Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

2119 lines
71 KiB

from collections import deque
from datetime import (
datetime,
timezone,
)
from enum import Enum
import functools
import operator
import re
import numpy as np
import pytest
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
DataFrame,
Index,
MultiIndex,
Series,
)
import pandas._testing as tm
from pandas.core.computation import expressions as expr
from pandas.core.computation.expressions import (
_MIN_ELEMENTS,
NUMEXPR_INSTALLED,
)
from pandas.tests.frame.common import (
_check_mixed_float,
_check_mixed_int,
)
@pytest.fixture(autouse=True, params=[0, 1000000], ids=["numexpr", "python"])
def switch_numexpr_min_elements(request):
_MIN_ELEMENTS = expr._MIN_ELEMENTS
expr._MIN_ELEMENTS = request.param
yield request.param
expr._MIN_ELEMENTS = _MIN_ELEMENTS
class DummyElement:
def __init__(self, value, dtype) -> None:
self.value = value
self.dtype = np.dtype(dtype)
def __array__(self):
return np.array(self.value, dtype=self.dtype)
def __str__(self) -> str:
return f"DummyElement({self.value}, {self.dtype})"
def __repr__(self) -> str:
return str(self)
def astype(self, dtype, copy=False):
self.dtype = dtype
return self
def view(self, dtype):
return type(self)(self.value.view(dtype), dtype)
def any(self, axis=None):
return bool(self.value)
# -------------------------------------------------------------------
# Comparisons
class TestFrameComparisons:
# Specifically _not_ flex-comparisons
def test_comparison_with_categorical_dtype(self):
# GH#12564
df = DataFrame({"A": ["foo", "bar", "baz"]})
exp = DataFrame({"A": [True, False, False]})
res = df == "foo"
tm.assert_frame_equal(res, exp)
# casting to categorical shouldn't affect the result
df["A"] = df["A"].astype("category")
res = df == "foo"
tm.assert_frame_equal(res, exp)
def test_frame_in_list(self):
# GH#12689 this should raise at the DataFrame level, not blocks
df = DataFrame(
np.random.default_rng(2).standard_normal((6, 4)), columns=list("ABCD")
)
msg = "The truth value of a DataFrame is ambiguous"
with pytest.raises(ValueError, match=msg):
df in [None]
@pytest.mark.parametrize(
"arg, arg2",
[
[
{
"a": np.random.default_rng(2).integers(10, size=10),
"b": pd.date_range("20010101", periods=10),
},
{
"a": np.random.default_rng(2).integers(10, size=10),
"b": np.random.default_rng(2).integers(10, size=10),
},
],
[
{
"a": np.random.default_rng(2).integers(10, size=10),
"b": np.random.default_rng(2).integers(10, size=10),
},
{
"a": np.random.default_rng(2).integers(10, size=10),
"b": pd.date_range("20010101", periods=10),
},
],
[
{
"a": pd.date_range("20010101", periods=10),
"b": pd.date_range("20010101", periods=10),
},
{
"a": np.random.default_rng(2).integers(10, size=10),
"b": np.random.default_rng(2).integers(10, size=10),
},
],
[
{
"a": np.random.default_rng(2).integers(10, size=10),
"b": pd.date_range("20010101", periods=10),
},
{
"a": pd.date_range("20010101", periods=10),
"b": pd.date_range("20010101", periods=10),
},
],
],
)
def test_comparison_invalid(self, arg, arg2):
# GH4968
# invalid date/int comparisons
x = DataFrame(arg)
y = DataFrame(arg2)
# we expect the result to match Series comparisons for
# == and !=, inequalities should raise
result = x == y
expected = DataFrame(
{col: x[col] == y[col] for col in x.columns},
index=x.index,
columns=x.columns,
)
tm.assert_frame_equal(result, expected)
result = x != y
expected = DataFrame(
{col: x[col] != y[col] for col in x.columns},
index=x.index,
columns=x.columns,
)
tm.assert_frame_equal(result, expected)
msgs = [
r"Invalid comparison between dtype=datetime64\[ns\] and ndarray",
"invalid type promotion",
(
# npdev 1.20.0
r"The DTypes <class 'numpy.dtype\[.*\]'> and "
r"<class 'numpy.dtype\[.*\]'> do not have a common DType."
),
]
msg = "|".join(msgs)
with pytest.raises(TypeError, match=msg):
x >= y
with pytest.raises(TypeError, match=msg):
x > y
with pytest.raises(TypeError, match=msg):
x < y
with pytest.raises(TypeError, match=msg):
x <= y
@pytest.mark.parametrize(
"left, right",
[
("gt", "lt"),
("lt", "gt"),
("ge", "le"),
("le", "ge"),
("eq", "eq"),
("ne", "ne"),
],
)
def test_timestamp_compare(self, left, right):
# make sure we can compare Timestamps on the right AND left hand side
# GH#4982
df = DataFrame(
{
"dates1": pd.date_range("20010101", periods=10),
"dates2": pd.date_range("20010102", periods=10),
"intcol": np.random.default_rng(2).integers(1000000000, size=10),
"floatcol": np.random.default_rng(2).standard_normal(10),
"stringcol": [chr(100 + i) for i in range(10)],
}
)
df.loc[np.random.default_rng(2).random(len(df)) > 0.5, "dates2"] = pd.NaT
left_f = getattr(operator, left)
right_f = getattr(operator, right)
# no nats
if left in ["eq", "ne"]:
expected = left_f(df, pd.Timestamp("20010109"))
result = right_f(pd.Timestamp("20010109"), df)
tm.assert_frame_equal(result, expected)
else:
msg = (
"'(<|>)=?' not supported between "
"instances of 'numpy.ndarray' and 'Timestamp'"
)
with pytest.raises(TypeError, match=msg):
left_f(df, pd.Timestamp("20010109"))
with pytest.raises(TypeError, match=msg):
right_f(pd.Timestamp("20010109"), df)
# nats
if left in ["eq", "ne"]:
expected = left_f(df, pd.Timestamp("nat"))
result = right_f(pd.Timestamp("nat"), df)
tm.assert_frame_equal(result, expected)
else:
msg = (
"'(<|>)=?' not supported between "
"instances of 'numpy.ndarray' and 'NaTType'"
)
with pytest.raises(TypeError, match=msg):
left_f(df, pd.Timestamp("nat"))
with pytest.raises(TypeError, match=msg):
right_f(pd.Timestamp("nat"), df)
def test_mixed_comparison(self):
# GH#13128, GH#22163 != datetime64 vs non-dt64 should be False,
# not raise TypeError
# (this appears to be fixed before GH#22163, not sure when)
df = DataFrame([["1989-08-01", 1], ["1989-08-01", 2]])
other = DataFrame([["a", "b"], ["c", "d"]])
result = df == other
assert not result.any().any()
result = df != other
assert result.all().all()
def test_df_boolean_comparison_error(self):
# GH#4576, GH#22880
# comparing DataFrame against list/tuple with len(obj) matching
# len(df.columns) is supported as of GH#22800
df = DataFrame(np.arange(6).reshape((3, 2)))
expected = DataFrame([[False, False], [True, False], [False, False]])
result = df == (2, 2)
tm.assert_frame_equal(result, expected)
result = df == [2, 2]
tm.assert_frame_equal(result, expected)
def test_df_float_none_comparison(self):
df = DataFrame(
np.random.default_rng(2).standard_normal((8, 3)),
index=range(8),
columns=["A", "B", "C"],
)
result = df.__eq__(None)
assert not result.any().any()
def test_df_string_comparison(self):
df = DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}])
mask_a = df.a > 1
tm.assert_frame_equal(df[mask_a], df.loc[1:1, :])
tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :])
mask_b = df.b == "foo"
tm.assert_frame_equal(df[mask_b], df.loc[0:0, :])
tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :])
class TestFrameFlexComparisons:
# TODO: test_bool_flex_frame needs a better name
@pytest.mark.parametrize("op", ["eq", "ne", "gt", "lt", "ge", "le"])
def test_bool_flex_frame(self, op):
data = np.random.default_rng(2).standard_normal((5, 3))
other_data = np.random.default_rng(2).standard_normal((5, 3))
df = DataFrame(data)
other = DataFrame(other_data)
ndim_5 = np.ones(df.shape + (1, 3))
# DataFrame
assert df.eq(df).values.all()
assert not df.ne(df).values.any()
f = getattr(df, op)
o = getattr(operator, op)
# No NAs
tm.assert_frame_equal(f(other), o(df, other))
# Unaligned
part_o = other.loc[3:, 1:].copy()
rs = f(part_o)
xp = o(df, part_o.reindex(index=df.index, columns=df.columns))
tm.assert_frame_equal(rs, xp)
