Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

2017 lines
71 KiB

from datetime import timedelta
from decimal import Decimal
import re
from dateutil.tz import tzlocal
import numpy as np
import pytest
from pandas.compat import (
IS64,
is_platform_windows,
)
import pandas.util._test_decorators as td
import pandas as pd
from pandas import (
Categorical,
CategoricalDtype,
DataFrame,
Index,
Series,
Timestamp,
date_range,
isna,
notna,
to_datetime,
to_timedelta,
)
import pandas._testing as tm
from pandas.core import (
algorithms,
nanops,
)
is_windows_or_is32 = is_platform_windows() or not IS64
def assert_stat_op_calc(
opname,
alternative,
frame,
has_skipna=True,
check_dtype=True,
check_dates=False,
rtol=1e-5,
atol=1e-8,
skipna_alternative=None,
):
"""
Check that operator opname works as advertised on frame
Parameters
----------
opname : str
Name of the operator to test on frame
alternative : function
Function that opname is tested against; i.e. "frame.opname()" should
equal "alternative(frame)".
frame : DataFrame
The object that the tests are executed on
has_skipna : bool, default True
Whether the method "opname" has the kwarg "skip_na"
check_dtype : bool, default True
Whether the dtypes of the result of "frame.opname()" and
"alternative(frame)" should be checked.
check_dates : bool, default false
Whether opname should be tested on a Datetime Series
rtol : float, default 1e-5
Relative tolerance.
atol : float, default 1e-8
Absolute tolerance.
skipna_alternative : function, default None
NaN-safe version of alternative
"""
f = getattr(frame, opname)
if check_dates:
df = DataFrame({"b": date_range("1/1/2001", periods=2)})
with tm.assert_produces_warning(None):
result = getattr(df, opname)()
assert isinstance(result, Series)
df["a"] = range(len(df))
with tm.assert_produces_warning(None):
result = getattr(df, opname)()
assert isinstance(result, Series)
assert len(result)
if has_skipna:
def wrapper(x):
return alternative(x.values)
skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative)
result0 = f(axis=0, skipna=False)
result1 = f(axis=1, skipna=False)
tm.assert_series_equal(
result0, frame.apply(wrapper), check_dtype=check_dtype, rtol=rtol, atol=atol
)
tm.assert_series_equal(
result1,
frame.apply(wrapper, axis=1),
rtol=rtol,
atol=atol,
)
else:
skipna_wrapper = alternative
result0 = f(axis=0)
result1 = f(axis=1)
tm.assert_series_equal(
result0,
frame.apply(skipna_wrapper),
check_dtype=check_dtype,
rtol=rtol,
atol=atol,
)
if opname in ["sum", "prod"]:
expected = frame.apply(skipna_wrapper, axis=1)
tm.assert_series_equal(
result1, expected, check_dtype=False, rtol=rtol, atol=atol
)
# check dtypes
if check_dtype:
lcd_dtype = frame.values.dtype
assert lcd_dtype == result0.dtype
assert lcd_dtype == result1.dtype
# bad axis
with pytest.raises(ValueError, match="No axis named 2"):
f(axis=2)
# all NA case
if has_skipna:
all_na = frame * np.nan
r0 = getattr(all_na, opname)(axis=0)
r1 = getattr(all_na, opname)(axis=1)
if opname in ["sum", "prod"]:
unit = 1 if opname == "prod" else 0 # result for empty sum/prod
expected = Series(unit, index=r0.index, dtype=r0.dtype)
tm.assert_series_equal(r0, expected)
expected = Series(unit, index=r1.index, dtype=r1.dtype)
tm.assert_series_equal(r1, expected)
class TestDataFrameAnalytics:
# ---------------------------------------------------------------------
# Reductions
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize(
"opname",
[
"count",
"sum",
"mean",
"product",
"median",
"min",
"max",
"nunique",
"var",
"std",
"sem",
pytest.param("skew", marks=td.skip_if_no_scipy),
pytest.param("kurt", marks=td.skip_if_no_scipy),
],
)
def test_stat_op_api_float_string_frame(self, float_string_frame, axis, opname):
if (opname in ("sum", "min", "max") and axis == 0) or opname in (
"count",
"nunique",
):
getattr(float_string_frame, opname)(axis=axis)
else:
if opname in ["var", "std", "sem", "skew", "kurt"]:
msg = "could not convert string to float: 'bar'"
elif opname == "product":
if axis == 1:
msg = "can't multiply sequence by non-int of type 'float'"
else:
msg = "can't multiply sequence by non-int of type 'str'"
elif opname == "sum":
msg = r"unsupported operand type\(s\) for \+: 'float' and 'str'"
elif opname == "mean":
if axis == 0:
# different message on different builds
msg = "|".join(
[
r"Could not convert \['.*'\] to numeric",
"Could not convert string '(bar){30}' to numeric",
]
)
else:
msg = r"unsupported operand type\(s\) for \+: 'float' and 'str'"
elif opname in ["min", "max"]:
msg = "'[><]=' not supported between instances of 'float' and 'str'"
elif opname == "median":
msg = re.compile(r"Cannot convert \[.*\] to numeric", flags=re.S)
with pytest.raises(TypeError, match=msg):
getattr(float_string_frame, opname)(axis=axis)
if opname != "nunique":
getattr(float_string_frame, opname)(axis=axis, numeric_only=True)
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize(
"opname",
[
"count",
"sum",
"mean",
"product",
"median",
"min",
"max",
"var",
"std",
"sem",
pytest.param("skew", marks=td.skip_if_no_scipy),
