You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
231 lines
8.1 KiB
231 lines
8.1 KiB
""" test feather-format compat """
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import pandas as pd
|
|
import pandas._testing as tm
|
|
from pandas.core.arrays import (
|
|
ArrowStringArray,
|
|
StringArray,
|
|
)
|
|
|
|
from pandas.io.feather_format import read_feather, to_feather # isort:skip
|
|
|
|
pyarrow = pytest.importorskip("pyarrow")
|
|
|
|
|
|
@pytest.mark.single_cpu
|
|
class TestFeather:
|
|
def check_error_on_write(self, df, exc, err_msg):
|
|
# check that we are raising the exception
|
|
# on writing
|
|
|
|
with pytest.raises(exc, match=err_msg):
|
|
with tm.ensure_clean() as path:
|
|
to_feather(df, path)
|
|
|
|
def check_external_error_on_write(self, df):
|
|
# check that we are raising the exception
|
|
# on writing
|
|
|
|
with tm.external_error_raised(Exception):
|
|
with tm.ensure_clean() as path:
|
|
to_feather(df, path)
|
|
|
|
def check_round_trip(self, df, expected=None, write_kwargs={}, **read_kwargs):
|
|
if expected is None:
|
|
expected = df.copy()
|
|
|
|
with tm.ensure_clean() as path:
|
|
to_feather(df, path, **write_kwargs)
|
|
|
|
result = read_feather(path, **read_kwargs)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_error(self):
|
|
msg = "feather only support IO with DataFrames"
|
|
for obj in [
|
|
pd.Series([1, 2, 3]),
|
|
1,
|
|
"foo",
|
|
pd.Timestamp("20130101"),
|
|
np.array([1, 2, 3]),
|
|
]:
|
|
self.check_error_on_write(obj, ValueError, msg)
|
|
|
|
def test_basic(self):
|
|
df = pd.DataFrame(
|
|
{
|
|
"string": list("abc"),
|
|
"int": list(range(1, 4)),
|
|
"uint": np.arange(3, 6).astype("u1"),
|
|
"float": np.arange(4.0, 7.0, dtype="float64"),
|
|
"float_with_null": [1.0, np.nan, 3],
|
|
"bool": [True, False, True],
|
|
"bool_with_null": [True, np.nan, False],
|
|
"cat": pd.Categorical(list("abc")),
|
|
"dt": pd.DatetimeIndex(
|
|
list(pd.date_range("20130101", periods=3)), freq=None
|
|
),
|
|
"dttz": pd.DatetimeIndex(
|
|
list(pd.date_range("20130101", periods=3, tz="US/Eastern")),
|
|
freq=None,
|
|
),
|
|
"dt_with_null": [
|
|
pd.Timestamp("20130101"),
|
|
pd.NaT,
|
|
pd.Timestamp("20130103"),
|
|
],
|
|
"dtns": pd.DatetimeIndex(
|
|
list(pd.date_range("20130101", periods=3, freq="ns")), freq=None
|
|
),
|
|
}
|
|
)
|
|
df["periods"] = pd.period_range("2013", freq="M", periods=3)
|
|
df["timedeltas"] = pd.timedelta_range("1 day", periods=3)
|
|
df["intervals"] = pd.interval_range(0, 3, 3)
|
|
|
|
assert df.dttz.dtype.tz.zone == "US/Eastern"
|
|
|
|
expected = df.copy()
|
|
expected.loc[1, "bool_with_null"] = None
|
|
self.check_round_trip(df, expected=expected)
|
|
|
|
def test_duplicate_columns(self):
|
|
# https://github.com/wesm/feather/issues/53
|
|
# not currently able to handle duplicate columns
|
|
df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=list("aaa")).copy()
|
|
self.check_external_error_on_write(df)
|
|
|
|
def test_read_columns(self):
|
|
# GH 24025
|
|
df = pd.DataFrame(
|
|
{
|
|
"col1": list("abc"),
|
|
"col2": list(range(1, 4)),
|
|
"col3": list("xyz"),
|
|
"col4": list(range(4, 7)),
|
|
}
|
|
)
|
|
columns = ["col1", "col3"]
|
|
self.check_round_trip(df, expected=df[columns], columns=columns)
|
|
|
|
def test_read_columns_different_order(self):
|
|
# GH 33878
|
|
df = pd.DataFrame({"A": [1, 2], "B": ["x", "y"], "C": [True, False]})
|
|
expected = df[["B", "A"]]
|
|
self.check_round_trip(df, expected, columns=["B", "A"])
|
|
|
|
def test_unsupported_other(self):
|
|
# mixed python objects
|
|
df = pd.DataFrame({"a": ["a", 1, 2.0]})
|
|
self.check_external_error_on_write(df)
|
|
|
|
def test_rw_use_threads(self):
|
|
