You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
330 lines
9.5 KiB
330 lines
9.5 KiB
import os
|
|
import sys
|
|
import zipfile
|
|
import types
|
|
from re import Pattern
|
|
from collections.abc import Collection, Mapping, Iterator, Sequence, Callable, Iterable
|
|
from typing import (
|
|
Literal as L,
|
|
Any,
|
|
TypeVar,
|
|
Generic,
|
|
IO,
|
|
overload,
|
|
Protocol,
|
|
)
|
|
|
|
from numpy import (
|
|
DataSource as DataSource,
|
|
ndarray,
|
|
recarray,
|
|
dtype,
|
|
generic,
|
|
float64,
|
|
void,
|
|
record,
|
|
)
|
|
|
|
from numpy.ma.mrecords import MaskedRecords
|
|
from numpy._typing import (
|
|
ArrayLike,
|
|
DTypeLike,
|
|
NDArray,
|
|
_DTypeLike,
|
|
_SupportsArrayFunc,
|
|
)
|
|
|
|
from numpy.core.multiarray import (
|
|
packbits as packbits,
|
|
unpackbits as unpackbits,
|
|
)
|
|
|
|
_T = TypeVar("_T")
|
|
_T_contra = TypeVar("_T_contra", contravariant=True)
|
|
_T_co = TypeVar("_T_co", covariant=True)
|
|
_SCT = TypeVar("_SCT", bound=generic)
|
|
_CharType_co = TypeVar("_CharType_co", str, bytes, covariant=True)
|
|
_CharType_contra = TypeVar("_CharType_contra", str, bytes, contravariant=True)
|
|
|
|
class _SupportsGetItem(Protocol[_T_contra, _T_co]):
|
|
def __getitem__(self, key: _T_contra, /) -> _T_co: ...
|
|
|
|
class _SupportsRead(Protocol[_CharType_co]):
|
|
def read(self) -> _CharType_co: ...
|
|
|
|
class _SupportsReadSeek(Protocol[_CharType_co]):
|
|
def read(self, n: int, /) -> _CharType_co: ...
|
|
def seek(self, offset: int, whence: int, /) -> object: ...
|
|
|
|
class _SupportsWrite(Protocol[_CharType_contra]):
|
|
def write(self, s: _CharType_contra, /) -> object: ...
|
|
|
|
__all__: list[str]
|
|
|
|
class BagObj(Generic[_T_co]):
|
|
def __init__(self, obj: _SupportsGetItem[str, _T_co]) -> None: ...
|
|
def __getattribute__(self, key: str) -> _T_co: ...
|
|
def __dir__(self) -> list[str]: ...
|
|
|
|
class NpzFile(Mapping[str, NDArray[Any]]):
|
|
zip: zipfile.ZipFile
|
|
fid: None | IO[str]
|
|
files: list[str]
|
|
allow_pickle: bool
|
|
pickle_kwargs: None | Mapping[str, Any]
|
|
_MAX_REPR_ARRAY_COUNT: int
|
|
# Represent `f` as a mutable property so we can access the type of `self`
|
|
@property
|
|
def f(self: _T) -> BagObj[_T]: ...
|
|
@f.setter
|
|
def f(self: _T, value: BagObj[_T]) -> None: ...
|
|
def __init__(
|
|
self,
|
|
fid: IO[str],
|
|
own_fid: bool = ...,
|
|
allow_pickle: bool = ...,
|
|
pickle_kwargs: None | Mapping[str, Any] = ...,
|
|
) -> None: ...
|
|
def __enter__(self: _T) -> _T: ...
|
|
def __exit__(
|
|
self,
|
|
exc_type: None | type[BaseException],
|
|
exc_value: None | BaseException,
|
|
traceback: None | types.TracebackType,
|
|
/,
|
|
) -> None: ...
|
|
def close(self) -> None: ...
|
|
def __del__(self) -> None: ...
|
|
def __iter__(self) -> Iterator[str]: ...
|
|
def __len__(self) -> int: ...
|
|
def __getitem__(self, key: str) -> NDArray[Any]: ...
|
|
def __contains__(self, key: str) -> bool: ...
|
|
def __repr__(self) -> str: ...
|
|
|
|
# NOTE: Returns a `NpzFile` if file is a zip file;
|
|
# returns an `ndarray`/`memmap` otherwise
|
|
def load(
|
|
file: str | bytes | os.PathLike[Any] | _SupportsReadSeek[bytes],
|
|
mmap_mode: L[None, "r+", "r", "w+", "c"] = ...,
|
|
allow_pickle: bool = ...,
|
|
fix_imports: bool = ...,
|
|
encoding: L["ASCII", "latin1", "bytes"] = ...,
|
|
) -> Any: ...