pytest.param("kurt", marks=td.skip_if_no_scipy),
],
)
def test_stat_op_api_float_frame(self, float_frame, axis, opname):
getattr(float_frame, opname)(axis=axis, numeric_only=False)
def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame):
def count(s):
return notna(s).sum()
def nunique(s):
return len(algorithms.unique1d(s.dropna()))
def var(x):
return np.var(x, ddof=1)
def std(x):
return np.std(x, ddof=1)
def sem(x):
return np.std(x, ddof=1) / np.sqrt(len(x))
assert_stat_op_calc(
"nunique",
nunique,
float_frame_with_na,
has_skipna=False,
check_dtype=False,
check_dates=True,
)
# GH#32571: rol needed for flaky CI builds
# mixed types (with upcasting happening)
assert_stat_op_calc(
"sum",
np.sum,
mixed_float_frame.astype("float32"),
check_dtype=False,
rtol=1e-3,
)
assert_stat_op_calc(
"sum", np.sum, float_frame_with_na, skipna_alternative=np.nansum
)
assert_stat_op_calc("mean", np.mean, float_frame_with_na, check_dates=True)
assert_stat_op_calc(
"product", np.prod, float_frame_with_na, skipna_alternative=np.nanprod
)
assert_stat_op_calc("var", var, float_frame_with_na)
assert_stat_op_calc("std", std, float_frame_with_na)
assert_stat_op_calc("sem", sem, float_frame_with_na)
assert_stat_op_calc(
"count",
count,
float_frame_with_na,
has_skipna=False,
check_dtype=False,
check_dates=True,
)
def test_stat_op_calc_skew_kurtosis(self, float_frame_with_na):
sp_stats = pytest.importorskip("scipy.stats")
def skewness(x):
if len(x) < 3:
return np.nan
return sp_stats.skew(x, bias=False)
def kurt(x):
if len(x) < 4:
return np.nan
return sp_stats.kurtosis(x, bias=False)
assert_stat_op_calc("skew", skewness, float_frame_with_na)
assert_stat_op_calc("kurt", kurt, float_frame_with_na)
def test_median(self, float_frame_with_na, int_frame):
def wrapper(x):
if isna(x).any():
return np.nan
return np.median(x)
assert_stat_op_calc("median", wrapper, float_frame_with_na, check_dates=True)
assert_stat_op_calc(
"median", wrapper, int_frame, check_dtype=False, check_dates=True
)
@pytest.mark.parametrize(
"method", ["sum", "mean", "prod", "var", "std", "skew", "min", "max"]
)
@pytest.mark.parametrize(
"df",
[
DataFrame(
{
"a": [
-0.00049987540199591344,
-0.0016467257772919831,
0.00067695870775883013,
],
"b": [-0, -0, 0.0],
"c": [
0.00031111847529610595,
0.0014902627951905339,
-0.00094099200035979691,
],
},
index=["foo", "bar", "baz"],
dtype="O",
),
DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object),
],
)
@pytest.mark.filterwarnings("ignore:Mismatched null-like values:FutureWarning")
def test_stat_operators_attempt_obj_array(self, method, df, axis):
# GH#676
assert df.values.dtype == np.object_
result = getattr(df, method)(axis=axis)
expected = getattr(df.astype("f8"), method)(axis=axis).astype(object)
if axis in [1, "columns"] and method in ["min", "max"]:
expected[expected.isna()] = None
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("op", ["mean", "std", "var", "skew", "kurt", "sem"])
def test_mixed_ops(self, op):
# GH#16116
df = DataFrame(
{
"int": [1, 2, 3, 4],
"float": [1.0, 2.0, 3.0, 4.0],
"str": ["a", "b", "c", "d"],
}
)
msg = "|".join(
[
"Could not convert",
"could not convert",
"can't multiply sequence by non-int",
]
)
with pytest.raises(TypeError, match=msg):
getattr(df, op)()
with pd.option_context("use_bottleneck", False):
msg = "|".join(
[
"Could not convert",
"could not convert",
"can't multiply sequence by non-int",
]
)
with pytest.raises(TypeError, match=msg):
getattr(df, op)()
def test_reduce_mixed_frame(self):
# GH 6806
df = DataFrame(
{
"bool_data": [True, True, False, False, False],
"int_data": [10, 20, 30, 40, 50],
"string_data": ["a", "b", "c", "d", "e"],
}
)
df.reindex(columns=["bool_data", "int_data", "string_data"])
test = df.sum(axis=0)
tm.assert_numpy_array_equal(
test.values, np.array([2, 150, "abcde"], dtype=object)
)
alt = df.T.sum(axis=1)
tm.assert_series_equal(test, alt)
def test_nunique(self):
df = DataFrame({"A": [1, 1, 1], "B": [1, 2, 3], "C": [1, np.nan, 3]})
tm.assert_series_equal(df.nunique(), Series({"A": 1, "B": 3, "C": 2}))
tm.assert_series_equal(
df.nunique(dropna=False), Series({"A": 1, "B": 3, "C": 3})
)
tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2}))
tm.assert_series_equal(
df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2})
)
@pytest.mark.parametrize("tz", [None, "UTC"])
def test_mean_mixed_datetime_numeric(self, tz):
# https://github.com/pandas-dev/pandas/issues/24752
df = DataFrame({"A": [1, 1], "B": [Timestamp("2000", tz=tz)] * 2})
result = df.mean()
expected = Series([1.0, Timestamp("2000", tz=tz)], index=["A", "B"])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("tz", [None, "UTC"])
def test_mean_includes_datetimes(self, tz):
# https://github.com/pandas-dev/pandas/issues/24752
# Behavior in 0.24.0rc1 was buggy.
# As of 2.0 with numeric_only=None we do *not* drop datetime columns
df = DataFrame({"A": [Timestamp("2000", tz=tz)] * 2})
result = df.mean()
expected = Series([Timestamp("2000", tz=tz)], index=["A"])
tm.assert_series_equal(result, expected)
def test_mean_mixed_string_decimal(self):
