You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
697 lines
16 KiB
697 lines
16 KiB
import sys
|
|
from collections.abc import Sequence, Iterator, Callable, Iterable
|
|
from typing import (
|
|
Literal as L,
|
|
Any,
|
|
TypeVar,
|
|
overload,
|
|
Protocol,
|
|
SupportsIndex,
|
|
SupportsInt,
|
|
)
|
|
|
|
if sys.version_info >= (3, 10):
|
|
from typing import TypeGuard
|
|
else:
|
|
from typing_extensions import TypeGuard
|
|
|
|
from numpy import (
|
|
vectorize as vectorize,
|
|
ufunc,
|
|
generic,
|
|
floating,
|
|
complexfloating,
|
|
intp,
|
|
float64,
|
|
complex128,
|
|
timedelta64,
|
|
datetime64,
|
|
object_,
|
|
_OrderKACF,
|
|
)
|
|
|
|
from numpy._typing import (
|
|
NDArray,
|
|
ArrayLike,
|
|
DTypeLike,
|
|
_ShapeLike,
|
|
_ScalarLike_co,
|
|
_DTypeLike,
|
|
_ArrayLike,
|
|
_ArrayLikeInt_co,
|
|
_ArrayLikeFloat_co,
|
|
_ArrayLikeComplex_co,
|
|
_ArrayLikeTD64_co,
|
|
_ArrayLikeDT64_co,
|
|
_ArrayLikeObject_co,
|
|
_FloatLike_co,
|
|
_ComplexLike_co,
|
|
)
|
|
|
|
from numpy.core.function_base import (
|
|
add_newdoc as add_newdoc,
|
|
)
|
|
|
|
from numpy.core.multiarray import (
|
|
add_docstring as add_docstring,
|
|
bincount as bincount,
|
|
)
|
|
|
|
from numpy.core.umath import _add_newdoc_ufunc
|
|
|
|
_T = TypeVar("_T")
|
|
_T_co = TypeVar("_T_co", covariant=True)
|
|
_SCT = TypeVar("_SCT", bound=generic)
|
|
_ArrayType = TypeVar("_ArrayType", bound=NDArray[Any])
|
|
|
|
_2Tuple = tuple[_T, _T]
|
|
|
|
class _TrimZerosSequence(Protocol[_T_co]):
|
|
def __len__(self) -> int: ...
|
|
def __getitem__(self, key: slice, /) -> _T_co: ...
|
|
def __iter__(self) -> Iterator[Any]: ...
|
|
|
|
class _SupportsWriteFlush(Protocol):
|
|
def write(self, s: str, /) -> object: ...
|
|
def flush(self) -> object: ...
|
|
|
|
__all__: list[str]
|
|
|
|
# NOTE: This is in reality a re-export of `np.core.umath._add_newdoc_ufunc`
|
|
def add_newdoc_ufunc(ufunc: ufunc, new_docstring: str, /) -> None: ...
|
|
|
|
@overload
|
|
def rot90(
|
|
m: _ArrayLike[_SCT],
|
|
k: int = ...,
|
|
axes: tuple[int, int] = ...,
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def rot90(
|
|
m: ArrayLike,
|
|
k: int = ...,
|
|
axes: tuple[int, int] = ...,
|
|
) -> NDArray[Any]: ...
|
|
|
|
@overload
|
|
def flip(m: _SCT, axis: None = ...) -> _SCT: ...
|
|
@overload
|
|
def flip(m: _ScalarLike_co, axis: None = ...) -> Any: ...
|
|
@overload
|
|
def flip(m: _ArrayLike[_SCT], axis: None | _ShapeLike = ...) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def flip(m: ArrayLike, axis: None | _ShapeLike = ...) -> NDArray[Any]: ...
|
|
|
|
def iterable(y: object) -> TypeGuard[Iterable[Any]]: ...
|
|
|
|
@overload
|
|
def average(
|
|
a: _ArrayLikeFloat_co,
|
|
axis: None = ...,
|
|
weights: None | _ArrayLikeFloat_co= ...,
|
|
returned: L[False] = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> floating[Any]: ...
|
|
@overload
|
|
def average(
|
|
a: _ArrayLikeComplex_co,
|
|
axis: None = ...,
|
|
weights: None | _ArrayLikeComplex_co = ...,
|
|
returned: L[False] = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> complexfloating[Any, Any]: ...