# ndarray
tm.assert_frame_equal(f(other.values), o(df, other.values))
# scalar
tm.assert_frame_equal(f(0), o(df, 0))
# NAs
msg = "Unable to coerce to Series/DataFrame"
tm.assert_frame_equal(f(np.nan), o(df, np.nan))
with pytest.raises(ValueError, match=msg):
f(ndim_5)
@pytest.mark.parametrize("box", [np.array, Series])
def test_bool_flex_series(self, box):
# Series
# list/tuple
data = np.random.default_rng(2).standard_normal((5, 3))
df = DataFrame(data)
idx_ser = box(np.random.default_rng(2).standard_normal(5))
col_ser = box(np.random.default_rng(2).standard_normal(3))
idx_eq = df.eq(idx_ser, axis=0)
col_eq = df.eq(col_ser)
idx_ne = df.ne(idx_ser, axis=0)
col_ne = df.ne(col_ser)
tm.assert_frame_equal(col_eq, df == Series(col_ser))
tm.assert_frame_equal(col_eq, -col_ne)
tm.assert_frame_equal(idx_eq, -idx_ne)
tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T)
tm.assert_frame_equal(col_eq, df.eq(list(col_ser)))
tm.assert_frame_equal(idx_eq, df.eq(Series(idx_ser), axis=0))
tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0))
idx_gt = df.gt(idx_ser, axis=0)
col_gt = df.gt(col_ser)
idx_le = df.le(idx_ser, axis=0)
col_le = df.le(col_ser)
tm.assert_frame_equal(col_gt, df > Series(col_ser))
tm.assert_frame_equal(col_gt, -col_le)
tm.assert_frame_equal(idx_gt, -idx_le)
tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T)
idx_ge = df.ge(idx_ser, axis=0)
col_ge = df.ge(col_ser)
idx_lt = df.lt(idx_ser, axis=0)
col_lt = df.lt(col_ser)
tm.assert_frame_equal(col_ge, df >= Series(col_ser))
tm.assert_frame_equal(col_ge, -col_lt)
tm.assert_frame_equal(idx_ge, -idx_lt)
tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T)
idx_ser = Series(np.random.default_rng(2).standard_normal(5))
col_ser = Series(np.random.default_rng(2).standard_normal(3))
def test_bool_flex_frame_na(self):
df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
# NA
df.loc[0, 0] = np.nan
rs = df.eq(df)
assert not rs.loc[0, 0]
rs = df.ne(df)
assert rs.loc[0, 0]
rs = df.gt(df)
assert not rs.loc[0, 0]
rs = df.lt(df)
assert not rs.loc[0, 0]
rs = df.ge(df)
assert not rs.loc[0, 0]
rs = df.le(df)
assert not rs.loc[0, 0]
def test_bool_flex_frame_complex_dtype(self):
# complex
arr = np.array([np.nan, 1, 6, np.nan])
arr2 = np.array([2j, np.nan, 7, None])
df = DataFrame({"a": arr})
df2 = DataFrame({"a": arr2})
msg = "|".join(
[
"'>' not supported between instances of '.*' and 'complex'",
r"unorderable types: .*complex\(\)", # PY35
]
)
with pytest.raises(TypeError, match=msg):
# inequalities are not well-defined for complex numbers
df.gt(df2)
with pytest.raises(TypeError, match=msg):
# regression test that we get the same behavior for Series
df["a"].gt(df2["a"])
with pytest.raises(TypeError, match=msg):
# Check that we match numpy behavior here
df.values > df2.values
rs = df.ne(df2)
assert rs.values.all()
arr3 = np.array([2j, np.nan, None])
df3 = DataFrame({"a": arr3})
with pytest.raises(TypeError, match=msg):
# inequalities are not well-defined for complex numbers
df3.gt(2j)
with pytest.raises(TypeError, match=msg):
# regression test that we get the same behavior for Series
df3["a"].gt(2j)
with pytest.raises(TypeError, match=msg):
# Check that we match numpy behavior here
df3.values > 2j
def test_bool_flex_frame_object_dtype(self):
# corner, dtype=object
df1 = DataFrame({"col": ["foo", np.nan, "bar"]})
df2 = DataFrame({"col": ["foo", datetime.now(), "bar"]})
result = df1.ne(df2)
exp = DataFrame({"col": [False, True, False]})
tm.assert_frame_equal(result, exp)
def test_flex_comparison_nat(self):
# GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT,
# and _definitely_ not be NaN
df = DataFrame([pd.NaT])
result = df == pd.NaT
# result.iloc[0, 0] is a np.bool_ object
assert result.iloc[0, 0].item() is False
result = df.eq(pd.NaT)
assert result.iloc[0, 0].item() is False
result = df != pd.NaT
assert result.iloc[0, 0].item() is True
result = df.ne(pd.NaT)
assert result.iloc[0, 0].item() is True
@pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
def test_df_flex_cmp_constant_return_types(self, opname):
# GH 15077, non-empty DataFrame
df = DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]})
const = 2
result = getattr(df, opname)(const).dtypes.value_counts()
tm.assert_series_equal(
result, Series([2], index=[np.dtype(bool)], name="count")
)
@pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"])
def test_df_flex_cmp_constant_return_types_empty(self, opname):
# GH 15077 empty DataFrame
df = DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]})
const = 2
empty = df.iloc[:0]
result = getattr(empty, opname)(const).dtypes.value_counts()
tm.assert_series_equal(
result, Series([2], index=[np.dtype(bool)], name="count")
)
def test_df_flex_cmp_ea_dtype_with_ndarray_series(self):
ii = pd.IntervalIndex.from_breaks([1, 2, 3])
df = DataFrame({"A": ii, "B": ii})
ser = Series([0, 0])
res = df.eq(ser, axis=0)
expected = DataFrame({"A": [False, False], "B": [False, False]})
tm.assert_frame_equal(res, expected)
ser2 = Series([1, 2], index=["A", "B"])
res2 = df.eq(ser2, axis=1)
tm.assert_frame_equal(res2, expected)
# -------------------------------------------------------------------
# Arithmetic
class TestFrameFlexArithmetic:
def test_floordiv_axis0(self):
# make sure we df.floordiv(ser, axis=0) matches column-wise result
arr = np.arange(3)
ser = Series(arr)
df = DataFrame({"A": ser, "B": ser})
result = df.floordiv(ser, axis=0)
expected = DataFrame({col: df[col] // ser for col in df.columns})
tm.assert_frame_equal(result, expected)
result2 = df.floordiv(ser.values, axis=0)
tm.assert_frame_equal(result2, expected)
@pytest.mark.skipif(not NUMEXPR_INSTALLED, reason="numexpr not installed")
@pytest.mark.parametrize("opname", ["floordiv", "pow"])
def test_floordiv_axis0_numexpr_path(self, opname):
# case that goes through numexpr and has to fall back to masked_arith_op
op = getattr(operator, opname)
arr = np.arange(_MIN_ELEMENTS + 100).reshape(_MIN_ELEMENTS // 100 + 1, -1) * 100
df = DataFrame(arr)
df["C"] = 1.0
ser = df[0]
result = getattr(df, opname)(ser, axis=0)
expected = DataFrame({col: op(df[col], ser) for col in df.columns})
tm.assert_frame_equal(result, expected)
result2 = getattr(df, opname)(ser.values, axis=0)
tm.assert_frame_equal(result2, expected)
def test_df_add_td64_columnwise(self):
# GH 22534 Check that column-wise addition broadcasts correctly
dti = pd.date_range("2016-01-01", periods=10)
tdi = pd.timedelta_range("1", periods=10)
tser = Series(tdi)
df = DataFrame({0: dti, 1: tdi})
result = df.add(tser, axis=0)
expected = DataFrame({0: dti + tdi, 1: tdi + tdi})
tm.assert_frame_equal(result, expected)
def test_df_add_flex_filled_mixed_dtypes(self):
# GH 19611
dti = pd.date_range("2016-01-01", periods=3)
ser = Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]")
df = DataFrame({"A": dti, "B": ser})
other = DataFrame({"A": ser, "B": ser})
fill = pd.Timedelta(days=1).to_timedelta64()
result = df.add(other, fill_value=fill)
expected = DataFrame(
{
"A": Series(
["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]"
),
"B": ser * 2,
}
)
tm.assert_frame_equal(result, expected)
def test_arith_flex_frame(
self, all_arithmetic_operators, float_frame, mixed_float_frame
):
# one instance of parametrized fixture
op = all_arithmetic_operators
def f(x, y):
# r-versions not in operator-stdlib; get op without "r" and invert
if op.startswith("__r"):
return getattr(operator, op.replace("__r", "__"))(y, x)
return getattr(operator, op)(x, y)
result = getattr(float_frame, op)(2 * float_frame)
expected = f(float_frame, 2 * float_frame)
tm.assert_frame_equal(result, expected)