# GH 11670
# possible bug when calculating mean of DataFrame?
d = [
{"A": 2, "B": None, "C": Decimal("628.00")},
{"A": 1, "B": None, "C": Decimal("383.00")},
{"A": 3, "B": None, "C": Decimal("651.00")},
{"A": 2, "B": None, "C": Decimal("575.00")},
{"A": 4, "B": None, "C": Decimal("1114.00")},
{"A": 1, "B": "TEST", "C": Decimal("241.00")},
{"A": 2, "B": None, "C": Decimal("572.00")},
{"A": 4, "B": None, "C": Decimal("609.00")},
{"A": 3, "B": None, "C": Decimal("820.00")},
{"A": 5, "B": None, "C": Decimal("1223.00")},
]
df = DataFrame(d)
with pytest.raises(TypeError, match="unsupported operand type"):
df.mean()
result = df[["A", "C"]].mean()
expected = Series([2.7, 681.6], index=["A", "C"], dtype=object)
tm.assert_series_equal(result, expected)
def test_var_std(self, datetime_frame):
result = datetime_frame.std(ddof=4)
expected = datetime_frame.apply(lambda x: x.std(ddof=4))
tm.assert_almost_equal(result, expected)
result = datetime_frame.var(ddof=4)
expected = datetime_frame.apply(lambda x: x.var(ddof=4))
tm.assert_almost_equal(result, expected)
arr = np.repeat(np.random.default_rng(2).random((1, 1000)), 1000, 0)
result = nanops.nanvar(arr, axis=0)
assert not (result < 0).any()
with pd.option_context("use_bottleneck", False):
result = nanops.nanvar(arr, axis=0)
assert not (result < 0).any()
@pytest.mark.parametrize("meth", ["sem", "var", "std"])
def test_numeric_only_flag(self, meth):
# GH 9201
df1 = DataFrame(
np.random.default_rng(2).standard_normal((5, 3)),
columns=["foo", "bar", "baz"],
)
# Cast to object to avoid implicit cast when setting entry to "100" below
df1 = df1.astype({"foo": object})
# set one entry to a number in str format
df1.loc[0, "foo"] = "100"
df2 = DataFrame(
np.random.default_rng(2).standard_normal((5, 3)),
columns=["foo", "bar", "baz"],
)
# Cast to object to avoid implicit cast when setting entry to "a" below
df2 = df2.astype({"foo": object})
# set one entry to a non-number str
df2.loc[0, "foo"] = "a"
result = getattr(df1, meth)(axis=1, numeric_only=True)
expected = getattr(df1[["bar", "baz"]], meth)(axis=1)
tm.assert_series_equal(expected, result)
result = getattr(df2, meth)(axis=1, numeric_only=True)
expected = getattr(df2[["bar", "baz"]], meth)(axis=1)
tm.assert_series_equal(expected, result)
# df1 has all numbers, df2 has a letter inside
msg = r"unsupported operand type\(s\) for -: 'float' and 'str'"
with pytest.raises(TypeError, match=msg):
getattr(df1, meth)(axis=1, numeric_only=False)
msg = "could not convert string to float: 'a'"
with pytest.raises(TypeError, match=msg):
getattr(df2, meth)(axis=1, numeric_only=False)
def test_sem(self, datetime_frame):
result = datetime_frame.sem(ddof=4)
expected = datetime_frame.apply(lambda x: x.std(ddof=4) / np.sqrt(len(x)))
tm.assert_almost_equal(result, expected)
arr = np.repeat(np.random.default_rng(2).random((1, 1000)), 1000, 0)
result = nanops.nansem(arr, axis=0)
assert not (result < 0).any()
with pd.option_context("use_bottleneck", False):
result = nanops.nansem(arr, axis=0)
assert not (result < 0).any()
@pytest.mark.parametrize(
"dropna, expected",
[
(
True,
{
"A": [12],
"B": [10.0],
"C": [1.0],
"D": ["a"],
"E": Categorical(["a"], categories=["a"]),
"F": to_datetime(["2000-1-2"]),
"G": to_timedelta(["1 days"]),
},
),
(
False,
{
"A": [12],
"B": [10.0],
"C": [np.nan],
"D": np.array([np.nan], dtype=object),
"E": Categorical([np.nan], categories=["a"]),
"F": [pd.NaT],
"G": to_timedelta([pd.NaT]),
},
),
(
True,
{
"H": [8, 9, np.nan, np.nan],
"I": [8, 9, np.nan, np.nan],
"J": [1, np.nan, np.nan, np.nan],
"K": Categorical(["a", np.nan, np.nan, np.nan], categories=["a"]),
"L": to_datetime(["2000-1-2", "NaT", "NaT", "NaT"]),
"M": to_timedelta(["1 days", "nan", "nan", "nan"]),
"N": [0, 1, 2, 3],
},
),
(
False,
{
"H": [8, 9, np.nan, np.nan],
"I": [8, 9, np.nan, np.nan],
"J": [1, np.nan, np.nan, np.nan],
"K": Categorical([np.nan, "a", np.nan, np.nan], categories=["a"]),
"L": to_datetime(["NaT", "2000-1-2", "NaT", "NaT"]),
"M": to_timedelta(["nan", "1 days", "nan", "nan"]),
"N": [0, 1, 2, 3],
},
),
],
)
def test_mode_dropna(self, dropna, expected):
df = DataFrame(
{
"A": [12, 12, 19, 11],
"B": [10, 10, np.nan, 3],
"C": [1, np.nan, np.nan, np.nan],
"D": [np.nan, np.nan, "a", np.nan],
"E": Categorical([np.nan, np.nan, "a", np.nan]),
"F": to_datetime(["NaT", "2000-1-2", "NaT", "NaT"]),
"G": to_timedelta(["1 days", "nan", "nan", "nan"]),
"H": [8, 8, 9, 9],
"I": [9, 9, 8, 8],
"J": [1, 1, np.nan, np.nan],
"K": Categorical(["a", np.nan, "a", np.nan]),
"L": to_datetime(["2000-1-2", "2000-1-2", "NaT", "NaT"]),
"M": to_timedelta(["1 days", "nan", "1 days", "nan"]),
"N": np.arange(4, dtype="int64"),
}
)
result = df[sorted(expected.keys())].mode(dropna=dropna)
expected = DataFrame(expected)
tm.assert_frame_equal(result, expected)
def test_mode_sortwarning(self):
# Check for the warning that is raised when the mode
# results cannot be sorted
df = DataFrame({"A": [np.nan, np.nan, "a", "a"]})
expected = DataFrame({"A": ["a", np.nan]})
with tm.assert_produces_warning(UserWarning):
result = df.mode(dropna=False)
result = result.sort_values(by="A").reset_index(drop=True)
tm.assert_frame_equal(result, expected)
def test_mode_empty_df(self):
df = DataFrame([], columns=["a", "b"])
result = df.mode()
expected = DataFrame([], columns=["a", "b"], index=Index([], dtype=np.int64))
tm.assert_frame_equal(result, expected)
def test_operators_timedelta64(self):
df = DataFrame(
{
"A": date_range("2012-1-1", periods=3, freq="D"),
"B": date_range("2012-1-2", periods=3, freq="D"),
"C": Timestamp("20120101") - timedelta(minutes=5, seconds=5),
}
)
diffs = DataFrame({"A": df["A"] - df["C"], "B": df["A"] - df["B"]})
# min
result = diffs.min()
assert result.iloc[0] == diffs.loc[0, "A"]
assert result.iloc[1] == diffs.loc[0, "B"]
result = diffs.min(axis=1)
assert (result == diffs.loc[0, "B"]).all()
# max
result = diffs.max()
assert result.iloc[0] == diffs.loc[2, "A"]
assert result.iloc[1] == diffs.loc[2, "B"]
result = diffs.max(axis=1)
assert (result == diffs["A"]).all()
# abs
result = diffs.abs()
result2 = abs(diffs)
expected = DataFrame({"A": df["A"] - df["C"], "B": df["B"] - df["A"]})
tm.assert_frame_equal(result, expected)
tm.assert_frame_equal(result2, expected)
# mixed frame
mixed = diffs.copy()
mixed["C"] = "foo"
mixed["D"] = 1
mixed["E"] = 1.0
mixed["F"] = Timestamp("20130101")
# results in an object array
result = mixed.min()
expected = Series(
[
pd.Timedelta(timedelta(seconds=5 * 60 + 5)),
pd.Timedelta(timedelta(days=-1)),
"foo",
1,
1.0,
Timestamp("20130101"),
],
index=mixed.columns,
)
tm.assert_series_equal(result, expected)
# excludes non-numeric
result = mixed.min(axis=1, numeric_only=True)
expected = Series([1, 1, 1.0], index=[0, 1, 2])
tm.assert_series_equal(result, expected)
# works when only those columns are selected
result = mixed[["A", "B"]].min(1)
