Sequence[Hashable] | None = None,
|
|
index_label: IndexLabel | None = None,
|
|
mode: str = "w",
|
|
encoding: str | None = None,
|
|
errors: str = "strict",
|
|
compression: CompressionOptions = "infer",
|
|
quoting: int | None = None,
|
|
lineterminator: str | None = "\n",
|
|
chunksize: int | None = None,
|
|
quotechar: str | None = '"',
|
|
date_format: str | None = None,
|
|
doublequote: bool = True,
|
|
escapechar: str | None = None,
|
|
storage_options: StorageOptions | None = None,
|
|
) -> None:
|
|
self.fmt = formatter
|
|
|
|
self.obj = self.fmt.frame
|
|
|
|
self.filepath_or_buffer = path_or_buf
|
|
self.encoding = encoding
|
|
self.compression: CompressionOptions = compression
|
|
self.mode = mode
|
|
self.storage_options = storage_options
|
|
|
|
self.sep = sep
|
|
self.index_label = self._initialize_index_label(index_label)
|
|
self.errors = errors
|
|
self.quoting = quoting or csvlib.QUOTE_MINIMAL
|
|
self.quotechar = self._initialize_quotechar(quotechar)
|
|
self.doublequote = doublequote
|
|
self.escapechar = escapechar
|
|
self.lineterminator = lineterminator or os.linesep
|
|
self.date_format = date_format
|
|
self.cols = self._initialize_columns(cols)
|
|
self.chunksize = self._initialize_chunksize(chunksize)
|
|
|
|
@property
|
|
def na_rep(self) -> str:
|
|
return self.fmt.na_rep
|
|
|
|
@property
|
|
def float_format(self) -> FloatFormatType | None:
|
|
return self.fmt.float_format
|
|
|
|
@property
|
|
def decimal(self) -> str:
|
|
return self.fmt.decimal
|
|
|
|
@property
|
|
def header(self) -> bool | list[str]:
|
|
return self.fmt.header
|
|
|
|
@property
|
|
def index(self) -> bool:
|
|
return self.fmt.index
|
|
|
|
def _initialize_index_label(self, index_label: IndexLabel | None) -> IndexLabel:
|
|
if index_label is not False:
|
|
if index_label is None:
|
|
return self._get_index_label_from_obj()
|
|
elif not isinstance(index_label, (list, tuple, np.ndarray, ABCIndex)):
|
|
# given a string for a DF with Index
|
|
return [index_label]
|
|
return index_label
|
|
|
|
def _get_index_label_from_obj(self) -> Sequence[Hashable]:
|
|
if isinstance(self.obj.index, ABCMultiIndex):
|
|
return self._get_index_label_multiindex()
|
|
else:
|
|
return self._get_index_label_flat()
|
|
|
|
def _get_index_label_multiindex(self) -> Sequence[Hashable]:
|
|
return [name or "" for name in self.obj.index.names]
|
|
|
|
def _get_index_label_flat(self) -> Sequence[Hashable]:
|
|
index_label = self.obj.index.name
|
|
return [""] if index_label is None else [index_label]
|
|
|
|
def _initialize_quotechar(self, quotechar: str | None) -> str | None:
|
|
if self.quoting != csvlib.QUOTE_NONE:
|
|
# prevents crash in _csv
|
|
return quotechar
|
|
return None
|
|
|
|
@property
|
|
def has_mi_columns(self) -> bool:
|
|
return bool(isinstance(self.obj.columns, ABCMultiIndex))
|
|
|
|
def _initialize_columns(self, cols: Iterable[Hashable] | None) -> np.ndarray:
|
|
# validate mi options
|
|
if self.has_mi_columns:
|
|
if cols is not None:
|
|
msg = "cannot specify cols with a MultiIndex on the columns"
|
|
raise TypeError(msg)
|
|
|
|
if cols is not None:
|
|
if isinstance(cols, ABCIndex):
|
|
cols = cols._format_native_types(**self._number_format)
|
|
else:
|
|
cols = list(cols)
|
|
self.obj = self.obj.loc[:, cols]
|
|
|
|
# update columns to include possible multiplicity of dupes
|
|
# and make sure cols is just a list of labels
|
|
new_cols = self.obj.columns
|
|
return new_cols._format_native_types(**self._number_format)
|
|
|
|
def _initialize_chunksize(self, chunksize: int | None) -> int:
|
|
if chunksize is None:
|
|
return (_DEFAULT_CHUNKSIZE_CELLS // (len(self.cols) or 1)) or 1
|
|
return int(chunksize)
|
|
|
|
@property
|
|
def _number_format(self) -> dict[str, Any]:
|
|
"""Dictionary used for storing number formatting settings."""