|
|
@overload
|
|
def average(
|
|
a: _ArrayLikeObject_co,
|
|
axis: None = ...,
|
|
weights: None | Any = ...,
|
|
returned: L[False] = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> Any: ...
|
|
@overload
|
|
def average(
|
|
a: _ArrayLikeFloat_co,
|
|
axis: None = ...,
|
|
weights: None | _ArrayLikeFloat_co= ...,
|
|
returned: L[True] = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> _2Tuple[floating[Any]]: ...
|
|
@overload
|
|
def average(
|
|
a: _ArrayLikeComplex_co,
|
|
axis: None = ...,
|
|
weights: None | _ArrayLikeComplex_co = ...,
|
|
returned: L[True] = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> _2Tuple[complexfloating[Any, Any]]: ...
|
|
@overload
|
|
def average(
|
|
a: _ArrayLikeObject_co,
|
|
axis: None = ...,
|
|
weights: None | Any = ...,
|
|
returned: L[True] = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> _2Tuple[Any]: ...
|
|
@overload
|
|
def average(
|
|
a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
|
axis: None | _ShapeLike = ...,
|
|
weights: None | Any = ...,
|
|
returned: L[False] = ...,
|
|
keepdims: bool = ...,
|
|
) -> Any: ...
|
|
@overload
|
|
def average(
|
|
a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
|
axis: None | _ShapeLike = ...,
|
|
weights: None | Any = ...,
|
|
returned: L[True] = ...,
|
|
keepdims: bool = ...,
|
|
) -> _2Tuple[Any]: ...
|
|
|
|
@overload
|
|
def asarray_chkfinite(
|
|
a: _ArrayLike[_SCT],
|
|
dtype: None = ...,
|
|
order: _OrderKACF = ...,
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def asarray_chkfinite(
|
|
a: object,
|
|
dtype: None = ...,
|
|
order: _OrderKACF = ...,
|
|
) -> NDArray[Any]: ...
|
|
@overload
|
|
def asarray_chkfinite(
|
|
a: Any,
|
|
dtype: _DTypeLike[_SCT],
|
|
order: _OrderKACF = ...,
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def asarray_chkfinite(
|
|
a: Any,
|
|
dtype: DTypeLike,
|
|
order: _OrderKACF = ...,
|
|
) -> NDArray[Any]: ...
|
|
|
|
# TODO: Use PEP 612 `ParamSpec` once mypy supports `Concatenate`
|
|
# xref python/mypy#8645
|
|
@overload
|
|
def piecewise(
|
|
x: _ArrayLike[_SCT],
|
|
condlist: ArrayLike,
|
|
funclist: Sequence[Any | Callable[..., Any]],
|
|
*args: Any,
|
|
**kw: Any,
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def piecewise(
|
|
x: ArrayLike,
|
|
condlist: ArrayLike,
|
|
funclist: Sequence[Any | Callable[..., Any]],
|
|
*args: Any,
|
|
**kw: Any,
|
|
) -> NDArray[Any]: ...
|
|
|
|
def select(
|
|
condlist: Sequence[ArrayLike],
|
|
choicelist: Sequence[ArrayLike],
|
|
default: ArrayLike = ...,
|
|
) -> NDArray[Any]: ...
|
|
|
|
@overload
|
|
def copy(
|
|
a: _ArrayType,
|
|
order: _OrderKACF,
|
|
subok: L[True],
|
|
) -> _ArrayType: ...
|
|
@overload
|
|
def copy(
|
|
a: _ArrayType,
|
|
order: _OrderKACF = ...,
|
|
*,
|
|
subok: L[True],
|
|
) -> _ArrayType: ...
|
|
@overload
|
|
def copy(
|
|
a: _ArrayLike[_SCT],
|
|
order: _OrderKACF = ...,
|
|
subok: L[False] = ...,
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def copy(
|
|
a: ArrayLike,
|
|
order: _OrderKACF = ...,
|
|
subok: L[False] = ...,
|
|
) -> NDArray[Any]: ...
|
|
|
|
def gradient(
|
|
f: ArrayLike,
|
|
*varargs: ArrayLike,
|
|
axis: None | _ShapeLike = ...,
|
|
edge_order: L[1, 2] = ...,
|
|
) -> Any: ...