expected = Series([timedelta(days=-1)] * 3)
tm.assert_series_equal(result, expected)
result = mixed[["A", "B"]].min()
expected = Series(
[timedelta(seconds=5 * 60 + 5), timedelta(days=-1)], index=["A", "B"]
)
tm.assert_series_equal(result, expected)
# GH 3106
df = DataFrame(
{
"time": date_range("20130102", periods=5),
"time2": date_range("20130105", periods=5),
}
)
df["off1"] = df["time2"] - df["time"]
assert df["off1"].dtype == "timedelta64[ns]"
df["off2"] = df["time"] - df["time2"]
df._consolidate_inplace()
assert df["off1"].dtype == "timedelta64[ns]"
assert df["off2"].dtype == "timedelta64[ns]"
def test_std_timedelta64_skipna_false(self):
# GH#37392
tdi = pd.timedelta_range("1 Day", periods=10)
df = DataFrame({"A": tdi, "B": tdi}, copy=True)
df.iloc[-2, -1] = pd.NaT
result = df.std(skipna=False)
expected = Series(
[df["A"].std(), pd.NaT], index=["A", "B"], dtype="timedelta64[ns]"
)
tm.assert_series_equal(result, expected)
result = df.std(axis=1, skipna=False)
expected = Series([pd.Timedelta(0)] * 8 + [pd.NaT, pd.Timedelta(0)])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"values", [["2022-01-01", "2022-01-02", pd.NaT, "2022-01-03"], 4 * [pd.NaT]]
)
def test_std_datetime64_with_nat(
self, values, skipna, using_array_manager, request
):
# GH#51335
if using_array_manager and (
not skipna or all(value is pd.NaT for value in values)
):
mark = pytest.mark.xfail(
reason="GH#51446: Incorrect type inference on NaT in reduction result"
)
request.node.add_marker(mark)
df = DataFrame({"a": to_datetime(values)})
result = df.std(skipna=skipna)
if not skipna or all(value is pd.NaT for value in values):
expected = Series({"a": pd.NaT}, dtype="timedelta64[ns]")
else:
# 86400000000000ns == 1 day
expected = Series({"a": 86400000000000}, dtype="timedelta64[ns]")
tm.assert_series_equal(result, expected)
def test_sum_corner(self):
empty_frame = DataFrame()
axis0 = empty_frame.sum(0)
axis1 = empty_frame.sum(1)
assert isinstance(axis0, Series)
assert isinstance(axis1, Series)
assert len(axis0) == 0
assert len(axis1) == 0
@pytest.mark.parametrize(
"index",
[
tm.makeRangeIndex(0),
tm.makeDateIndex(0),
tm.makeNumericIndex(0, dtype=int),
tm.makeNumericIndex(0, dtype=float),
tm.makeDateIndex(0, freq="M"),
tm.makePeriodIndex(0),
],
)
def test_axis_1_empty(self, all_reductions, index, using_array_manager):
df = DataFrame(columns=["a"], index=index)
result = getattr(df, all_reductions)(axis=1)
if all_reductions in ("any", "all"):
expected_dtype = "bool"
elif all_reductions == "count":
expected_dtype = "int64"
else:
expected_dtype = "object"
expected = Series([], index=index, dtype=expected_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("method, unit", [("sum", 0), ("prod", 1)])
@pytest.mark.parametrize("numeric_only", [None, True, False])
def test_sum_prod_nanops(self, method, unit, numeric_only):
idx = ["a", "b", "c"]
df = DataFrame({"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]})
# The default
result = getattr(df, method)(numeric_only=numeric_only)
expected = Series([unit, unit, unit], index=idx, dtype="float64")
tm.assert_series_equal(result, expected)
# min_count=1
result = getattr(df, method)(numeric_only=numeric_only, min_count=1)
expected = Series([unit, unit, np.nan], index=idx)
tm.assert_series_equal(result, expected)
# min_count=0
result = getattr(df, method)(numeric_only=numeric_only, min_count=0)
expected = Series([unit, unit, unit], index=idx, dtype="float64")
tm.assert_series_equal(result, expected)
result = getattr(df.iloc[1:], method)(numeric_only=numeric_only, min_count=1)
expected = Series([unit, np.nan, np.nan], index=idx)
tm.assert_series_equal(result, expected)
# min_count > 1
df = DataFrame({"A": [unit] * 10, "B": [unit] * 5 + [np.nan] * 5})
result = getattr(df, method)(numeric_only=numeric_only, min_count=5)
expected = Series(result, index=["A", "B"])
tm.assert_series_equal(result, expected)
result = getattr(df, method)(numeric_only=numeric_only, min_count=6)
expected = Series(result, index=["A", "B"])
tm.assert_series_equal(result, expected)
def test_sum_nanops_timedelta(self):
# prod isn't defined on timedeltas
idx = ["a", "b", "c"]
df = DataFrame({"a": [0, 0], "b": [0, np.nan], "c": [np.nan, np.nan]})
df2 = df.apply(to_timedelta)
# 0 by default
result = df2.sum()
expected = Series([0, 0, 0], dtype="m8[ns]", index=idx)
tm.assert_series_equal(result, expected)
# min_count=0
result = df2.sum(min_count=0)
tm.assert_series_equal(result, expected)
# min_count=1
result = df2.sum(min_count=1)
expected = Series([0, 0, np.nan], dtype="m8[ns]", index=idx)
tm.assert_series_equal(result, expected)
def test_sum_nanops_min_count(self):
# https://github.com/pandas-dev/pandas/issues/39738
df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]})
result = df.sum(min_count=10)
expected = Series([np.nan, np.nan], index=["x", "y"])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("float_type", ["float16", "float32", "float64"])
@pytest.mark.parametrize(
"kwargs, expected_result",
[
({"axis": 1, "min_count": 2}, [3.2, 5.3, np.nan]),
({"axis": 1, "min_count": 3}, [np.nan, np.nan, np.nan]),
({"axis": 1, "skipna": False}, [3.2, 5.3, np.nan]),
],
)
def test_sum_nanops_dtype_min_count(self, float_type, kwargs, expected_result):
# GH#46947
df = DataFrame({"a": [1.0, 2.3, 4.4], "b": [2.2, 3, np.nan]}, dtype=float_type)
result = df.sum(**kwargs)
expected = Series(expected_result).astype(float_type)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("float_type", ["float16", "float32", "float64"])
@pytest.mark.parametrize(
"kwargs, expected_result",
[
({"axis": 1, "min_count": 2}, [2.0, 4.0, np.nan]),
({"axis": 1, "min_count": 3}, [np.nan, np.nan, np.nan]),
({"axis": 1, "skipna": False}, [2.0, 4.0, np.nan]),
],
)
def test_prod_nanops_dtype_min_count(self, float_type, kwargs, expected_result):
# GH#46947
df = DataFrame(
{"a": [1.0, 2.0, 4.4], "b": [2.0, 2.0, np.nan]}, dtype=float_type
)
result = df.prod(**kwargs)
expected = Series(expected_result).astype(float_type)
tm.assert_series_equal(result, expected)
def test_sum_object(self, float_frame):
values = float_frame.values.astype(int)
frame = DataFrame(values, index=float_frame.index, columns=float_frame.columns)
deltas = frame * timedelta(1)
deltas.sum()
def test_sum_bool(self, float_frame):
# ensure this works, bug report
bools = np.isnan(float_frame)
bools.sum(1)
bools.sum(0)
def test_sum_mixed_datetime(self):
# GH#30886
df = DataFrame({"A": date_range("2000", periods=4), "B": [1, 2, 3, 4]}).reindex(
[2, 3, 4]
)
with pytest.raises(TypeError, match="does not support reduction 'sum'"):
df.sum()
def test_mean_corner(self, float_frame, float_string_frame):
# unit test when have object data
with pytest.raises(TypeError, match="Could not convert"):
float_string_frame.mean(axis=0)
