You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
310 lines
7.6 KiB
310 lines
7.6 KiB
import operator
|
|
|
|
cimport cython
|
|
from cpython.object cimport (
|
|
Py_EQ,
|
|
Py_GE,
|
|
Py_GT,
|
|
Py_LE,
|
|
Py_LT,
|
|
Py_NE,
|
|
PyObject_RichCompareBool,
|
|
)
|
|
from cython cimport Py_ssize_t
|
|
|
|
import numpy as np
|
|
|
|
from numpy cimport (
|
|
import_array,
|
|
ndarray,
|
|
uint8_t,
|
|
)
|
|
|
|
import_array()
|
|
|
|
|
|
from pandas._libs.missing cimport checknull
|
|
from pandas._libs.util cimport is_nan
|
|
|
|
|
|
@cython.wraparound(False)
|
|
@cython.boundscheck(False)
|
|
def scalar_compare(object[:] values, object val, object op) -> ndarray:
|
|
"""
|
|
Compare each element of `values` array with the scalar `val`, with
|
|
the comparison operation described by `op`.
|
|
|
|
Parameters
|
|
----------
|
|
values : ndarray[object]
|
|
val : object
|
|
op : {operator.eq, operator.ne,
|
|
operator.le, operator.lt,
|
|
operator.ge, operator.gt}
|
|
|
|
Returns
|
|
-------
|
|
result : ndarray[bool]
|
|
"""
|
|
cdef:
|
|
Py_ssize_t i, n = len(values)
|
|
ndarray[uint8_t, cast=True] result
|
|
bint isnull_val
|
|
int flag
|
|
object x
|
|
|
|
if op is operator.lt:
|
|
flag = Py_LT
|
|
elif op is operator.le:
|
|
flag = Py_LE
|
|
elif op is operator.gt:
|
|
flag = Py_GT
|
|
elif op is operator.ge:
|
|
flag = Py_GE
|
|
elif op is operator.eq:
|
|
flag = Py_EQ
|
|
elif op is operator.ne:
|
|
flag = Py_NE
|
|
else:
|
|
raise ValueError("Unrecognized operator")
|
|
|
|
result = np.empty(n, dtype=bool).view(np.uint8)
|
|
isnull_val = checknull(val)
|
|
|
|
if flag == Py_NE:
|
|
for i in range(n):
|
|
x = values[i]
|
|
if checknull(x):
|
|
result[i] = True
|
|
elif isnull_val:
|
|
result[i] = True
|
|
else:
|
|
try:
|
|
result[i] = PyObject_RichCompareBool(x, val, flag)
|
|
except TypeError:
|
|
result[i] = True
|
|
elif flag == Py_EQ:
|
|
for i in range(n):
|
|
x = values[i]
|
|
if checknull(x):
|
|
result[i] = False
|
|
elif isnull_val:
|
|
result[i] = False
|
|
else:
|
|
try:
|
|
result[i] = PyObject_RichCompareBool(x, val, flag)
|
|
except TypeError:
|
|
result[i] = False
|
|
|
|
else:
|
|
for i in range(n):
|
|
x = values[i]
|
|
if checknull(x):
|
|
result[i] = False
|
|
elif isnull_val:
|
|
result[i] = False
|
|
else:
|
|
result[i] = PyObject_RichCompareBool(x, val, flag)
|
|
|
|
return result.view(bool)
|
|
|
|
|
|
@cython.wraparound(False)
|
|
@cython.boundscheck(False)
|
|
def vec_compare(ndarray[object] left, ndarray[object] right, object op) -> ndarray:
|
|
"""
|
|
Compare the elements of `left` with the elements of `right` pointwise,
|
|
with the comparison operation described by `op`.
|
|
|
|
Parameters
|
|
----------
|
|
left : ndarray[object]
|
|
right : ndarray[object]
|
|
op : {operator.eq, operator.ne,
|
|
operator.le, operator.lt,
|
|
operator.ge, operator.gt}
|
|
|
|
Returns
|
|
-------
|
|
result : ndarray[bool]
|
|
"""
|
|
cdef:
|
|
Py_ssize_t i, n = len(left)
|
|
ndarray[uint8_t, cast=True] result
|
|
int flag
|
|
|
|
if n != <Py_ssize_t>len(right):
|
|
raise ValueError(f"Arrays were different lengths: {n} vs {len(right)}")
|
|
|
|
if op is operator.lt:
|
|
flag = Py_LT
|
|
elif op is operator.le:
|
|
flag = Py_LE
|
|
elif op is operator.gt:
|
|
flag = Py_GT
|
|
elif op is operator.ge:
|
|
flag = Py_GE
|
|
elif op is operator.eq:
|
|
flag = Py_EQ
|
|
elif op is operator.ne:
|
|
flag = Py_NE
|
|
else:
|
|
raise ValueError("Unrecognized operator")
|
|
|
|
result = np.empty(n, dtype=bool).view(np.uint8)
|
|
|
|
if flag == Py_NE:
|
|
for i in range(n):
|
|
x = left[i]
|
|
y = right[i]
|
|
|
|
if checknull(x) or checknull(y):
|
|
result[i] = True
|
|
else:
|
|
result[i] = PyObject_RichCompareBool(x, y, flag)
|
|
else:
|
|
for i in range(n):
|
|
x = left[i]
|
|
y = right[i]
|
|
|
|
if checknull(x) or checknull(y):
|
|
result[i] = False
|
|
else:
|
|
result[i] = PyObject_RichCompareBool(x, y, flag)
|
|
|
|
return result.view(bool)
|
|
|
|
|
|
@cython.wraparound(False)
|
|
@cython.boundscheck(False)
|
|
def scalar_binop(object[:] values, object val, object op) -> ndarray:
|
|
"""
|
|
Apply the given binary operator `op` between each element of the array
|
|
`values` and the scalar `val`.