# vs mix float
result = getattr(mixed_float_frame, op)(2 * mixed_float_frame)
expected = f(mixed_float_frame, 2 * mixed_float_frame)
tm.assert_frame_equal(result, expected)
_check_mixed_float(result, dtype={"C": None})
@pytest.mark.parametrize("op", ["__add__", "__sub__", "__mul__"])
def test_arith_flex_frame_mixed(
self,
op,
int_frame,
mixed_int_frame,
mixed_float_frame,
switch_numexpr_min_elements,
):
f = getattr(operator, op)
# vs mix int
result = getattr(mixed_int_frame, op)(2 + mixed_int_frame)
expected = f(mixed_int_frame, 2 + mixed_int_frame)
# no overflow in the uint
dtype = None
if op in ["__sub__"]:
dtype = {"B": "uint64", "C": None}
elif op in ["__add__", "__mul__"]:
dtype = {"C": None}
if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0:
# when using numexpr, the casting rules are slightly different:
# in the `2 + mixed_int_frame` operation, int32 column becomes
# and int64 column (not preserving dtype in operation with Python
# scalar), and then the int32/int64 combo results in int64 result
dtype["A"] = (2 + mixed_int_frame)["A"].dtype
tm.assert_frame_equal(result, expected)
_check_mixed_int(result, dtype=dtype)
# vs mix float
result = getattr(mixed_float_frame, op)(2 * mixed_float_frame)
expected = f(mixed_float_frame, 2 * mixed_float_frame)
tm.assert_frame_equal(result, expected)
_check_mixed_float(result, dtype={"C": None})
# vs plain int
result = getattr(int_frame, op)(2 * int_frame)
expected = f(int_frame, 2 * int_frame)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("dim", range(3, 6))
def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame, dim):
# one instance of parametrized fixture
op = all_arithmetic_operators
# Check that arrays with dim >= 3 raise
arr = np.ones((1,) * dim)
msg = "Unable to coerce to Series/DataFrame"
with pytest.raises(ValueError, match=msg):
getattr(float_frame, op)(arr)
def test_arith_flex_frame_corner(self, float_frame):
const_add = float_frame.add(1)
tm.assert_frame_equal(const_add, float_frame + 1)
# corner cases
result = float_frame.add(float_frame[:0])
tm.assert_frame_equal(result, float_frame * np.nan)
result = float_frame[:0].add(float_frame)
tm.assert_frame_equal(result, float_frame * np.nan)
with pytest.raises(NotImplementedError, match="fill_value"):
float_frame.add(float_frame.iloc[0], fill_value=3)
with pytest.raises(NotImplementedError, match="fill_value"):
float_frame.add(float_frame.iloc[0], axis="index", fill_value=3)
@pytest.mark.parametrize("op", ["add", "sub", "mul", "mod"])
def test_arith_flex_series_ops(self, simple_frame, op):
# after arithmetic refactor, add truediv here
df = simple_frame
row = df.xs("a")
col = df["two"]
f = getattr(df, op)
op = getattr(operator, op)
tm.assert_frame_equal(f(row), op(df, row))
tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T)
def test_arith_flex_series(self, simple_frame):
df = simple_frame
row = df.xs("a")
col = df["two"]
# special case for some reason
tm.assert_frame_equal(df.add(row, axis=None), df + row)
# cases which will be refactored after big arithmetic refactor
tm.assert_frame_equal(df.div(row), df / row)
tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T)
@pytest.mark.parametrize("dtype", ["int64", "float64"])
def test_arith_flex_series_broadcasting(self, dtype):
# broadcasting issue in GH 7325
df = DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype=dtype)
expected = DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]])
result = df.div(df[0], axis="index")
tm.assert_frame_equal(result, expected)
def test_arith_flex_zero_len_raises(self):
# GH 19522 passing fill_value to frame flex arith methods should
# raise even in the zero-length special cases
ser_len0 = Series([], dtype=object)
df_len0 = DataFrame(columns=["A", "B"])
df = DataFrame([[1, 2], [3, 4]], columns=["A", "B"])
with pytest.raises(NotImplementedError, match="fill_value"):
df.add(ser_len0, fill_value="E")
with pytest.raises(NotImplementedError, match="fill_value"):
df_len0.sub(df["A"], axis=None, fill_value=3)
def test_flex_add_scalar_fill_value(self):
# GH#12723
dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float")
df = DataFrame({"foo": dat}, index=range(6))
exp = df.fillna(0).add(2)
res = df.add(2, fill_value=0)
tm.assert_frame_equal(res, exp)
def test_sub_alignment_with_duplicate_index(self):
# GH#5185 dup aligning operations should work
df1 = DataFrame([1, 2, 3, 4, 5], index=[1, 2, 1, 2, 3])
df2 = DataFrame([1, 2, 3], index=[1, 2, 3])
expected = DataFrame([0, 2, 0, 2, 2], index=[1, 1, 2, 2, 3])
result = df1.sub(df2)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("op", ["__add__", "__mul__", "__sub__", "__truediv__"])
def test_arithmetic_with_duplicate_columns(self, op):
# operations
df = DataFrame({"A": np.arange(10), "B": np.random.default_rng(2).random(10)})
expected = getattr(df, op)(df)
expected.columns = ["A", "A"]
df.columns = ["A", "A"]
result = getattr(df, op)(df)
tm.assert_frame_equal(result, expected)
str(result)
result.dtypes
@pytest.mark.parametrize("level", [0, None])
def test_broadcast_multiindex(self, level):
# GH34388
df1 = DataFrame({"A": [0, 1, 2], "B": [1, 2, 3]})
df1.columns = df1.columns.set_names("L1")
df2 = DataFrame({("A", "C"): [0, 0, 0], ("A", "D"): [0, 0, 0]})
df2.columns = df2.columns.set_names(["L1", "L2"])
result = df1.add(df2, level=level)
expected = DataFrame({("A", "C"): [0, 1, 2], ("A", "D"): [0, 1, 2]})
expected.columns = expected.columns.set_names(["L1", "L2"])
tm.assert_frame_equal(result, expected)
def test_frame_multiindex_operations(self):
# GH 43321
df = DataFrame(
{2010: [1, 2, 3], 2020: [3, 4, 5]},
index=MultiIndex.from_product(
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"]
),
)
series = Series(
[0.4],
index=MultiIndex.from_product([["b"], ["a"]], names=["mod", "scen"]),
)
expected = DataFrame(
{2010: [1.4, 2.4, 3.4], 2020: [3.4, 4.4, 5.4]},
index=MultiIndex.from_product(
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"]
),
)
result = df.add(series, axis=0)
tm.assert_frame_equal(result, expected)
def test_frame_multiindex_operations_series_index_to_frame_index(self):
# GH 43321
df = DataFrame(
{2010: [1], 2020: [3]},
index=MultiIndex.from_product([["a"], ["b"]], names=["scen", "mod"]),
)
series = Series(
[10.0, 20.0, 30.0],
index=MultiIndex.from_product(
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"]
),
)
expected = DataFrame(
{2010: [11.0, 21, 31.0], 2020: [13.0, 23.0, 33.0]},
index=MultiIndex.from_product(
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"]
),
)
result = df.add(series, axis=0)
tm.assert_frame_equal(result, expected)
def test_frame_multiindex_operations_no_align(self):
df = DataFrame(
{2010: [1, 2, 3], 2020: [3, 4, 5]},
index=MultiIndex.from_product(
[["a"], ["b"], [0, 1, 2]], names=["scen", "mod", "id"]
),
)
series = Series(
[0.4],
index=MultiIndex.from_product([["c"], ["a"]], names=["mod", "scen"]),
)
expected = DataFrame(
{2010: np.nan, 2020: np.nan},
index=MultiIndex.from_tuples(
[
("a", "b", 0),
("a", "b", 1),
("a", "b", 2),
("a", "c", np.nan),
],
names=["scen", "mod", "id"],
),
)
result = df.add(series, axis=0)
tm.assert_frame_equal(result, expected)
def test_frame_multiindex_operations_part_align(self):
df = DataFrame(
{2010: [1, 2, 3], 2020: [3, 4, 5]},
index=MultiIndex.from_tuples(
[
("a", "b", 0),
("a", "b", 1),
("a", "c", 2),
],
names=["scen", "mod", "id"],
),
)
series = Series(
[0.4],
index=MultiIndex.from_product([["b"], ["a"]], names=["mod", "scen"]),
)
expected = DataFrame(
{2010: [1.4, 2.4, np.nan], 2020: [3.4, 4.4, np.nan]},
index=MultiIndex.from_tuples(
[
("a", "b", 0),
("a", "b", 1),
("a", "c", 2),
],
names=["scen", "mod", "id"],