# xs sum mixed type, just want to know it works...
with pytest.raises(TypeError, match="unsupported operand type"):
float_string_frame.mean(axis=1)
# take mean of boolean column
float_frame["bool"] = float_frame["A"] > 0
means = float_frame.mean(0)
assert means["bool"] == float_frame["bool"].values.mean()
def test_mean_datetimelike(self):
# GH#24757 check that datetimelike are excluded by default, handled
# correctly with numeric_only=True
# As of 2.0, datetimelike are *not* excluded with numeric_only=None
df = DataFrame(
{
"A": np.arange(3),
"B": date_range("2016-01-01", periods=3),
"C": pd.timedelta_range("1D", periods=3),
"D": pd.period_range("2016", periods=3, freq="A"),
}
)
result = df.mean(numeric_only=True)
expected = Series({"A": 1.0})
tm.assert_series_equal(result, expected)
with pytest.raises(TypeError, match="mean is not implemented for PeriodArray"):
df.mean()
def test_mean_datetimelike_numeric_only_false(self):
df = DataFrame(
{
"A": np.arange(3),
"B": date_range("2016-01-01", periods=3),
"C": pd.timedelta_range("1D", periods=3),
}
)
# datetime(tz) and timedelta work
result = df.mean(numeric_only=False)
expected = Series({"A": 1, "B": df.loc[1, "B"], "C": df.loc[1, "C"]})
tm.assert_series_equal(result, expected)
# mean of period is not allowed
df["D"] = pd.period_range("2016", periods=3, freq="A")
with pytest.raises(TypeError, match="mean is not implemented for Period"):
df.mean(numeric_only=False)
def test_mean_extensionarray_numeric_only_true(self):
# https://github.com/pandas-dev/pandas/issues/33256
arr = np.random.default_rng(2).integers(1000, size=(10, 5))
df = DataFrame(arr, dtype="Int64")
result = df.mean(numeric_only=True)
expected = DataFrame(arr).mean().astype("Float64")
tm.assert_series_equal(result, expected)
def test_stats_mixed_type(self, float_string_frame):
with pytest.raises(TypeError, match="could not convert"):
float_string_frame.std(1)
with pytest.raises(TypeError, match="could not convert"):
float_string_frame.var(1)
with pytest.raises(TypeError, match="unsupported operand type"):
float_string_frame.mean(1)
with pytest.raises(TypeError, match="could not convert"):
float_string_frame.skew(1)
def test_sum_bools(self):
df = DataFrame(index=range(1), columns=range(10))
bools = isna(df)
assert bools.sum(axis=1)[0] == 10
# ----------------------------------------------------------------------
# Index of max / min
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("axis", [0, 1])
def test_idxmin(self, float_frame, int_frame, skipna, axis):
frame = float_frame
frame.iloc[5:10] = np.nan
frame.iloc[15:20, -2:] = np.nan
for df in [frame, int_frame]:
warn = None
if skipna is False or axis == 1:
warn = None if df is int_frame else FutureWarning
msg = "The behavior of DataFrame.idxmin with all-NA values"
with tm.assert_produces_warning(warn, match=msg):
result = df.idxmin(axis=axis, skipna=skipna)
msg2 = "The behavior of Series.idxmin"
with tm.assert_produces_warning(warn, match=msg2):
expected = df.apply(Series.idxmin, axis=axis, skipna=skipna)
expected = expected.astype(df.index.dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_idxmin_empty(self, index, skipna, axis):
# GH53265
if axis == 0:
frame = DataFrame(index=index)
else:
frame = DataFrame(columns=index)
result = frame.idxmin(axis=axis, skipna=skipna)
expected = Series(dtype=index.dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("numeric_only", [True, False])
def test_idxmin_numeric_only(self, numeric_only):
df = DataFrame({"a": [2, 3, 1], "b": [2, 1, 1], "c": list("xyx")})
result = df.idxmin(numeric_only=numeric_only)
if numeric_only:
expected = Series([2, 1], index=["a", "b"])
else:
expected = Series([2, 1, 0], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)
def test_idxmin_axis_2(self, float_frame):
frame = float_frame
msg = "No axis named 2 for object type DataFrame"
with pytest.raises(ValueError, match=msg):
frame.idxmin(axis=2)
@pytest.mark.parametrize("skipna", [True, False])
@pytest.mark.parametrize("axis", [0, 1])
def test_idxmax(self, float_frame, int_frame, skipna, axis):
frame = float_frame
frame.iloc[5:10] = np.nan
frame.iloc[15:20, -2:] = np.nan
for df in [frame, int_frame]:
warn = None
if skipna is False or axis == 1:
warn = None if df is int_frame else FutureWarning
msg = "The behavior of DataFrame.idxmax with all-NA values"
with tm.assert_produces_warning(warn, match=msg):
result = df.idxmax(axis=axis, skipna=skipna)
msg2 = "The behavior of Series.idxmax"
with tm.assert_produces_warning(warn, match=msg2):
expected = df.apply(Series.idxmax, axis=axis, skipna=skipna)
expected = expected.astype(df.index.dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.filterwarnings(r"ignore:PeriodDtype\[B\] is deprecated:FutureWarning")
def test_idxmax_empty(self, index, skipna, axis):
# GH53265
if axis == 0:
frame = DataFrame(index=index)
else:
frame = DataFrame(columns=index)
result = frame.idxmax(axis=axis, skipna=skipna)
expected = Series(dtype=index.dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("numeric_only", [True, False])
def test_idxmax_numeric_only(self, numeric_only):
df = DataFrame({"a": [2, 3, 1], "b": [2, 1, 1], "c": list("xyx")})
result = df.idxmax(numeric_only=numeric_only)
if numeric_only:
expected = Series([1, 0], index=["a", "b"])
else:
expected = Series([1, 0, 1], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)
def test_idxmax_axis_2(self, float_frame):
frame = float_frame
msg = "No axis named 2 for object type DataFrame"
with pytest.raises(ValueError, match=msg):
frame.idxmax(axis=2)
def test_idxmax_mixed_dtype(self):
# don't cast to object, which would raise in nanops
dti = date_range("2016-01-01", periods=3)
# Copying dti is needed for ArrayManager otherwise when we set
# df.loc[0, 3] = pd.NaT below it edits dti
df = DataFrame({1: [0, 2, 1], 2: range(3)[::-1], 3: dti.copy(deep=True)})
result = df.idxmax()
expected = Series([1, 0, 2], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
result = df.idxmin()
expected = Series([0, 2, 0], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
# with NaTs
df.loc[0, 3] = pd.NaT
result = df.idxmax()
expected = Series([1, 0, 2], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
result = df.idxmin()
expected = Series([0, 2, 1], index=[1, 2, 3])
tm.assert_series_equal(result, expected)
# with multi-column dt64 block
df[4] = dti[::-1]
df._consolidate_inplace()
result = df.idxmax()
expected = Series([1, 0, 2, 0], index=[1, 2, 3, 4])
tm.assert_series_equal(result, expected)
result = df.idxmin()
expected = Series([0, 2, 1, 2], index=[1, 2, 3, 4])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"op, expected_value",
[("idxmax", [0, 4]), ("idxmin", [0, 5])],
)
def test_idxmax_idxmin_convert_dtypes(self, op, expected_value):
# GH 40346
df = DataFrame(
{
"ID": [100, 100, 100, 200, 200, 200],
"value": [0, 0, 0, 1, 2, 0],
},
dtype="Int64",
)
df = df.groupby("ID")
result = getattr(df, op)()
expected = DataFrame(
{"value": expected_value},
index=Index([100, 200], name="ID", dtype="Int64"),
)
tm.assert_frame_equal(result, expected)
def test_idxmax_dt64_multicolumn_axis1(self):
dti = date_range("2016-01-01", periods=3)
df = DataFrame({3: dti, 4: dti[::-1]}, copy=True)
df.iloc[0, 0] = pd.NaT
df._consolidate_inplace()
result = df.idxmax(axis=1)
expected = Series([4, 3, 3])
tm.assert_series_equal(result, expected)
result = df.idxmin(axis=1)
expected = Series([4, 3, 4])
tm.assert_series_equal(result, expected)
# ----------------------------------------------------------------------
# Logical reductions
@pytest.mark.parametrize("opname", ["any", "all"])
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("bool_only", [False, True])
def test_any_all_mixed_float(self, opname, axis, bool_only, float_string_frame):
# make sure op works on mixed-type frame
mixed = float_string_frame
mixed["_bool_"] = np.random.default_rng(2).standard_normal(len(mixed)) > 0.5
getattr(mixed, opname)(axis=axis, bool_only=bool_only)
@pytest.mark.parametrize("opname", ["any", "all"])
@pytest.mark.parametrize("axis", [0, 1])
def test_any_all_bool_with_na(self, opname, axis, bool_frame_with_na):
getattr(bool_frame_with_na, opname)(axis=axis, bool_only=False)
@pytest.mark.parametrize("opname", ["any", "all"])
def test_any_all_bool_frame(self, opname, bool_frame_with_na):
# GH#12863: numpy gives back non-boolean data for object type
# so fill NaNs to compare with pandas behavior
frame = bool_frame_with_na.fillna(True)
alternative = getattr(np, opname)
f = getattr(frame, opname)
def skipna_wrapper(x):
nona = x.dropna().values
return alternative(nona)
def wrapper(x):
return alternative(x.values)
result0 = f(axis=0, skipna=False)
result1 = f(axis=1, skipna=False)
tm.assert_series_equal(result0, frame.apply(wrapper))
tm.assert_series_equal(result1, frame.apply(wrapper, axis=1))
result0 = f(axis=0)
result1 = f(axis=1)
tm.assert_series_equal(result0, frame.apply(skipna_wrapper))
tm.assert_series_equal(
result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False
)
# bad axis
with pytest.raises(ValueError, match="No axis named 2"):
f(axis=2)
# all NA case
all_na = frame * np.nan
r0 = getattr(all_na, opname)(axis=0)
r1 = getattr(all_na, opname)(axis=1)
if opname == "any":
assert not r0.any()
assert not r1.any()
else:
assert r0.all()
assert r1.all()
def test_any_all_extra(self):
df = DataFrame(
{
"A": [True, False, False],
"B": [True, True, False],
"C": [True, True, True],
},
index=["a", "b", "c"],
)
result = df[["A", "B"]].any(axis=1)
expected = Series([True, True, False], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)
result = df[["A", "B"]].any(axis=1, bool_only=True)
tm.assert_series_equal(result, expected)
result = df.all(1)
expected = Series([True, False, False], index=["a", "b", "c"])
tm.assert_series_equal(result, expected)
result = df.all(1, bool_only=True)
tm.assert_series_equal(result, expected)
# Axis is None
result = df.all(axis=None).item()
assert result is False
result = df.any(axis=None).item()
assert result is True
result = df[["C"]].all(axis=None).item()
assert result is True
@pytest.mark.parametrize("axis", [0, 1])
@pytest.mark.parametrize("bool_agg_func", ["any", "all"])
@pytest.mark.parametrize("skipna", [True, False])
def test_any_all_object_dtype(self, axis, bool_agg_func, skipna):
# GH#35450
df = DataFrame(
data=[
[1, np.nan, np.nan, True],
[np.nan, 2, np.nan, True],
[np.nan, np.nan, np.nan, True],
[np.nan, np.nan, "5", np.nan],
]
)
result = getattr(df, bool_agg_func)(axis=axis, skipna=skipna)
expected = Series([True, True, True, True])
tm.assert_series_equal(result, expected)