|
|
|
|
def save(
|
|
file: str | os.PathLike[str] | _SupportsWrite[bytes],
|
|
arr: ArrayLike,
|
|
allow_pickle: bool = ...,
|
|
fix_imports: bool = ...,
|
|
) -> None: ...
|
|
|
|
def savez(
|
|
file: str | os.PathLike[str] | _SupportsWrite[bytes],
|
|
*args: ArrayLike,
|
|
**kwds: ArrayLike,
|
|
) -> None: ...
|
|
|
|
def savez_compressed(
|
|
file: str | os.PathLike[str] | _SupportsWrite[bytes],
|
|
*args: ArrayLike,
|
|
**kwds: ArrayLike,
|
|
) -> None: ...
|
|
|
|
# File-like objects only have to implement `__iter__` and,
|
|
# optionally, `encoding`
|
|
@overload
|
|
def loadtxt(
|
|
fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes],
|
|
dtype: None = ...,
|
|
comments: None | str | Sequence[str] = ...,
|
|
delimiter: None | str = ...,
|
|
converters: None | Mapping[int | str, Callable[[str], Any]] = ...,
|
|
skiprows: int = ...,
|
|
usecols: int | Sequence[int] = ...,
|
|
unpack: bool = ...,
|
|
ndmin: L[0, 1, 2] = ...,
|
|
encoding: None | str = ...,
|
|
max_rows: None | int = ...,
|
|
*,
|
|
quotechar: None | str = ...,
|
|
like: None | _SupportsArrayFunc = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def loadtxt(
|
|
fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes],
|
|
dtype: _DTypeLike[_SCT],
|
|
comments: None | str | Sequence[str] = ...,
|
|
delimiter: None | str = ...,
|
|
converters: None | Mapping[int | str, Callable[[str], Any]] = ...,
|
|
skiprows: int = ...,
|
|
usecols: int | Sequence[int] = ...,
|
|
unpack: bool = ...,
|
|
ndmin: L[0, 1, 2] = ...,
|
|
encoding: None | str = ...,
|
|
max_rows: None | int = ...,
|
|
*,
|
|
quotechar: None | str = ...,
|
|
like: None | _SupportsArrayFunc = ...
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def loadtxt(
|
|
fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes],
|
|
dtype: DTypeLike,
|
|
comments: None | str | Sequence[str] = ...,
|
|
delimiter: None | str = ...,
|
|
converters: None | Mapping[int | str, Callable[[str], Any]] = ...,
|
|
skiprows: int = ...,
|
|
usecols: int | Sequence[int] = ...,
|
|
unpack: bool = ...,
|
|
ndmin: L[0, 1, 2] = ...,
|
|
encoding: None | str = ...,
|
|
max_rows: None | int = ...,
|
|
*,
|
|
quotechar: None | str = ...,
|
|
like: None | _SupportsArrayFunc = ...
|
|
) -> NDArray[Any]: ...
|
|
|
|
def savetxt(
|
|
fname: str | os.PathLike[str] | _SupportsWrite[str] | _SupportsWrite[bytes],
|
|
X: ArrayLike,
|
|
fmt: str | Sequence[str] = ...,
|
|
delimiter: str = ...,
|
|
newline: str = ...,
|
|
header: str = ...,
|
|
footer: str = ...,
|
|
comments: str = ...,
|
|
encoding: None | str = ...,
|
|
) -> None: ...
|
|
|
|
@overload
|
|
def fromregex(
|
|
file: str | os.PathLike[str] | _SupportsRead[str] | _SupportsRead[bytes],
|
|
regexp: str | bytes | Pattern[Any],
|
|
dtype: _DTypeLike[_SCT],
|
|
encoding: None | str = ...
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def fromregex(
|
|
file: str | os.PathLike[str] | _SupportsRead[str] | _SupportsRead[bytes],
|
|
regexp: str | bytes | Pattern[Any],
|
|
dtype: DTypeLike,
|
|
encoding: None | str = ...
|
|
) -> NDArray[Any]: ...