|
|
|
|
@overload
|
|
def diff(
|
|
a: _T,
|
|
n: L[0],
|
|
axis: SupportsIndex = ...,
|
|
prepend: ArrayLike = ...,
|
|
append: ArrayLike = ...,
|
|
) -> _T: ...
|
|
@overload
|
|
def diff(
|
|
a: ArrayLike,
|
|
n: int = ...,
|
|
axis: SupportsIndex = ...,
|
|
prepend: ArrayLike = ...,
|
|
append: ArrayLike = ...,
|
|
) -> NDArray[Any]: ...
|
|
|
|
@overload
|
|
def interp(
|
|
x: _ArrayLikeFloat_co,
|
|
xp: _ArrayLikeFloat_co,
|
|
fp: _ArrayLikeFloat_co,
|
|
left: None | _FloatLike_co = ...,
|
|
right: None | _FloatLike_co = ...,
|
|
period: None | _FloatLike_co = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def interp(
|
|
x: _ArrayLikeFloat_co,
|
|
xp: _ArrayLikeFloat_co,
|
|
fp: _ArrayLikeComplex_co,
|
|
left: None | _ComplexLike_co = ...,
|
|
right: None | _ComplexLike_co = ...,
|
|
period: None | _FloatLike_co = ...,
|
|
) -> NDArray[complex128]: ...
|
|
|
|
@overload
|
|
def angle(z: _ComplexLike_co, deg: bool = ...) -> floating[Any]: ...
|
|
@overload
|
|
def angle(z: object_, deg: bool = ...) -> Any: ...
|
|
@overload
|
|
def angle(z: _ArrayLikeComplex_co, deg: bool = ...) -> NDArray[floating[Any]]: ...
|
|
@overload
|
|
def angle(z: _ArrayLikeObject_co, deg: bool = ...) -> NDArray[object_]: ...
|
|
|
|
@overload
|
|
def unwrap(
|
|
p: _ArrayLikeFloat_co,
|
|
discont: None | float = ...,
|
|
axis: int = ...,
|
|
*,
|
|
period: float = ...,
|
|
) -> NDArray[floating[Any]]: ...
|
|
@overload
|
|
def unwrap(
|
|
p: _ArrayLikeObject_co,
|
|
discont: None | float = ...,
|
|
axis: int = ...,
|
|
*,
|
|
period: float = ...,
|
|
) -> NDArray[object_]: ...
|
|
|
|
def sort_complex(a: ArrayLike) -> NDArray[complexfloating[Any, Any]]: ...
|
|
|
|
def trim_zeros(
|
|
filt: _TrimZerosSequence[_T],
|
|
trim: L["f", "b", "fb", "bf"] = ...,
|
|
) -> _T: ...
|
|
|
|
@overload
|
|
def extract(condition: ArrayLike, arr: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def extract(condition: ArrayLike, arr: ArrayLike) -> NDArray[Any]: ...
|
|
|
|
def place(arr: NDArray[Any], mask: ArrayLike, vals: Any) -> None: ...
|
|
|
|
def disp(
|
|
mesg: object,
|
|
device: None | _SupportsWriteFlush = ...,
|
|
linefeed: bool = ...,
|
|
) -> None: ...
|
|
|
|
@overload
|
|
def cov(
|
|
m: _ArrayLikeFloat_co,
|
|
y: None | _ArrayLikeFloat_co = ...,
|
|
rowvar: bool = ...,
|
|
bias: bool = ...,
|
|
ddof: None | SupportsIndex | SupportsInt = ...,
|
|
fweights: None | ArrayLike = ...,
|
|
aweights: None | ArrayLike = ...,
|
|
*,
|
|
dtype: None = ...,
|
|
) -> NDArray[floating[Any]]: ...
|
|
@overload
|
|
def cov(
|
|
m: _ArrayLikeComplex_co,
|
|
y: None | _ArrayLikeComplex_co = ...,
|
|
rowvar: bool = ...,
|
|
bias: bool = ...,
|
|
ddof: None | SupportsIndex | SupportsInt = ...,
|
|
fweights: None | ArrayLike = ...,
|
|
aweights: None | ArrayLike = ...,
|
|
*,
|
|
dtype: None = ...,
|
|
) -> NDArray[complexfloating[Any, Any]]: ...