|
|
return {
|
|
"na_rep": self.na_rep,
|
|
"float_format": self.float_format,
|
|
"date_format": self.date_format,
|
|
"quoting": self.quoting,
|
|
"decimal": self.decimal,
|
|
}
|
|
|
|
@cache_readonly
|
|
def data_index(self) -> Index:
|
|
data_index = self.obj.index
|
|
if (
|
|
isinstance(data_index, (ABCDatetimeIndex, ABCPeriodIndex))
|
|
and self.date_format is not None
|
|
):
|
|
data_index = Index(
|
|
[x.strftime(self.date_format) if notna(x) else "" for x in data_index]
|
|
)
|
|
elif isinstance(data_index, ABCMultiIndex):
|
|
data_index = data_index.remove_unused_levels()
|
|
return data_index
|
|
|
|
@property
|
|
def nlevels(self) -> int:
|
|
if self.index:
|
|
return getattr(self.data_index, "nlevels", 1)
|
|
else:
|
|
return 0
|
|
|
|
@property
|
|
def _has_aliases(self) -> bool:
|
|
return isinstance(self.header, (tuple, list, np.ndarray, ABCIndex))
|
|
|
|
@property
|
|
def _need_to_save_header(self) -> bool:
|
|
return bool(self._has_aliases or self.header)
|
|
|
|
@property
|
|
def write_cols(self) -> Sequence[Hashable]:
|
|
if self._has_aliases:
|
|
assert not isinstance(self.header, bool)
|
|
if len(self.header) != len(self.cols):
|
|
raise ValueError(
|
|
f"Writing {len(self.cols)} cols but got {len(self.header)} aliases"
|
|
)
|
|
return self.header
|
|
else:
|
|
# self.cols is an ndarray derived from Index._format_native_types,
|
|
# so its entries are strings, i.e. hashable
|
|
return cast(Sequence[Hashable], self.cols)
|
|
|
|
@property
|
|
def encoded_labels(self) -> list[Hashable]:
|
|
encoded_labels: list[Hashable] = []
|
|
|
|
if self.index and self.index_label:
|
|
assert isinstance(self.index_label, Sequence)
|
|
encoded_labels = list(self.index_label)
|
|
|
|
if not self.has_mi_columns or self._has_aliases:
|
|
encoded_labels += list(self.write_cols)
|
|
|
|
return encoded_labels
|
|
|
|
def save(self) -> None:
|
|
"""
|
|
Create the writer & save.
|
|
"""
|
|
# apply compression and byte/text conversion
|
|
with get_handle(
|
|
self.filepath_or_buffer,
|
|
self.mode,
|
|
encoding=self.encoding,
|
|
errors=self.errors,
|
|
compression=self.compression,
|
|
storage_options=self.storage_options,
|
|
) as handles:
|
|
# Note: self.encoding is irrelevant here
|
|
self.writer = csvlib.writer(
|
|
handles.handle,
|
|
lineterminator=self.lineterminator,
|
|
delimiter=self.sep,
|
|
quoting=self.quoting,
|
|
doublequote=self.doublequote,
|
|
escapechar=self.escapechar,
|
|
quotechar=self.quotechar,
|
|
)
|
|
|
|
self._save()
|
|
|
|
def _save(self) -> None:
|
|
if self._need_to_save_header:
|
|
self._save_header()
|
|
self._save_body()
|
|
|
|
def _save_header(self) -> None:
|
|
if not self.has_mi_columns or self._has_aliases:
|
|
self.writer.writerow(self.encoded_labels)
|
|
else:
|
|
for row in self._generate_multiindex_header_rows():
|
|
self.writer.writerow(row)
|
|
|
|
def _generate_multiindex_header_rows(self) -> Iterator[list[Hashable]]:
|
|
columns = self.obj.columns
|
|
for i in range(columns.nlevels):
|
|
# we need at least 1 index column to write our col names
|
|
col_line = []
|
|
if self.index:
|
|
# name is the first column
|
|
col_line.append(columns.names[i])
|
|
|
|
if isinstance(self.index_label, list) and len(self.index_label) > 1:
|
|
col_line.extend([""] * (len(self.index_label) - 1))
|
|
|
|
col_line.extend(columns._get_level_values(i))
|
|
yield col_line
|
|
|
|
# Write out the index line if it's not empty.
|
|
# Otherwise, we will print out an extraneous
|
|
# blank line between the mi and the data rows.
|
|
if self.encoded_labels and set(self.encoded_labels) != {""}:
|
|
yield self.encoded_labels + [""] * len(columns)
|
|
|
|
def _save_body(self) -> None:
|
|
nrows = len(self.data_index)
|
|
chunks = (nrows // self.chunksize) + 1
|
|
for i in range(chunks):
|
|
start_i = i * self.chunksize
|
|
end_i = min(start_i + self.chunksize, nrows)
|
|
if start_i >= end_i:
|
|
break
|
|
self._save_chunk(start_i, end_i)
|
|
|
|
def _save_chunk(self, start_i: int, end_i: int) -> None:
|
|
# create the data for a chunk
|
|
slicer = slice(start_i, end_i)
|
|
df = self.obj.iloc[slicer]
|
|
|
|
res = df._mgr.to_native_types(**self._number_format)
|
|
data = [res.iget_values(i) for i in range(len(res.items))]
|
|
|
|
ix = self.data_index[slicer]._format_native_types(**self._number_format)
|
|
libwriters.write_csv_rows(
|
|
data,
|
|
ix,
|
|
self.nlevels,
|
|
self.cols,
|
|
self.writer,
|
|
)
|
|
|