df = pd.DataFrame({"A": np.arange(100000)})
|
|
self.check_round_trip(df, use_threads=True)
|
|
self.check_round_trip(df, use_threads=False)
|
|
|
|
def test_path_pathlib(self):
|
|
df = tm.makeDataFrame().reset_index()
|
|
result = tm.round_trip_pathlib(df.to_feather, read_feather)
|
|
tm.assert_frame_equal(df, result)
|
|
|
|
def test_path_localpath(self):
|
|
df = tm.makeDataFrame().reset_index()
|
|
result = tm.round_trip_localpath(df.to_feather, read_feather)
|
|
tm.assert_frame_equal(df, result)
|
|
|
|
def test_passthrough_keywords(self):
|
|
df = tm.makeDataFrame().reset_index()
|
|
self.check_round_trip(df, write_kwargs={"version": 1})
|
|
|
|
@pytest.mark.network
|
|
@pytest.mark.single_cpu
|
|
def test_http_path(self, feather_file, httpserver):
|
|
# GH 29055
|
|
expected = read_feather(feather_file)
|
|
with open(feather_file, "rb") as f:
|
|
httpserver.serve_content(content=f.read())
|
|
res = read_feather(httpserver.url)
|
|
tm.assert_frame_equal(expected, res)
|
|
|
|
def test_read_feather_dtype_backend(self, string_storage, dtype_backend):
|
|
# GH#50765
|
|
pa = pytest.importorskip("pyarrow")
|
|
df = pd.DataFrame(
|
|
{
|
|
"a": pd.Series([1, np.nan, 3], dtype="Int64"),
|
|
"b": pd.Series([1, 2, 3], dtype="Int64"),
|
|
"c": pd.Series([1.5, np.nan, 2.5], dtype="Float64"),
|
|
"d": pd.Series([1.5, 2.0, 2.5], dtype="Float64"),
|
|
"e": [True, False, None],
|
|
"f": [True, False, True],
|
|
"g": ["a", "b", "c"],
|
|
"h": ["a", "b", None],
|
|
}
|
|
)
|
|
|
|
if string_storage == "python":
|
|
string_array = StringArray(np.array(["a", "b", "c"], dtype=np.object_))
|
|
string_array_na = StringArray(np.array(["a", "b", pd.NA], dtype=np.object_))
|
|
|
|
else:
|
|
string_array = ArrowStringArray(pa.array(["a", "b", "c"]))
|
|
string_array_na = ArrowStringArray(pa.array(["a", "b", None]))
|
|
|
|
with tm.ensure_clean() as path:
|
|
to_feather(df, path)
|
|
with pd.option_context("mode.string_storage", string_storage):
|
|
result = read_feather(path, dtype_backend=dtype_backend)
|
|
|
|
expected = pd.DataFrame(
|
|
{
|
|
"a": pd.Series([1, np.nan, 3], dtype="Int64"),
|
|
"b": pd.Series([1, 2, 3], dtype="Int64"),
|
|
"c": pd.Series([1.5, np.nan, 2.5], dtype="Float64"),
|
|
"d": pd.Series([1.5, 2.0, 2.5], dtype="Float64"),
|
|
"e": pd.Series([True, False, pd.NA], dtype="boolean"),
|
|
"f": pd.Series([True, False, True], dtype="boolean"),
|
|
"g": string_array,
|
|
"h": string_array_na,
|
|
}
|
|
)
|
|
|
|
if dtype_backend == "pyarrow":
|
|
from pandas.arrays import ArrowExtensionArray
|
|
|
|
expected = pd.DataFrame(
|
|
{
|
|
col: ArrowExtensionArray(pa.array(expected[col], from_pandas=True))
|
|
for col in expected.columns
|
|
}
|
|
)
|
|
|
|
tm.assert_frame_equal(result, expected)
|
|
|
|
def test_int_columns_and_index(self):
|
|
df = pd.DataFrame({"a": [1, 2, 3]}, index=pd.Index([3, 4, 5], name="test"))
|
|
self.check_round_trip(df)
|
|
|
|
def test_invalid_dtype_backend(self):
|
|
msg = (
|
|
"dtype_backend numpy is invalid, only 'numpy_nullable' and "
|
|
"'pyarrow' are allowed."
|
|
)
|
|
df = pd.DataFrame({"int": list(range(1, 4))})
|
|
with tm.ensure_clean("tmp.feather") as path:
|
|
df.to_feather(path)
|
|
with pytest.raises(ValueError, match=msg):
|
|
read_feather(path, dtype_backend="numpy")
|
|
|
|
def test_string_inference(self, tmp_path):
|
|
# GH#54431
|
|
path = tmp_path / "test_string_inference.p"
|
|
df = pd.DataFrame(data={"a": ["x", "y"]})
|
|
df.to_feather(path)
|
|
with pd.option_context("future.infer_string", True):
|
|
result = read_feather(path)
|
|
expected = pd.DataFrame(data={"a": ["x", "y"]}, dtype="string[pyarrow_numpy]")
|
|
tm.assert_frame_equal(result, expected)
|
|
|