|
|
@overload
|
|
def cov(
|
|
m: _ArrayLikeComplex_co,
|
|
y: None | _ArrayLikeComplex_co = ...,
|
|
rowvar: bool = ...,
|
|
bias: bool = ...,
|
|
ddof: None | SupportsIndex | SupportsInt = ...,
|
|
fweights: None | ArrayLike = ...,
|
|
aweights: None | ArrayLike = ...,
|
|
*,
|
|
dtype: _DTypeLike[_SCT],
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def cov(
|
|
m: _ArrayLikeComplex_co,
|
|
y: None | _ArrayLikeComplex_co = ...,
|
|
rowvar: bool = ...,
|
|
bias: bool = ...,
|
|
ddof: None | SupportsIndex | SupportsInt = ...,
|
|
fweights: None | ArrayLike = ...,
|
|
aweights: None | ArrayLike = ...,
|
|
*,
|
|
dtype: DTypeLike,
|
|
) -> NDArray[Any]: ...
|
|
|
|
# NOTE `bias` and `ddof` have been deprecated
|
|
@overload
|
|
def corrcoef(
|
|
m: _ArrayLikeFloat_co,
|
|
y: None | _ArrayLikeFloat_co = ...,
|
|
rowvar: bool = ...,
|
|
*,
|
|
dtype: None = ...,
|
|
) -> NDArray[floating[Any]]: ...
|
|
@overload
|
|
def corrcoef(
|
|
m: _ArrayLikeComplex_co,
|
|
y: None | _ArrayLikeComplex_co = ...,
|
|
rowvar: bool = ...,
|
|
*,
|
|
dtype: None = ...,
|
|
) -> NDArray[complexfloating[Any, Any]]: ...
|
|
@overload
|
|
def corrcoef(
|
|
m: _ArrayLikeComplex_co,
|
|
y: None | _ArrayLikeComplex_co = ...,
|
|
rowvar: bool = ...,
|
|
*,
|
|
dtype: _DTypeLike[_SCT],
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def corrcoef(
|
|
m: _ArrayLikeComplex_co,
|
|
y: None | _ArrayLikeComplex_co = ...,
|
|
rowvar: bool = ...,
|
|
*,
|
|
dtype: DTypeLike,
|
|
) -> NDArray[Any]: ...
|
|
|
|
def blackman(M: _FloatLike_co) -> NDArray[floating[Any]]: ...
|
|
|
|
def bartlett(M: _FloatLike_co) -> NDArray[floating[Any]]: ...
|
|
|
|
def hanning(M: _FloatLike_co) -> NDArray[floating[Any]]: ...
|
|
|
|
def hamming(M: _FloatLike_co) -> NDArray[floating[Any]]: ...
|
|
|
|
def i0(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
|
|
|
|
def kaiser(
|
|
M: _FloatLike_co,
|
|
beta: _FloatLike_co,
|
|
) -> NDArray[floating[Any]]: ...
|
|
|
|
@overload
|
|
def sinc(x: _FloatLike_co) -> floating[Any]: ...
|
|
@overload
|
|
def sinc(x: _ComplexLike_co) -> complexfloating[Any, Any]: ...
|
|
@overload
|
|
def sinc(x: _ArrayLikeFloat_co) -> NDArray[floating[Any]]: ...
|
|
@overload
|
|
def sinc(x: _ArrayLikeComplex_co) -> NDArray[complexfloating[Any, Any]]: ...
|
|
|
|
# NOTE: Deprecated
|
|
# def msort(a: ArrayLike) -> NDArray[Any]: ...
|
|
|
|
@overload
|
|
def median(
|
|
a: _ArrayLikeFloat_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> floating[Any]: ...
|
|
@overload
|
|
def median(
|
|
a: _ArrayLikeComplex_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> complexfloating[Any, Any]: ...
|
|
@overload
|
|
def median(
|
|
a: _ArrayLikeTD64_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> timedelta64: ...
|
|
@overload
|
|
def median(
|
|
a: _ArrayLikeObject_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> Any: ...
|
|
@overload
|
|
def median(
|
|
a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
|
axis: None | _ShapeLike = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
keepdims: bool = ...,
|
|
) -> Any: ...
|
|
@overload
|
|
def median(
|
|
a: _ArrayLikeFloat_co | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
|
axis: None | _ShapeLike = ...,
|
|
out: _ArrayType = ...,
|
|
overwrite_input: bool = ...,
|
|
keepdims: bool = ...,
|
|
) -> _ArrayType: ...
|
|
|
|
_MethodKind = L[
|
|
"inverted_cdf",
|
|
"averaged_inverted_cdf",
|
|
"closest_observation",
|
|
"interpolated_inverted_cdf",
|
|
"hazen",
|
|
"weibull",
|
|
"linear",
|
|
"median_unbiased",
|
|
"normal_unbiased",
|
|
"lower",
|
|
"higher",
|
|
"midpoint",
|
|
"nearest",
|
|
]
|
|
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeFloat_co,
|
|
q: _FloatLike_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> floating[Any]: ...