|
|
|
|
Parameters
|
|
----------
|
|
values : ndarray[object]
|
|
val : object
|
|
op : binary operator
|
|
|
|
Returns
|
|
-------
|
|
result : ndarray[object]
|
|
"""
|
|
cdef:
|
|
Py_ssize_t i, n = len(values)
|
|
object[::1] result
|
|
object x
|
|
|
|
result = np.empty(n, dtype=object)
|
|
if val is None or is_nan(val):
|
|
result[:] = val
|
|
return result.base # `.base` to access underlying np.ndarray
|
|
|
|
for i in range(n):
|
|
x = values[i]
|
|
if x is None or is_nan(x):
|
|
result[i] = x
|
|
else:
|
|
result[i] = op(x, val)
|
|
|
|
return maybe_convert_bool(result.base)[0]
|
|
|
|
|
|
@cython.wraparound(False)
|
|
@cython.boundscheck(False)
|
|
def vec_binop(object[:] left, object[:] right, object op) -> ndarray:
|
|
"""
|
|
Apply the given binary operator `op` pointwise to the elements of
|
|
arrays `left` and `right`.
|
|
|
|
Parameters
|
|
----------
|
|
left : ndarray[object]
|
|
right : ndarray[object]
|
|
op : binary operator
|
|
|
|
Returns
|
|
-------
|
|
result : ndarray[object]
|
|
"""
|
|
cdef:
|
|
Py_ssize_t i, n = len(left)
|
|
object[::1] result
|
|
|
|
if n != <Py_ssize_t>len(right):
|
|
raise ValueError(f"Arrays were different lengths: {n} vs {len(right)}")
|
|
|
|
result = np.empty(n, dtype=object)
|
|
|
|
for i in range(n):
|
|
x = left[i]
|
|
y = right[i]
|
|
try:
|
|
result[i] = op(x, y)
|
|
except TypeError:
|
|
if x is None or is_nan(x):
|
|
result[i] = x
|
|
elif y is None or is_nan(y):
|
|
result[i] = y
|
|
else:
|
|
raise
|
|
|
|
return maybe_convert_bool(result.base)[0] # `.base` to access np.ndarray
|
|
|
|
|
|
def maybe_convert_bool(ndarray[object] arr,
|
|
true_values=None,
|
|
false_values=None,
|
|
convert_to_masked_nullable=False
|
|
) -> tuple[np.ndarray, np.ndarray | None]:
|
|
cdef:
|
|
Py_ssize_t i, n
|
|
ndarray[uint8_t] result
|
|
ndarray[uint8_t] mask
|
|
object val
|
|
set true_vals, false_vals
|
|
bint has_na = False
|
|
|
|
n = len(arr)
|
|
result = np.empty(n, dtype=np.uint8)
|
|
mask = np.zeros(n, dtype=np.uint8)
|
|
# the defaults
|
|
true_vals = {"True", "TRUE", "true"}
|
|
false_vals = {"False", "FALSE", "false"}
|
|
|
|
if true_values is not None:
|
|
true_vals = true_vals | set(true_values)
|
|
|
|
if false_values is not None:
|
|
false_vals = false_vals | set(false_values)
|
|
|
|
for i in range(n):
|
|
val = arr[i]
|
|
|
|
if isinstance(val, bool):
|
|
if val is True:
|
|
result[i] = 1
|
|
else:
|
|
result[i] = 0
|
|
elif val in true_vals:
|
|
result[i] = 1
|
|
elif val in false_vals:
|
|
result[i] = 0
|
|
elif is_nan(val) or val is None:
|
|
mask[i] = 1
|
|
result[i] = 0 # Value here doesn't matter, will be replaced w/ nan
|
|
has_na = True
|
|
else:
|
|
return (arr, None)
|
|
|
|
if has_na:
|
|
if convert_to_masked_nullable:
|
|
return (result.view(np.bool_), mask.view(np.bool_))
|
|
else:
|
|
arr = result.view(np.bool_).astype(object)
|
|
np.putmask(arr, mask, np.nan)
|
|
return (arr, None)
|
|
else:
|
|
return (result.view(np.bool_), None)
|
|
|