),
)
result = df.add(series, axis=0)
tm.assert_frame_equal(result, expected)
class TestFrameArithmetic:
def test_td64_op_nat_casting(self):
# Make sure we don't accidentally treat timedelta64(NaT) as datetime64
# when calling dispatch_to_series in DataFrame arithmetic
ser = Series(["NaT", "NaT"], dtype="timedelta64[ns]")
df = DataFrame([[1, 2], [3, 4]])
result = df * ser
expected = DataFrame({0: ser, 1: ser})
tm.assert_frame_equal(result, expected)
def test_df_add_2d_array_rowlike_broadcasts(self):
# GH#23000
arr = np.arange(6).reshape(3, 2)
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"])
rowlike = arr[[1], :] # shape --> (1, ncols)
assert rowlike.shape == (1, df.shape[1])
expected = DataFrame(
[[2, 4], [4, 6], [6, 8]],
columns=df.columns,
index=df.index,
# specify dtype explicitly to avoid failing
# on 32bit builds
dtype=arr.dtype,
)
result = df + rowlike
tm.assert_frame_equal(result, expected)
result = rowlike + df
tm.assert_frame_equal(result, expected)
def test_df_add_2d_array_collike_broadcasts(self):
# GH#23000
arr = np.arange(6).reshape(3, 2)
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"])
collike = arr[:, [1]] # shape --> (nrows, 1)
assert collike.shape == (df.shape[0], 1)
expected = DataFrame(
[[1, 2], [5, 6], [9, 10]],
columns=df.columns,
index=df.index,
# specify dtype explicitly to avoid failing
# on 32bit builds
dtype=arr.dtype,
)
result = df + collike
tm.assert_frame_equal(result, expected)
result = collike + df
tm.assert_frame_equal(result, expected)
def test_df_arith_2d_array_rowlike_broadcasts(
self, request, all_arithmetic_operators, using_array_manager
):
# GH#23000
opname = all_arithmetic_operators
if using_array_manager and opname in ("__rmod__", "__rfloordiv__"):
# TODO(ArrayManager) decide on dtypes
td.mark_array_manager_not_yet_implemented(request)
arr = np.arange(6).reshape(3, 2)
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"])
rowlike = arr[[1], :] # shape --> (1, ncols)
assert rowlike.shape == (1, df.shape[1])
exvals = [
getattr(df.loc["A"], opname)(rowlike.squeeze()),
getattr(df.loc["B"], opname)(rowlike.squeeze()),
getattr(df.loc["C"], opname)(rowlike.squeeze()),
]
expected = DataFrame(exvals, columns=df.columns, index=df.index)
result = getattr(df, opname)(rowlike)
tm.assert_frame_equal(result, expected)
def test_df_arith_2d_array_collike_broadcasts(
self, request, all_arithmetic_operators, using_array_manager
):
# GH#23000
opname = all_arithmetic_operators
if using_array_manager and opname in ("__rmod__", "__rfloordiv__"):
# TODO(ArrayManager) decide on dtypes
td.mark_array_manager_not_yet_implemented(request)
arr = np.arange(6).reshape(3, 2)
df = DataFrame(arr, columns=[True, False], index=["A", "B", "C"])
collike = arr[:, [1]] # shape --> (nrows, 1)
assert collike.shape == (df.shape[0], 1)
exvals = {
True: getattr(df[True], opname)(collike.squeeze()),
False: getattr(df[False], opname)(collike.squeeze()),
}
dtype = None
if opname in ["__rmod__", "__rfloordiv__"]:
# Series ops may return mixed int/float dtypes in cases where
# DataFrame op will return all-float. So we upcast `expected`
dtype = np.common_type(*(x.values for x in exvals.values()))
expected = DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype)
result = getattr(df, opname)(collike)
tm.assert_frame_equal(result, expected)
def test_df_bool_mul_int(self):
# GH 22047, GH 22163 multiplication by 1 should result in int dtype,
# not object dtype
df = DataFrame([[False, True], [False, False]])
result = df * 1
# On appveyor this comes back as np.int32 instead of np.int64,
# so we check dtype.kind instead of just dtype
kinds = result.dtypes.apply(lambda x: x.kind)
assert (kinds == "i").all()
result = 1 * df
kinds = result.dtypes.apply(lambda x: x.kind)
assert (kinds == "i").all()
def test_arith_mixed(self):
left = DataFrame({"A": ["a", "b", "c"], "B": [1, 2, 3]})
result = left + left
expected = DataFrame({"A": ["aa", "bb", "cc"], "B": [2, 4, 6]})
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("col", ["A", "B"])
def test_arith_getitem_commute(self, all_arithmetic_functions, col):
df = DataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]})
result = all_arithmetic_functions(df, 1)[col]
expected = all_arithmetic_functions(df[col], 1)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"values", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])]
)
def test_arith_alignment_non_pandas_object(self, values):
# GH#17901
df = DataFrame({"A": [1, 1], "B": [1, 1]})
expected = DataFrame({"A": [2, 2], "B": [3, 3]})
result = df + values
tm.assert_frame_equal(result, expected)
def test_arith_non_pandas_object(self):
df = DataFrame(
np.arange(1, 10, dtype="f8").reshape(3, 3),
columns=["one", "two", "three"],
index=["a", "b", "c"],
)
val1 = df.xs("a").values
added = DataFrame(df.values + val1, index=df.index, columns=df.columns)
tm.assert_frame_equal(df + val1, added)
added = DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns)
tm.assert_frame_equal(df.add(val1, axis=0), added)
val2 = list(df["two"])
added = DataFrame(df.values + val2, index=df.index, columns=df.columns)
tm.assert_frame_equal(df + val2, added)
added = DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns)
tm.assert_frame_equal(df.add(val2, axis="index"), added)
val3 = np.random.default_rng(2).random(df.shape)
added = DataFrame(df.values + val3, index=df.index, columns=df.columns)
tm.assert_frame_equal(df.add(val3), added)
def test_operations_with_interval_categories_index(self, all_arithmetic_operators):
# GH#27415
op = all_arithmetic_operators
ind = pd.CategoricalIndex(pd.interval_range(start=0.0, end=2.0))
data = [1, 2]
df = DataFrame([data], columns=ind)
num = 10
result = getattr(df, op)(num)
expected = DataFrame([[getattr(n, op)(num) for n in data]], columns=ind)
tm.assert_frame_equal(result, expected)
def test_frame_with_frame_reindex(self):
# GH#31623
df = DataFrame(
{
"foo": [pd.Timestamp("2019"), pd.Timestamp("2020")],
"bar": [pd.Timestamp("2018"), pd.Timestamp("2021")],
},
columns=["foo", "bar"],
)
df2 = df[["foo"]]
result = df - df2
expected = DataFrame(
{"foo": [pd.Timedelta(0), pd.Timedelta(0)], "bar": [np.nan, np.nan]},
columns=["bar", "foo"],
)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"value, dtype",
[
(1, "i8"),
(1.0, "f8"),
(2**63, "f8"),
(1j, "complex128"),
(2**63, "complex128"),
(True, "bool"),
(np.timedelta64(20, "ns"), "<m8[ns]"),
(np.datetime64(20, "ns"), "<M8[ns]"),
],
)
@pytest.mark.parametrize(
"op",
[
operator.add,
operator.sub,
operator.mul,
operator.truediv,
operator.mod,
operator.pow,
],
ids=lambda x: x.__name__,
)
def test_binop_other(self, op, value, dtype, switch_numexpr_min_elements, request):
skip = {
(operator.truediv, "bool"),
(operator.pow, "bool"),
(operator.add, "bool"),
(operator.mul, "bool"),
}
elem = DummyElement(value, dtype)
df = DataFrame({"A": [elem.value, elem.value]}, dtype=elem.dtype)
invalid = {
(operator.pow, "<M8[ns]"),
(operator.mod, "<M8[ns]"),
(operator.truediv, "<M8[ns]"),
(operator.mul, "<M8[ns]"),
(operator.add, "<M8[ns]"),
(operator.pow, "<m8[ns]"),
(operator.mul, "<m8[ns]"),
(operator.sub, "bool"),
(operator.mod, "complex128"),
}
if (op, dtype) in invalid:
warn = None
if (dtype == "<M8[ns]" and op == operator.add) or (
dtype == "<m8[ns]" and op == operator.mul
):
msg = None
elif dtype == "complex128":
msg = "ufunc 'remainder' not supported for the input types"
elif op is operator.sub:
msg = "numpy boolean subtract, the `-` operator, is "
if (
dtype == "bool"
and expr.USE_NUMEXPR
and switch_numexpr_min_elements == 0
):
warn = UserWarning # "evaluating in Python space because ..."
