You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
416 lines
15 KiB
416 lines
15 KiB
from typing import Any
|
|
|
|
import numpy as np
|
|
|
|
from pandas._typing import npt
|
|
|
|
class Infinity:
|
|
def __eq__(self, other) -> bool: ...
|
|
def __ne__(self, other) -> bool: ...
|
|
def __lt__(self, other) -> bool: ...
|
|
def __le__(self, other) -> bool: ...
|
|
def __gt__(self, other) -> bool: ...
|
|
def __ge__(self, other) -> bool: ...
|
|
|
|
class NegInfinity:
|
|
def __eq__(self, other) -> bool: ...
|
|
def __ne__(self, other) -> bool: ...
|
|
def __lt__(self, other) -> bool: ...
|
|
def __le__(self, other) -> bool: ...
|
|
def __gt__(self, other) -> bool: ...
|
|
def __ge__(self, other) -> bool: ...
|
|
|
|
def unique_deltas(
|
|
arr: np.ndarray, # const int64_t[:]
|
|
) -> np.ndarray: ... # np.ndarray[np.int64, ndim=1]
|
|
def is_lexsorted(list_of_arrays: list[npt.NDArray[np.int64]]) -> bool: ...
|
|
def groupsort_indexer(
|
|
index: np.ndarray, # const int64_t[:]
|
|
ngroups: int,
|
|
) -> tuple[
|
|
np.ndarray, # ndarray[int64_t, ndim=1]
|
|
np.ndarray, # ndarray[int64_t, ndim=1]
|
|
]: ...
|
|
def kth_smallest(
|
|
arr: np.ndarray, # numeric[:]
|
|
k: int,
|
|
) -> Any: ... # numeric
|
|
|
|
# ----------------------------------------------------------------------
|
|
# Pairwise correlation/covariance
|
|
|
|
def nancorr(
|
|
mat: npt.NDArray[np.float64], # const float64_t[:, :]
|
|
cov: bool = ...,
|
|
minp: int | None = ...,
|
|
) -> npt.NDArray[np.float64]: ... # ndarray[float64_t, ndim=2]
|
|
def nancorr_spearman(
|
|
mat: npt.NDArray[np.float64], # ndarray[float64_t, ndim=2]
|
|
minp: int = ...,
|
|
) -> npt.NDArray[np.float64]: ... # ndarray[float64_t, ndim=2]
|
|
|
|
# ----------------------------------------------------------------------
|
|
|
|
def validate_limit(nobs: int | None, limit=...) -> int: ...
|
|
def get_fill_indexer(
|
|
mask: npt.NDArray[np.bool_],
|
|
limit: int | None = None,
|
|
) -> npt.NDArray[np.intp]: ...
|
|
def pad(
|
|
old: np.ndarray, # ndarray[numeric_object_t]
|
|
new: np.ndarray, # ndarray[numeric_object_t]
|
|
limit=...,
|
|
) -> npt.NDArray[np.intp]: ... # np.ndarray[np.intp, ndim=1]
|
|
def pad_inplace(
|
|
values: np.ndarray, # numeric_object_t[:]
|
|
mask: np.ndarray, # uint8_t[:]
|
|
limit=...,
|
|
) -> None: ...
|
|
def pad_2d_inplace(
|
|
values: np.ndarray, # numeric_object_t[:, :]
|
|
mask: np.ndarray, # const uint8_t[:, :]
|
|
limit=...,
|
|
) -> None: ...
|
|
def backfill(
|
|
old: np.ndarray, # ndarray[numeric_object_t]
|
|
new: np.ndarray, # ndarray[numeric_object_t]
|
|
limit=...,
|
|
) -> npt.NDArray[np.intp]: ... # np.ndarray[np.intp, ndim=1]
|
|
def backfill_inplace(
|
|
values: np.ndarray, # numeric_object_t[:]
|
|
mask: np.ndarray, # uint8_t[:]
|
|
limit=...,
|
|
) -> None: ...