# GH#50947 deprecates this but it is not emitting a warning in some builds.
@pytest.mark.filterwarnings(
"ignore:'any' with datetime64 dtypes is deprecated.*:FutureWarning"
)
def test_any_datetime(self):
# GH 23070
float_data = [1, np.nan, 3, np.nan]
datetime_data = [
Timestamp("1960-02-15"),
Timestamp("1960-02-16"),
pd.NaT,
pd.NaT,
]
df = DataFrame({"A": float_data, "B": datetime_data})
result = df.any(axis=1)
expected = Series([True, True, True, False])
tm.assert_series_equal(result, expected)
def test_any_all_bool_only(self):
# GH 25101
df = DataFrame(
{"col1": [1, 2, 3], "col2": [4, 5, 6], "col3": [None, None, None]}
)
result = df.all(bool_only=True)
expected = Series(dtype=np.bool_, index=[])
tm.assert_series_equal(result, expected)
df = DataFrame(
{
"col1": [1, 2, 3],
"col2": [4, 5, 6],
"col3": [None, None, None],
"col4": [False, False, True],
}
)
result = df.all(bool_only=True)
expected = Series({"col4": False})
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"func, data, expected",
[
(np.any, {}, False),
(np.all, {}, True),
(np.any, {"A": []}, False),
(np.all, {"A": []}, True),
(np.any, {"A": [False, False]}, False),
(np.all, {"A": [False, False]}, False),
(np.any, {"A": [True, False]}, True),
(np.all, {"A": [True, False]}, False),
(np.any, {"A": [True, True]}, True),
(np.all, {"A": [True, True]}, True),
(np.any, {"A": [False], "B": [False]}, False),
(np.all, {"A": [False], "B": [False]}, False),
(np.any, {"A": [False, False], "B": [False, True]}, True),
(np.all, {"A": [False, False], "B": [False, True]}, False),
# other types
(np.all, {"A": Series([0.0, 1.0], dtype="float")}, False),
(np.any, {"A": Series([0.0, 1.0], dtype="float")}, True),
(np.all, {"A": Series([0, 1], dtype=int)}, False),
(np.any, {"A": Series([0, 1], dtype=int)}, True),
pytest.param(np.all, {"A": Series([0, 1], dtype="M8[ns]")}, False),
pytest.param(np.all, {"A": Series([0, 1], dtype="M8[ns, UTC]")}, False),
pytest.param(np.any, {"A": Series([0, 1], dtype="M8[ns]")}, True),
pytest.param(np.any, {"A": Series([0, 1], dtype="M8[ns, UTC]")}, True),
pytest.param(np.all, {"A": Series([1, 2], dtype="M8[ns]")}, True),
pytest.param(np.all, {"A": Series([1, 2], dtype="M8[ns, UTC]")}, True),
pytest.param(np.any, {"A": Series([1, 2], dtype="M8[ns]")}, True),
pytest.param(np.any, {"A": Series([1, 2], dtype="M8[ns, UTC]")}, True),
pytest.param(np.all, {"A": Series([0, 1], dtype="m8[ns]")}, False),
pytest.param(np.any, {"A": Series([0, 1], dtype="m8[ns]")}, True),
pytest.param(np.all, {"A": Series([1, 2], dtype="m8[ns]")}, True),
pytest.param(np.any, {"A": Series([1, 2], dtype="m8[ns]")}, True),
# np.all on Categorical raises, so the reduction drops the
# column, so all is being done on an empty Series, so is True
(np.all, {"A": Series([0, 1], dtype="category")}, True),
(np.any, {"A": Series([0, 1], dtype="category")}, False),
(np.all, {"A": Series([1, 2], dtype="category")}, True),
(np.any, {"A": Series([1, 2], dtype="category")}, False),
# Mix GH#21484
pytest.param(
np.all,
{
"A": Series([10, 20], dtype="M8[ns]"),
"B": Series([10, 20], dtype="m8[ns]"),
},
True,
),
],
)
def test_any_all_np_func(self, func, data, expected):
# GH 19976
data = DataFrame(data)
if any(isinstance(x, CategoricalDtype) for x in data.dtypes):
with pytest.raises(
TypeError, match="dtype category does not support reduction"
):
func(data)
# method version
with pytest.raises(
TypeError, match="dtype category does not support reduction"
):
getattr(DataFrame(data), func.__name__)(axis=None)
else:
msg = "'(any|all)' with datetime64 dtypes is deprecated"
if data.dtypes.apply(lambda x: x.kind == "M").any():
warn = FutureWarning
else:
warn = None
with tm.assert_produces_warning(warn, match=msg, check_stacklevel=False):
# GH#34479
result = func(data)
assert isinstance(result, np.bool_)
assert result.item() is expected
# method version
with tm.assert_produces_warning(warn, match=msg):
# GH#34479
result = getattr(DataFrame(data), func.__name__)(axis=None)
assert isinstance(result, np.bool_)
assert result.item() is expected
def test_any_all_object(self):
# GH 19976
result = np.all(DataFrame(columns=["a", "b"])).item()
assert result is True
result = np.any(DataFrame(columns=["a", "b"])).item()
assert result is False
def test_any_all_object_bool_only(self):
df = DataFrame({"A": ["foo", 2], "B": [True, False]}).astype(object)
df._consolidate_inplace()
df["C"] = Series([True, True])
# Categorical of bools is _not_ considered booly
df["D"] = df["C"].astype("category")
# The underlying bug is in DataFrame._get_bool_data, so we check
# that while we're here
res = df._get_bool_data()
expected = df[["C"]]
tm.assert_frame_equal(res, expected)
res = df.all(bool_only=True, axis=0)
expected = Series([True], index=["C"])
tm.assert_series_equal(res, expected)
# operating on a subset of columns should not produce a _larger_ Series
res = df[["B", "C"]].all(bool_only=True, axis=0)
tm.assert_series_equal(res, expected)
assert df.all(bool_only=True, axis=None)
res = df.any(bool_only=True, axis=0)
expected = Series([True], index=["C"])
tm.assert_series_equal(res, expected)
# operating on a subset of columns should not produce a _larger_ Series
res = df[["C"]].any(bool_only=True, axis=0)
tm.assert_series_equal(res, expected)
assert df.any(bool_only=True, axis=None)
# ---------------------------------------------------------------------
# Unsorted
def test_series_broadcasting(self):
# smoke test for numpy warnings
# GH 16378, GH 16306
df = DataFrame([1.0, 1.0, 1.0])
df_nan = DataFrame({"A": [np.nan, 2.0, np.nan]})
s = Series([1, 1, 1])
s_nan = Series([np.nan, np.nan, 1])
with tm.assert_produces_warning(None):
df_nan.clip(lower=s, axis=0)
for op in ["lt", "le", "gt", "ge", "eq", "ne"]:
getattr(df, op)(s_nan, axis=0)
class TestDataFrameReductions:
def test_min_max_dt64_with_NaT(self):
# Both NaT and Timestamp are in DataFrame.
df = DataFrame({"foo": [pd.NaT, pd.NaT, Timestamp("2012-05-01")]})
res = df.min()
exp = Series([Timestamp("2012-05-01")], index=["foo"])
tm.assert_series_equal(res, exp)
res = df.max()
exp = Series([Timestamp("2012-05-01")], index=["foo"])
tm.assert_series_equal(res, exp)