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeComplex_co,
|
|
q: _FloatLike_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> complexfloating[Any, Any]: ...
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeTD64_co,
|
|
q: _FloatLike_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> timedelta64: ...
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeDT64_co,
|
|
q: _FloatLike_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> datetime64: ...
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeObject_co,
|
|
q: _FloatLike_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> Any: ...
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeFloat_co,
|
|
q: _ArrayLikeFloat_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> NDArray[floating[Any]]: ...
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeComplex_co,
|
|
q: _ArrayLikeFloat_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> NDArray[complexfloating[Any, Any]]: ...
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeTD64_co,
|
|
q: _ArrayLikeFloat_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> NDArray[timedelta64]: ...
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeDT64_co,
|
|
q: _ArrayLikeFloat_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> NDArray[datetime64]: ...
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeObject_co,
|
|
q: _ArrayLikeFloat_co,
|
|
axis: None = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: L[False] = ...,
|
|
) -> NDArray[object_]: ...
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
|
q: _ArrayLikeFloat_co,
|
|
axis: None | _ShapeLike = ...,
|
|
out: None = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: bool = ...,
|
|
) -> Any: ...
|
|
@overload
|
|
def percentile(
|
|
a: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
|
q: _ArrayLikeFloat_co,
|
|
axis: None | _ShapeLike = ...,
|
|
out: _ArrayType = ...,
|
|
overwrite_input: bool = ...,
|
|
method: _MethodKind = ...,
|
|
keepdims: bool = ...,
|
|
) -> _ArrayType: ...
|
|
|
|
# NOTE: Not an alias, but they do have identical signatures
|
|
# (that we can reuse)
|
|
quantile = percentile
|
|
|
|
# TODO: Returns a scalar for <= 1D array-likes; returns an ndarray otherwise
|
|
def trapz(
|
|
y: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
|
x: None | _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co = ...,
|
|
dx: float = ...,
|
|
axis: SupportsIndex = ...,
|
|
) -> Any: ...
|
|
|
|
def meshgrid(
|
|
*xi: ArrayLike,
|
|
copy: bool = ...,
|
|
sparse: bool = ...,
|
|
indexing: L["xy", "ij"] = ...,
|
|
) -> list[NDArray[Any]]: ...
|
|
|
|
@overload
|
|
def delete(
|
|
arr: _ArrayLike[_SCT],
|
|
obj: slice | _ArrayLikeInt_co,
|
|
axis: None | SupportsIndex = ...,
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def delete(
|
|
arr: ArrayLike,
|
|
obj: slice | _ArrayLikeInt_co,
|
|
axis: None | SupportsIndex = ...,
|
|
) -> NDArray[Any]: ...
|
|
|
|
@overload
|
|
def insert(
|
|
arr: _ArrayLike[_SCT],
|
|
obj: slice | _ArrayLikeInt_co,
|
|
values: ArrayLike,
|
|
axis: None | SupportsIndex = ...,
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def insert(
|
|
arr: ArrayLike,
|
|
obj: slice | _ArrayLikeInt_co,
|
|
values: ArrayLike,
|
|
axis: None | SupportsIndex = ...,
|
|
) -> NDArray[Any]: ...
|
|
|
|
def append(
|
|
arr: ArrayLike,
|
|
values: ArrayLike,
|
|
axis: None | SupportsIndex = ...,
|
|
) -> NDArray[Any]: ...
|
|
|
|
@overload
|
|
def digitize(
|
|
x: _FloatLike_co,
|
|
bins: _ArrayLikeFloat_co,
|
|
right: bool = ...,
|
|
) -> intp: ...
|
|
@overload
|
|
def digitize(
|
|
x: _ArrayLikeFloat_co,
|
|
bins: _ArrayLikeFloat_co,
|
|
right: bool = ...,
|
|
) -> NDArray[intp]: ...
|
|
|