else:
msg = (
f"cannot perform __{op.__name__}__ with this "
"index type: (DatetimeArray|TimedeltaArray)"
)
with pytest.raises(TypeError, match=msg):
with tm.assert_produces_warning(warn):
op(df, elem.value)
elif (op, dtype) in skip:
if op in [operator.add, operator.mul]:
if expr.USE_NUMEXPR and switch_numexpr_min_elements == 0:
# "evaluating in Python space because ..."
warn = UserWarning
else:
warn = None
with tm.assert_produces_warning(warn):
op(df, elem.value)
else:
msg = "operator '.*' not implemented for .* dtypes"
with pytest.raises(NotImplementedError, match=msg):
op(df, elem.value)
else:
with tm.assert_produces_warning(None):
result = op(df, elem.value).dtypes
expected = op(df, value).dtypes
tm.assert_series_equal(result, expected)
def test_arithmetic_midx_cols_different_dtypes(self):
# GH#49769
midx = MultiIndex.from_arrays([Series([1, 2]), Series([3, 4])])
midx2 = MultiIndex.from_arrays([Series([1, 2], dtype="Int8"), Series([3, 4])])
left = DataFrame([[1, 2], [3, 4]], columns=midx)
right = DataFrame([[1, 2], [3, 4]], columns=midx2)
result = left - right
expected = DataFrame([[0, 0], [0, 0]], columns=midx)
tm.assert_frame_equal(result, expected)
def test_arithmetic_midx_cols_different_dtypes_different_order(self):
# GH#49769
midx = MultiIndex.from_arrays([Series([1, 2]), Series([3, 4])])
midx2 = MultiIndex.from_arrays([Series([2, 1], dtype="Int8"), Series([4, 3])])
left = DataFrame([[1, 2], [3, 4]], columns=midx)
right = DataFrame([[1, 2], [3, 4]], columns=midx2)
result = left - right
expected = DataFrame([[-1, 1], [-1, 1]], columns=midx)
tm.assert_frame_equal(result, expected)
def test_frame_with_zero_len_series_corner_cases():
# GH#28600
# easy all-float case
df = DataFrame(
np.random.default_rng(2).standard_normal(6).reshape(3, 2), columns=["A", "B"]
)
ser = Series(dtype=np.float64)
result = df + ser
expected = DataFrame(df.values * np.nan, columns=df.columns)
tm.assert_frame_equal(result, expected)
with pytest.raises(ValueError, match="not aligned"):
# Automatic alignment for comparisons deprecated GH#36795, enforced 2.0
df == ser
# non-float case should not raise TypeError on comparison
df2 = DataFrame(df.values.view("M8[ns]"), columns=df.columns)
with pytest.raises(ValueError, match="not aligned"):
# Automatic alignment for comparisons deprecated
df2 == ser
def test_zero_len_frame_with_series_corner_cases():
# GH#28600
df = DataFrame(columns=["A", "B"], dtype=np.float64)
ser = Series([1, 2], index=["A", "B"])
result = df + ser
expected = df
tm.assert_frame_equal(result, expected)
def test_frame_single_columns_object_sum_axis_1():
# GH 13758
data = {
"One": Series(["A", 1.2, np.nan]),
}
df = DataFrame(data)
result = df.sum(axis=1)
expected = Series(["A", 1.2, 0])
tm.assert_series_equal(result, expected)
# -------------------------------------------------------------------
# Unsorted
# These arithmetic tests were previously in other files, eventually
# should be parametrized and put into tests.arithmetic
class TestFrameArithmeticUnsorted:
def test_frame_add_tz_mismatch_converts_to_utc(self):
rng = pd.date_range("1/1/2011", periods=10, freq="H", tz="US/Eastern")
df = DataFrame(
np.random.default_rng(2).standard_normal(len(rng)), index=rng, columns=["a"]
)
df_moscow = df.tz_convert("Europe/Moscow")
result = df + df_moscow
assert result.index.tz is timezone.utc
result = df_moscow + df
assert result.index.tz is timezone.utc
def test_align_frame(self):
rng = pd.period_range("1/1/2000", "1/1/2010", freq="A")
ts = DataFrame(
np.random.default_rng(2).standard_normal((len(rng), 3)), index=rng
)
result = ts + ts[::2]
expected = ts + ts
expected.iloc[1::2] = np.nan
tm.assert_frame_equal(result, expected)
half = ts[::2]
result = ts + half.take(np.random.default_rng(2).permutation(len(half)))
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"op", [operator.add, operator.sub, operator.mul, operator.truediv]
)
def test_operators_none_as_na(self, op):
df = DataFrame(
{"col1": [2, 5.0, 123, None], "col2": [1, 2, 3, 4]}, dtype=object
)
# since filling converts dtypes from object, changed expected to be
# object
filled = df.fillna(np.nan)
result = op(df, 3)
expected = op(filled, 3).astype(object)
expected[pd.isna(expected)] = np.nan
tm.assert_frame_equal(result, expected)
result = op(df, df)
expected = op(filled, filled).astype(object)
expected[pd.isna(expected)] = np.nan
tm.assert_frame_equal(result, expected)
result = op(df, df.fillna(7))
tm.assert_frame_equal(result, expected)
result = op(df.fillna(7), df)
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("op,res", [("__eq__", False), ("__ne__", True)])