|
|
def backfill_2d_inplace(
|
|
values: np.ndarray, # numeric_object_t[:, :]
|
|
mask: np.ndarray, # const uint8_t[:, :]
|
|
limit=...,
|
|
) -> None: ...
|
|
def is_monotonic(
|
|
arr: np.ndarray, # ndarray[numeric_object_t, ndim=1]
|
|
timelike: bool,
|
|
) -> tuple[bool, bool, bool]: ...
|
|
|
|
# ----------------------------------------------------------------------
|
|
# rank_1d, rank_2d
|
|
# ----------------------------------------------------------------------
|
|
|
|
def rank_1d(
|
|
values: np.ndarray, # ndarray[numeric_object_t, ndim=1]
|
|
labels: np.ndarray | None = ..., # const int64_t[:]=None
|
|
is_datetimelike: bool = ...,
|
|
ties_method=...,
|
|
ascending: bool = ...,
|
|
pct: bool = ...,
|
|
na_option=...,
|
|
mask: npt.NDArray[np.bool_] | None = ...,
|
|
) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]
|
|
def rank_2d(
|
|
in_arr: np.ndarray, # ndarray[numeric_object_t, ndim=2]
|
|
axis: int = ...,
|
|
is_datetimelike: bool = ...,
|
|
ties_method=...,
|
|
ascending: bool = ...,
|
|
na_option=...,
|
|
pct: bool = ...,
|
|
) -> np.ndarray: ... # np.ndarray[float64_t, ndim=1]
|
|
def diff_2d(
|
|
arr: np.ndarray, # ndarray[diff_t, ndim=2]
|
|
out: np.ndarray, # ndarray[out_t, ndim=2]
|
|
periods: int,
|
|
axis: int,
|
|
datetimelike: bool = ...,
|
|
) -> None: ...
|
|
def ensure_platform_int(arr: object) -> npt.NDArray[np.intp]: ...
|
|
def ensure_object(arr: object) -> npt.NDArray[np.object_]: ...
|
|
def ensure_float64(arr: object) -> npt.NDArray[np.float64]: ...
|
|
def ensure_int8(arr: object) -> npt.NDArray[np.int8]: ...
|
|
def ensure_int16(arr: object) -> npt.NDArray[np.int16]: ...
|
|
def ensure_int32(arr: object) -> npt.NDArray[np.int32]: ...
|
|
def ensure_int64(arr: object) -> npt.NDArray[np.int64]: ...
|
|
def ensure_uint64(arr: object) -> npt.NDArray[np.uint64]: ...
|
|
def take_1d_int8_int8(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int8_int32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int8_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int8_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int16_int16(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int16_int32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int16_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int16_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int32_int32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int32_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int32_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int64_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_int64_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_float32_float32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_float32_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_float64_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_object_object(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_bool_bool(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_1d_bool_object(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int8_int8(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int8_int32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int8_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int8_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int16_int16(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int16_int32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int16_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int16_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int32_int32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int32_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int32_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int64_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_int64_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_float32_float32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_float32_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_float64_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_object_object(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_bool_bool(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis0_bool_object(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int8_int8(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int8_int32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int8_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int8_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int16_int16(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int16_int32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int16_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int16_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int32_int32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int32_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int32_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int64_int64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_int64_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_float32_float32(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_float32_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_float64_float64(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_object_object(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_bool_bool(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_axis1_bool_object(
|
|
values: np.ndarray, indexer: npt.NDArray[np.intp], out: np.ndarray, fill_value=...
|
|
) -> None: ...
|
|
def take_2d_multi_int8_int8(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int8_int32(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int8_int64(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int8_float64(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int16_int16(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int16_int32(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int16_int64(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int16_float64(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int32_int32(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int32_int64(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int32_float64(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int64_float64(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_float32_float32(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_float32_float64(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_float64_float64(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_object_object(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_bool_bool(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_bool_object(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
def take_2d_multi_int64_int64(
|
|
values: np.ndarray,
|
|
indexer: tuple[npt.NDArray[np.intp], npt.NDArray[np.intp]],
|
|
out: np.ndarray,
|
|
fill_value=...,
|
|
) -> None: ...
|
|
|