|
|
|
|
@overload
|
|
def genfromtxt(
|
|
fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes],
|
|
dtype: None = ...,
|
|
comments: str = ...,
|
|
delimiter: None | str | int | Iterable[int] = ...,
|
|
skip_header: int = ...,
|
|
skip_footer: int = ...,
|
|
converters: None | Mapping[int | str, Callable[[str], Any]] = ...,
|
|
missing_values: Any = ...,
|
|
filling_values: Any = ...,
|
|
usecols: None | Sequence[int] = ...,
|
|
names: L[None, True] | str | Collection[str] = ...,
|
|
excludelist: None | Sequence[str] = ...,
|
|
deletechars: str = ...,
|
|
replace_space: str = ...,
|
|
autostrip: bool = ...,
|
|
case_sensitive: bool | L['upper', 'lower'] = ...,
|
|
defaultfmt: str = ...,
|
|
unpack: None | bool = ...,
|
|
usemask: bool = ...,
|
|
loose: bool = ...,
|
|
invalid_raise: bool = ...,
|
|
max_rows: None | int = ...,
|
|
encoding: str = ...,
|
|
*,
|
|
ndmin: L[0, 1, 2] = ...,
|
|
like: None | _SupportsArrayFunc = ...,
|
|
) -> NDArray[Any]: ...
|
|
@overload
|
|
def genfromtxt(
|
|
fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes],
|
|
dtype: _DTypeLike[_SCT],
|
|
comments: str = ...,
|
|
delimiter: None | str | int | Iterable[int] = ...,
|
|
skip_header: int = ...,
|
|
skip_footer: int = ...,
|
|
converters: None | Mapping[int | str, Callable[[str], Any]] = ...,
|
|
missing_values: Any = ...,
|
|
filling_values: Any = ...,
|
|
usecols: None | Sequence[int] = ...,
|
|
names: L[None, True] | str | Collection[str] = ...,
|
|
excludelist: None | Sequence[str] = ...,
|
|
deletechars: str = ...,
|
|
replace_space: str = ...,
|
|
autostrip: bool = ...,
|
|
case_sensitive: bool | L['upper', 'lower'] = ...,
|
|
defaultfmt: str = ...,
|
|
unpack: None | bool = ...,
|
|
usemask: bool = ...,
|
|
loose: bool = ...,
|
|
invalid_raise: bool = ...,
|
|
max_rows: None | int = ...,
|
|
encoding: str = ...,
|
|
*,
|
|
ndmin: L[0, 1, 2] = ...,
|
|
like: None | _SupportsArrayFunc = ...,
|
|
) -> NDArray[_SCT]: ...
|
|
@overload
|
|
def genfromtxt(
|
|
fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes],
|
|
dtype: DTypeLike,
|
|
comments: str = ...,
|
|
delimiter: None | str | int | Iterable[int] = ...,
|
|
skip_header: int = ...,
|
|
skip_footer: int = ...,
|
|
converters: None | Mapping[int | str, Callable[[str], Any]] = ...,
|
|
missing_values: Any = ...,
|
|
filling_values: Any = ...,
|
|
usecols: None | Sequence[int] = ...,
|
|
names: L[None, True] | str | Collection[str] = ...,
|
|
excludelist: None | Sequence[str] = ...,
|
|
deletechars: str = ...,
|
|
replace_space: str = ...,
|
|
autostrip: bool = ...,
|
|
case_sensitive: bool | L['upper', 'lower'] = ...,
|
|
defaultfmt: str = ...,
|
|
unpack: None | bool = ...,
|
|
usemask: bool = ...,
|
|
loose: bool = ...,
|
|
invalid_raise: bool = ...,
|
|
max_rows: None | int = ...,
|
|
encoding: str = ...,
|
|
*,
|
|
ndmin: L[0, 1, 2] = ...,
|
|
like: None | _SupportsArrayFunc = ...,
|
|
) -> NDArray[Any]: ...
|
|
|
|
@overload
|
|
def recfromtxt(
|
|
fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes],
|
|
*,
|
|
usemask: L[False] = ...,
|
|
**kwargs: Any,
|
|
) -> recarray[Any, dtype[record]]: ...
|
|
@overload
|
|
def recfromtxt(
|
|
fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes],
|
|
*,
|
|
usemask: L[True],
|
|
**kwargs: Any,
|
|
) -> MaskedRecords[Any, dtype[void]]: ...
|
|
|
|
@overload
|
|
def recfromcsv(
|
|
fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes],
|
|
*,
|
|
usemask: L[False] = ...,
|
|
**kwargs: Any,
|
|
) -> recarray[Any, dtype[record]]: ...
|
|
@overload
|
|
def recfromcsv(
|
|
fname: str | os.PathLike[str] | Iterable[str] | Iterable[bytes],
|
|
*,
|
|
usemask: L[True],
|
|
**kwargs: Any,
|
|
) -> MaskedRecords[Any, dtype[void]]: ...
|
|
|