# TODO: not sure what's correct here.
@pytest.mark.filterwarnings("ignore:elementwise:FutureWarning")
def test_logical_typeerror_with_non_valid(self, op, res, float_frame):
# we are comparing floats vs a string
result = getattr(float_frame, op)("foo")
assert bool(result.all().all()) is res
@pytest.mark.parametrize("op", ["add", "sub", "mul", "div", "truediv"])
def test_binary_ops_align(self, op):
# test aligning binary ops
# GH 6681
index = MultiIndex.from_product(
[list("abc"), ["one", "two", "three"], [1, 2, 3]],
names=["first", "second", "third"],
)
df = DataFrame(
np.arange(27 * 3).reshape(27, 3),
index=index,
columns=["value1", "value2", "value3"],
).sort_index()
idx = pd.IndexSlice
opa = getattr(operator, op, None)
if opa is None:
return
x = Series([1.0, 10.0, 100.0], [1, 2, 3])
result = getattr(df, op)(x, level="third", axis=0)
expected = pd.concat(
[opa(df.loc[idx[:, :, i], :], v) for i, v in x.items()]
).sort_index()
tm.assert_frame_equal(result, expected)
x = Series([1.0, 10.0], ["two", "three"])
result = getattr(df, op)(x, level="second", axis=0)
expected = (
pd.concat([opa(df.loc[idx[:, i], :], v) for i, v in x.items()])
.reindex_like(df)
.sort_index()
)
tm.assert_frame_equal(result, expected)
def test_binary_ops_align_series_dataframe(self):
# GH9463 (alignment level of dataframe with series)
midx = MultiIndex.from_product([["A", "B"], ["a", "b"]])
df = DataFrame(np.ones((2, 4), dtype="int64"), columns=midx)
s = Series({"a": 1, "b": 2})
df2 = df.copy()
df2.columns.names = ["lvl0", "lvl1"]
s2 = s.copy()
s2.index.name = "lvl1"
# different cases of integer/string level names:
res1 = df.mul(s, axis=1, level=1)
res2 = df.mul(s2, axis=1, level=1)
res3 = df2.mul(s, axis=1, level=1)
res4 = df2.mul(s2, axis=1, level=1)
res5 = df2.mul(s, axis=1, level="lvl1")
res6 = df2.mul(s2, axis=1, level="lvl1")
exp = DataFrame(
np.array([[1, 2, 1, 2], [1, 2, 1, 2]], dtype="int64"), columns=midx
)
for res in [res1, res2]:
tm.assert_frame_equal(res, exp)
exp.columns.names = ["lvl0", "lvl1"]
for res in [res3, res4, res5, res6]:
tm.assert_frame_equal(res, exp)
def test_add_with_dti_mismatched_tzs(self):
base = pd.DatetimeIndex(["2011-01-01", "2011-01-02", "2011-01-03"], tz="UTC")
idx1 = base.tz_convert("Asia/Tokyo")[:2]
idx2 = base.tz_convert("US/Eastern")[1:]
df1 = DataFrame({"A": [1, 2]}, index=idx1)
df2 = DataFrame({"A": [1, 1]}, index=idx2)
exp = DataFrame({"A": [np.nan, 3, np.nan]}, index=base)
tm.assert_frame_equal(df1 + df2, exp)
def test_combineFrame(self, float_frame, mixed_float_frame, mixed_int_frame):
frame_copy = float_frame.reindex(float_frame.index[::2])
del frame_copy["D"]
# adding NAs to first 5 values of column "C"
frame_copy.loc[: frame_copy.index[4], "C"] = np.nan
added = float_frame + frame_copy
indexer = added["A"].dropna().index
exp = (float_frame["A"] * 2).copy()
tm.assert_series_equal(added["A"].dropna(), exp.loc[indexer])
exp.loc[~exp.index.isin(indexer)] = np.nan
tm.assert_series_equal(added["A"], exp.loc[added["A"].index])
assert np.isnan(added["C"].reindex(frame_copy.index)[:5]).all()
# assert(False)
assert np.isnan(added["D"]).all()
self_added = float_frame + float_frame
tm.assert_index_equal(self_added.index, float_frame.index)
added_rev = frame_copy + float_frame
assert np.isnan(added["D"]).all()
assert np.isnan(added_rev["D"]).all()
# corner cases
# empty
plus_empty = float_frame + DataFrame()
assert np.isnan(plus_empty.values).all()
empty_plus = DataFrame() + float_frame
assert np.isnan(empty_plus.values).all()
empty_empty = DataFrame() + DataFrame()
assert empty_empty.empty
# out of order
reverse = float_frame.reindex(columns=float_frame.columns[::-1])
tm.assert_frame_equal(reverse + float_frame, float_frame * 2)
# mix vs float64, upcast
added = float_frame + mixed_float_frame
_check_mixed_float(added, dtype="float64")
added = mixed_float_frame + float_frame
_check_mixed_float(added, dtype="float64")
# mix vs mix
added = mixed_float_frame + mixed_float_frame
_check_mixed_float(added, dtype={"C": None})
# with int
added = float_frame + mixed_int_frame
_check_mixed_float(added, dtype="float64")
def test_combine_series(self, float_frame, mixed_float_frame, mixed_int_frame):
# Series
series = float_frame.xs(float_frame.index[0])
added = float_frame + series
for key, s in added.items():
tm.assert_series_equal(s, float_frame[key] + series[key])
larger_series = series.to_dict()
larger_series["E"] = 1
larger_series = Series(larger_series)
larger_added = float_frame + larger_series
for key, s in float_frame.items():
tm.assert_series_equal(larger_added[key], s + series[key])
assert "E" in larger_added
assert np.isnan(larger_added["E"]).all()
# no upcast needed
added = mixed_float_frame + series
assert np.all(added.dtypes == series.dtype)
# vs mix (upcast) as needed
added = mixed_float_frame + series.astype("float32")
_check_mixed_float(added, dtype={"C": None})
added = mixed_float_frame + series.astype("float16")
_check_mixed_float(added, dtype={"C": None})
# these used to raise with numexpr as we are adding an int64 to an
# uint64....weird vs int
added = mixed_int_frame + (100 * series).astype("int64")
_check_mixed_int(
added, dtype={"A": "int64", "B": "float64", "C": "int64", "D": "int64"}
)
added = mixed_int_frame + (100 * series).astype("int32")
_check_mixed_int(
added, dtype={"A": "int32", "B": "float64", "C": "int32", "D": "int64"}
)
def test_combine_timeseries(self, datetime_frame):
# TimeSeries
ts = datetime_frame["A"]
# 10890
# we no longer allow auto timeseries broadcasting
# and require explicit broadcasting
added = datetime_frame.add(ts, axis="index")
for key, col in datetime_frame.items():
result = col + ts
tm.assert_series_equal(added[key], result, check_names=False)
assert added[key].name == key
if col.name == ts.name:
assert result.name == "A"
else:
assert result.name is None
smaller_frame = datetime_frame[:-5]
smaller_added = smaller_frame.add(ts, axis="index")
tm.assert_index_equal(smaller_added.index, datetime_frame.index)
smaller_ts = ts[:-5]
smaller_added2 = datetime_frame.add(smaller_ts, axis="index")
tm.assert_frame_equal(smaller_added, smaller_added2)
# length 0, result is all-nan
result = datetime_frame.add(ts[:0], axis="index")
expected = DataFrame(
np.nan, index=datetime_frame.index, columns=datetime_frame.columns
)
tm.assert_frame_equal(result, expected)
# Frame is all-nan
result = datetime_frame[:0].add(ts, axis="index")
expected = DataFrame(
np.nan, index=datetime_frame.index, columns=datetime_frame.columns
)
tm.assert_frame_equal(result, expected)
# empty but with non-empty index
frame = datetime_frame[:1].reindex(columns=[])
result = frame.mul(ts, axis="index")
assert len(result) == len(ts)
def test_combineFunc(self, float_frame, mixed_float_frame):
result = float_frame * 2
tm.assert_numpy_array_equal(result.values, float_frame.values * 2)
# vs mix
result = mixed_float_frame * 2
for c, s in result.items():
tm.assert_numpy_array_equal(s.values, mixed_float_frame[c].values * 2)
_check_mixed_float(result, dtype={"C": None})
result = DataFrame() * 2
assert result.index.equals(DataFrame().index)
assert len(result.columns) == 0
@pytest.mark.parametrize(
"func",
[operator.eq, operator.ne, operator.lt, operator.gt, operator.ge, operator.le],
)
def test_comparisons(self, simple_frame, float_frame, func):
df1 = tm.makeTimeDataFrame()
df2 = tm.makeTimeDataFrame()
row = simple_frame.xs("a")
ndim_5 = np.ones(df1.shape + (1, 1, 1))
result = func(df1, df2)
tm.assert_numpy_array_equal(result.values, func(df1.values, df2.values))
msg = (
"Unable to coerce to Series/DataFrame, "
"dimension must be <= 2: (30, 4, 1, 1, 1)"
)
with pytest.raises(ValueError, match=re.escape(msg)):
func(df1, ndim_5)
result2 = func(simple_frame, row)
tm.assert_numpy_array_equal(
result2.values, func(simple_frame.values, row.values)
)
result3 = func(float_frame, 0)
tm.assert_numpy_array_equal(result3.values, func(float_frame.values, 0))
msg = (
r"Can only compare identically-labeled \(both index and columns\) "
"DataFrame objects"
)
with pytest.raises(ValueError, match=msg):
func(simple_frame, simple_frame[:2])
def test_strings_to_numbers_comparisons_raises(self, compare_operators_no_eq_ne):
# GH 11565
df = DataFrame(
{x: {"x": "foo", "y": "bar", "z": "baz"} for x in ["a", "b", "c"]}
)
f = getattr(operator, compare_operators_no_eq_ne)
msg = "'[<>]=?' not supported between instances of 'str' and 'int'"
with pytest.raises(TypeError, match=msg):
f(df, 0)
def test_comparison_protected_from_errstate(self):
missing_df = tm.makeDataFrame()
missing_df.loc[missing_df.index[0], "A"] = np.nan
with np.errstate(invalid="ignore"):
expected = missing_df.values < 0
with np.errstate(invalid="raise"):
result = (missing_df < 0).values
tm.assert_numpy_array_equal(result, expected)
def test_boolean_comparison(self):
# GH 4576
# boolean comparisons with a tuple/list give unexpected results
df = DataFrame(np.arange(6).reshape((3, 2)))
b = np.array([2, 2])
b_r = np.atleast_2d([2, 2])
b_c = b_r.T
lst = [2, 2, 2]
tup = tuple(lst)
# gt
expected = DataFrame([[False, False], [False, True], [True, True]])
result = df > b
tm.assert_frame_equal(result, expected)
result = df.values > b
tm.assert_numpy_array_equal(result, expected.values)
msg1d = "Unable to coerce to Series, length must be 2: given 3"
msg2d = "Unable to coerce to DataFrame, shape must be"
msg2db = "operands could not be broadcast together with shapes"
with pytest.raises(ValueError, match=msg1d):
# wrong shape
df > lst
with pytest.raises(ValueError, match=msg1d):
# wrong shape
df > tup
# broadcasts like ndarray (GH#23000)
result = df > b_r
tm.assert_frame_equal(result, expected)
result = df.values > b_r
tm.assert_numpy_array_equal(result, expected.values)
with pytest.raises(ValueError, match=msg2d):
df > b_c
with pytest.raises(ValueError, match=msg2db):
df.values > b_c
# ==
expected = DataFrame([[False, False], [True, False], [False, False]])
result = df == b
tm.assert_frame_equal(result, expected)
with pytest.raises(ValueError, match=msg1d):
df == lst
with pytest.raises(ValueError, match=msg1d):
df == tup
# broadcasts like ndarray (GH#23000)
result = df == b_r
tm.assert_frame_equal(result, expected)
result = df.values == b_r
tm.assert_numpy_array_equal(result, expected.values)
with pytest.raises(ValueError, match=msg2d):
df == b_c
assert df.values.shape != b_c.shape
# with alignment
df = DataFrame(
np.arange(6).reshape((3, 2)), columns=list("AB"), index=list("abc")
)
expected.index = df.index
expected.columns = df.columns
with pytest.raises(ValueError, match=msg1d):
df == lst
with pytest.raises(ValueError, match=msg1d):
df == tup
def test_inplace_ops_alignment(self):
# inplace ops / ops alignment
# GH 8511
columns = list("abcdefg")
X_orig = DataFrame(
np.arange(10 * len(columns)).reshape(-1, len(columns)),
columns=columns,
index=range(10),
)
Z = 100 * X_orig.iloc[:, 1:-1].copy()
block1 = list("bedcf")
subs = list("bcdef")
# add
X = X_orig.copy()
result1 = (X[block1] + Z).reindex(columns=subs)
X[block1] += Z
result2 = X.reindex(columns=subs)
X = X_orig.copy()
result3 = (X[block1] + Z[block1]).reindex(columns=subs)
X[block1] += Z[block1]
result4 = X.reindex(columns=subs)
tm.assert_frame_equal(result1, result2)
tm.assert_frame_equal(result1, result3)
tm.assert_frame_equal(result1, result4)
# sub
X = X_orig.copy()
result1 = (X[block1] - Z).reindex(columns=subs)
X[block1] -= Z
result2 = X.reindex(columns=subs)
X = X_orig.copy()
result3 = (X[block1] - Z[block1]).reindex(columns=subs)
X[block1] -= Z[block1]
result4 = X.reindex(columns=subs)
tm.assert_frame_equal(result1, result2)
tm.assert_frame_equal(result1, result3)
tm.assert_frame_equal(result1, result4)
def test_inplace_ops_identity(self):
# GH 5104
# make sure that we are actually changing the object
s_orig = Series([1, 2, 3])
df_orig = DataFrame(
np.random.default_rng(2).integers(0, 5, size=10).reshape(-1, 5)
)
# no dtype change
s = s_orig.copy()
s2 = s
s += 1
tm.assert_series_equal(s, s2)
tm.assert_series_equal(s_orig + 1, s)
assert s is s2
assert s._mgr is s2._mgr
df = df_orig.copy()
df2 = df
df += 1
tm.assert_frame_equal(df, df2)
tm.assert_frame_equal(df_orig + 1, df)
assert df is df2
assert df._mgr is df2._mgr
# dtype change
s = s_orig.copy()
s2 = s
s += 1.5
tm.assert_series_equal(s, s2)
tm.assert_series_equal(s_orig + 1.5, s)
df = df_orig.copy()
df2 = df
df += 1.5
tm.assert_frame_equal(df, df2)
tm.assert_frame_equal(df_orig + 1.5, df)
assert df is df2
assert df._mgr is df2._mgr
# mixed dtype
arr = np.random.default_rng(2).integers(0, 10, size=5)
df_orig = DataFrame({"A": arr.copy(), "B": "foo"})
df = df_orig.copy()
df2 = df
df["A"] += 1
expected = DataFrame({"A": arr.copy() + 1, "B": "foo"})
tm.assert_frame_equal(df, expected)
tm.assert_frame_equal(df2, expected)
assert df._mgr is df2._mgr
df = df_orig.copy()
df2 = df
df["A"] += 1.5
expected = DataFrame({"A": arr.copy() + 1.5, "B": "foo"})
tm.assert_frame_equal(df, expected)
tm.assert_frame_equal(df2, expected)
assert df._mgr is df2._mgr
@pytest.mark.parametrize(
"op",
[
"add",
"and",
pytest.param(
"div",
marks=pytest.mark.xfail(
raises=AttributeError, reason="__idiv__ not implemented"
),
),
"floordiv",
"mod",
"mul",
"or",
"pow",
"sub",
"truediv",
"xor",
],
)
def test_inplace_ops_identity2(self, op):
df = DataFrame({"a": [1.0, 2.0, 3.0], "b": [1, 2, 3]})
operand = 2
if op in ("and", "or", "xor"):
# cannot use floats for boolean ops
df["a"] = [True, False, True]
df_copy = df.copy()
iop = f"__i{op}__"
op = f"__{op}__"
# no id change and value is correct
getattr(df, iop)(operand)
expected = getattr(df_copy, op)(operand)
tm.assert_frame_equal(df, expected)
expected = id(df)
assert id(df) == expected
@pytest.mark.parametrize(
"val",
[
[1, 2, 3],
(1, 2, 3),
np.array([1, 2, 3], dtype=np.int64),
range(1, 4),
],
)
def test_alignment_non_pandas(self, val):
index = ["A", "B", "C"]
columns = ["X", "Y", "Z"]
df = DataFrame(
np.random.default_rng(2).standard_normal((3, 3)),
index=index,
columns=columns,
)
align = DataFrame._align_for_op
expected = DataFrame({"X": val, "Y": val, "Z": val}, index=df.index)
tm.assert_frame_equal(align(df, val, axis=0)[1], expected)
expected = DataFrame(
{"X": [1, 1, 1], "Y": [2, 2, 2], "Z": [3, 3, 3]}, index=df.index
)
tm.assert_frame_equal(align(df, val, axis=1)[1], expected)
@pytest.mark.parametrize("val", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3)])
def test_alignment_non_pandas_length_mismatch(self, val):
index = ["A", "B", "C"]
columns = ["X", "Y", "Z"]
df = DataFrame(
np.random.default_rng(2).standard_normal((3, 3)),
index=index,
columns=columns,
)
align = DataFrame._align_for_op
# length mismatch
msg = "Unable to coerce to Series, length must be 3: given 2"
with pytest.raises(ValueError, match=msg):
align(df, val, axis=0)
with pytest.raises(ValueError, match=msg):
align(df, val, axis=1)
def test_alignment_non_pandas_index_columns(self):
index = ["A", "B", "C"]
columns = ["X", "Y", "Z"]
df = DataFrame(
np.random.default_rng(2).standard_normal((3, 3)),
index=index,
columns=columns,
)
align = DataFrame._align_for_op
val = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
tm.assert_frame_equal(
align(df, val, axis=0)[1],
DataFrame(val, index=df.index, columns=df.columns),
)
tm.assert_frame_equal(
align(df, val, axis=1)[1],
DataFrame(val, index=df.index, columns=df.columns),
)
# shape mismatch
msg = "Unable to coerce to DataFrame, shape must be"
val = np.array([[1, 2, 3], [4, 5, 6]])
with pytest.raises(ValueError, match=msg):
align(df, val, axis=0)
with pytest.raises(ValueError, match=msg):
align(df, val, axis=1)
val = np.zeros((3, 3, 3))
msg = re.escape(
"Unable to coerce to Series/DataFrame, dimension must be <= 2: (3, 3, 3)"
)
with pytest.raises(ValueError, match=msg):
align(df, val, axis=0)
with pytest.raises(ValueError, match=msg):
align(df, val, axis=1)
def test_no_warning(self, all_arithmetic_operators):
df = DataFrame({"A": [0.0, 0.0], "B": [0.0, None]})
b = df["B"]
with tm.assert_produces_warning(None):
getattr(df, all_arithmetic_operators)(b)
def test_dunder_methods_binary(self, all_arithmetic_operators):
# GH#??? frame.__foo__ should only accept one argument
df = DataFrame({"A": [0.0, 0.0], "B": [0.0, None]})
b = df["B"]
with pytest.raises(TypeError, match="takes 2 positional arguments"):
getattr(df, all_arithmetic_operators)(b, 0)
def test_align_int_fill_bug(self):
# GH#910
X = np.arange(10 * 10, dtype="float64").reshape(10, 10)
Y = np.ones((10, 1), dtype=int)
df1 = DataFrame(X)
df1["0.X"] = Y.squeeze()
df2 = df1.astype(float)
result = df1 - df1.mean()
expected = df2 - df2.mean()
tm.assert_frame_equal(result, expected)
def test_pow_with_realignment():
# GH#32685 pow has special semantics for operating with null values
left = DataFrame({"A": [0, 1, 2]})
right = DataFrame(index=[0, 1, 2])
result = left**right
expected = DataFrame({"A": [np.nan, 1.0, np.nan]})
tm.assert_frame_equal(result, expected)
# TODO: move to tests.arithmetic and parametrize
def test_pow_nan_with_zero():
left = DataFrame({"A": [np.nan, np.nan, np.nan]})
right = DataFrame({"A": [0, 0, 0]})
expected = DataFrame({"A": [1.0, 1.0, 1.0]})
result = left**right
tm.assert_frame_equal(result, expected)
result = left["A"] ** right["A"]
tm.assert_series_equal(result, expected["A"])
def test_dataframe_series_extension_dtypes():
# https://github.com/pandas-dev/pandas/issues/34311
df = DataFrame(
np.random.default_rng(2).integers(0, 100, (10, 3)), columns=["a", "b", "c"]
)
ser = Series([1, 2, 3], index=["a", "b", "c"])
expected = df.to_numpy("int64") + ser.to_numpy("int64").reshape(-1, 3)
expected = DataFrame(expected, columns=df.columns, dtype="Int64")
df_ea = df.astype("Int64")
result = df_ea + ser
tm.assert_frame_equal(result, expected)
result = df_ea + ser.astype("Int64")
tm.assert_frame_equal(result, expected)
def test_dataframe_blockwise_slicelike():
# GH#34367
arr = np.random.default_rng(2).integers(0, 1000, (100, 10))
df1 = DataFrame(arr)
# Explicit cast to float to avoid implicit cast when setting nan
df2 = df1.copy().astype({1: "float", 3: "float", 7: "float"})
df2.iloc[0, [1, 3, 7]] = np.nan
# Explicit cast to float to avoid implicit cast when setting nan
df3 = df1.copy().astype({5: "float"})
df3.iloc[0, [5]] = np.nan
# Explicit cast to float to avoid implicit cast when setting nan
df4 = df1.copy().astype({2: "float", 3: "float", 4: "float"})
df4.iloc[0, np.arange(2, 5)] = np.nan
# Explicit cast to float to avoid implicit cast when setting nan
df5 = df1.copy().astype({4: "float", 5: "float", 6: "float"})
df5.iloc[0, np.arange(4, 7)] = np.nan
for left, right in [(df1, df2), (df2, df3), (df4, df5)]:
res = left + right
expected = DataFrame({i: left[i] + right[i] for i in left.columns})
tm.assert_frame_equal(res, expected)
@pytest.mark.parametrize(
"df, col_dtype",
[
(DataFrame([[1.0, 2.0], [4.0, 5.0]], columns=list("ab")), "float64"),
(DataFrame([[1.0, "b"], [4.0, "b"]], columns=list("ab")), "object"),
],
)
def test_dataframe_operation_with_non_numeric_types(df, col_dtype):
# GH #22663
expected = DataFrame([[0.0, np.nan], [3.0, np.nan]], columns=list("ab"))
expected = expected.astype({"b": col_dtype})
result = df + Series([-1.0], index=list("a"))
tm.assert_frame_equal(result, expected)
def test_arith_reindex_with_duplicates():
# https://github.com/pandas-dev/pandas/issues/35194
df1 = DataFrame(data=[[0]], columns=["second"])
df2 = DataFrame(data=[[0, 0, 0]], columns=["first", "second", "second"])
result = df1 + df2
expected = DataFrame([[np.nan, 0, 0]], columns=["first", "second", "second"])
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize("to_add", [[Series([1, 1])], [Series([1, 1]), Series([1, 1])]])
def test_arith_list_of_arraylike_raise(to_add):
# GH 36702. Raise when trying to add list of array-like to DataFrame
df = DataFrame({"x": [1, 2], "y": [1, 2]})
msg = f"Unable to coerce list of {type(to_add[0])} to Series/DataFrame"
with pytest.raises(ValueError, match=msg):
df + to_add
with pytest.raises(ValueError, match=msg):
to_add + df
def test_inplace_arithmetic_series_update(using_copy_on_write):
# https://github.com/pandas-dev/pandas/issues/36373
df = DataFrame({"A": [1, 2, 3]})
df_orig = df.copy()
series = df["A"]
vals = series._values
series += 1
if using_copy_on_write:
assert series._values is not vals
tm.assert_frame_equal(df, df_orig)
else:
assert series._values is vals
expected = DataFrame({"A": [2, 3, 4]})
tm.assert_frame_equal(df, expected)
def test_arithmetic_multiindex_align():
"""
Regression test for: https://github.com/pandas-dev/pandas/issues/33765
"""
df1 = DataFrame(
[[1]],
index=["a"],
columns=MultiIndex.from_product([[0], [1]], names=["a", "b"]),
)
df2 = DataFrame([[1]], index=["a"], columns=Index([0], name="a"))
expected = DataFrame(
[[0]],
index=["a"],
columns=MultiIndex.from_product([[0], [1]], names=["a", "b"]),
)
result = df1 - df2
tm.assert_frame_equal(result, expected)
def test_bool_frame_mult_float():
# GH 18549
df = DataFrame(True, list("ab"), list("cd"))
result = df * 1.0
expected = DataFrame(np.ones((2, 2)), list("ab"), list("cd"))
tm.assert_frame_equal(result, expected)
def test_frame_sub_nullable_int(any_int_ea_dtype):
# GH 32822
series1 = Series([1, 2, None], dtype=any_int_ea_dtype)
series2 = Series([1, 2, 3], dtype=any_int_ea_dtype)
expected = DataFrame([0, 0, None], dtype=any_int_ea_dtype)
result = series1.to_frame() - series2.to_frame()
tm.assert_frame_equal(result, expected)
def test_frame_op_subclass_nonclass_constructor():
# GH#43201 subclass._constructor is a function, not the subclass itself
class SubclassedSeries(Series):
@property
def _constructor(self):
return SubclassedSeries
@property
def _constructor_expanddim(self):
return SubclassedDataFrame
class SubclassedDataFrame(DataFrame):
_metadata = ["my_extra_data"]
def __init__(self, my_extra_data, *args, **kwargs) -> None:
self.my_extra_data = my_extra_data
super().__init__(*args, **kwargs)
@property
def _constructor(self):
return functools.partial(type(self), self.my_extra_data)
@property
def _constructor_sliced(self):
return SubclassedSeries
sdf = SubclassedDataFrame("some_data", {"A": [1, 2, 3], "B": [4, 5, 6]})
result = sdf * 2
expected = SubclassedDataFrame("some_data", {"A": [2, 4, 6], "B": [8, 10, 12]})
tm.assert_frame_equal(result, expected)
result = sdf + sdf
tm.assert_frame_equal(result, expected)
def test_enum_column_equality():
Cols = Enum("Cols", "col1 col2")
q1 = DataFrame({Cols.col1: [1, 2, 3]})
q2 = DataFrame({Cols.col1: [1, 2, 3]})
result = q1[Cols.col1] == q2[Cols.col1]
expected = Series([True, True, True], name=Cols.col1)
tm.assert_series_equal(result, expected)