# GH12941, only NaTs are in DataFrame.
df = DataFrame({"foo": [pd.NaT, pd.NaT]})
res = df.min()
exp = Series([pd.NaT], index=["foo"])
tm.assert_series_equal(res, exp)
res = df.max()
exp = Series([pd.NaT], index=["foo"])
tm.assert_series_equal(res, exp)
def test_min_max_dt64_with_NaT_skipna_false(self, request, tz_naive_fixture):
# GH#36907
tz = tz_naive_fixture
if isinstance(tz, tzlocal) and is_platform_windows():
pytest.skip(
"GH#37659 OSError raised within tzlocal bc Windows "
"chokes in times before 1970-01-01"
)
df = DataFrame(
{
"a": [
Timestamp("2020-01-01 08:00:00", tz=tz),
Timestamp("1920-02-01 09:00:00", tz=tz),
],
"b": [Timestamp("2020-02-01 08:00:00", tz=tz), pd.NaT],
}
)
res = df.min(axis=1, skipna=False)
expected = Series([df.loc[0, "a"], pd.NaT])
assert expected.dtype == df["a"].dtype
tm.assert_series_equal(res, expected)
res = df.max(axis=1, skipna=False)
expected = Series([df.loc[0, "b"], pd.NaT])
assert expected.dtype == df["a"].dtype
tm.assert_series_equal(res, expected)
def test_min_max_dt64_api_consistency_with_NaT(self):
# Calling the following sum functions returned an error for dataframes but
# returned NaT for series. These tests check that the API is consistent in
# min/max calls on empty Series/DataFrames. See GH:33704 for more
# information
df = DataFrame({"x": to_datetime([])})
expected_dt_series = Series(to_datetime([]))
# check axis 0
assert (df.min(axis=0).x is pd.NaT) == (expected_dt_series.min() is pd.NaT)
assert (df.max(axis=0).x is pd.NaT) == (expected_dt_series.max() is pd.NaT)
# check axis 1
tm.assert_series_equal(df.min(axis=1), expected_dt_series)
tm.assert_series_equal(df.max(axis=1), expected_dt_series)
def test_min_max_dt64_api_consistency_empty_df(self):
# check DataFrame/Series api consistency when calling min/max on an empty
# DataFrame/Series.
df = DataFrame({"x": []})
expected_float_series = Series([], dtype=float)
# check axis 0
assert np.isnan(df.min(axis=0).x) == np.isnan(expected_float_series.min())
assert np.isnan(df.max(axis=0).x) == np.isnan(expected_float_series.max())
# check axis 1
tm.assert_series_equal(df.min(axis=1), expected_float_series)
tm.assert_series_equal(df.min(axis=1), expected_float_series)
@pytest.mark.parametrize(
"initial",
["2018-10-08 13:36:45+00:00", "2018-10-08 13:36:45+03:00"], # Non-UTC timezone
)
@pytest.mark.parametrize("method", ["min", "max"])
def test_preserve_timezone(self, initial: str, method):
# GH 28552
initial_dt = to_datetime(initial)
expected = Series([initial_dt])
df = DataFrame([expected])
result = getattr(df, method)(axis=1)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("method", ["min", "max"])
def test_minmax_tzaware_skipna_axis_1(self, method, skipna):
# GH#51242
val = to_datetime("1900-01-01", utc=True)
df = DataFrame(
{"a": Series([pd.NaT, pd.NaT, val]), "b": Series([pd.NaT, val, val])}
)
op = getattr(df, method)
result = op(axis=1, skipna=skipna)
if skipna:
expected = Series([pd.NaT, val, val])
else:
expected = Series([pd.NaT, pd.NaT, val])
tm.assert_series_equal(result, expected)
def test_frame_any_with_timedelta(self):
# GH#17667
df = DataFrame(
{
"a": Series([0, 0]),
"t": Series([to_timedelta(0, "s"), to_timedelta(1, "ms")]),
}
)
result = df.any(axis=0)
expected = Series(data=[False, True], index=["a", "t"])
tm.assert_series_equal(result, expected)
result = df.any(axis=1)
expected = Series(data=[False, True])
tm.assert_series_equal(result, expected)
def test_reductions_skipna_none_raises(
self, request, frame_or_series, all_reductions
):
if all_reductions == "count":
request.node.add_marker(
pytest.mark.xfail(reason="Count does not accept skipna")
)
obj = frame_or_series([1, 2, 3])
msg = 'For argument "skipna" expected type bool, received type NoneType.'
with pytest.raises(ValueError, match=msg):
getattr(obj, all_reductions)(skipna=None)
@td.skip_array_manager_invalid_test
def test_reduction_timestamp_smallest_unit(self):
# GH#52524
df = DataFrame(
{
"a": Series([Timestamp("2019-12-31")], dtype="datetime64[s]"),
"b": Series(
[Timestamp("2019-12-31 00:00:00.123")], dtype="datetime64[ms]"
),
}
)
result = df.max()
expected = Series(
[Timestamp("2019-12-31"), Timestamp("2019-12-31 00:00:00.123")],
dtype="datetime64[ms]",
index=["a", "b"],
)
tm.assert_series_equal(result, expected)
@td.skip_array_manager_not_yet_implemented
def test_reduction_timedelta_smallest_unit(self):
# GH#52524
df = DataFrame(
{
"a": Series([pd.Timedelta("1 days")], dtype="timedelta64[s]"),
"b": Series([pd.Timedelta("1 days")], dtype="timedelta64[ms]"),
}
)
result = df.max()
expected = Series(
[pd.Timedelta("1 days"), pd.Timedelta("1 days")],
dtype="timedelta64[ms]",
index=["a", "b"],
)
tm.assert_series_equal(result, expected)
class TestNuisanceColumns:
@pytest.mark.parametrize("method", ["any", "all"])
def test_any_all_categorical_dtype_nuisance_column(self, method):
# GH#36076 DataFrame should match Series behavior
ser = Series([0, 1], dtype="category", name="A")
df = ser.to_frame()
# Double-check the Series behavior is to raise
with pytest.raises(TypeError, match="does not support reduction"):
getattr(ser, method)()
with pytest.raises(TypeError, match="does not support reduction"):
getattr(np, method)(ser)
with pytest.raises(TypeError, match="does not support reduction"):
getattr(df, method)(bool_only=False)
with pytest.raises(TypeError, match="does not support reduction"):
getattr(df, method)(bool_only=None)
with pytest.raises(TypeError, match="does not support reduction"):
getattr(np, method)(df, axis=0)
def test_median_categorical_dtype_nuisance_column(self):
# GH#21020 DataFrame.median should match Series.median
df = DataFrame({"A": Categorical([1, 2, 2, 2, 3])})
ser = df["A"]
# Double-check the Series behavior is to raise
with pytest.raises(TypeError, match="does not support reduction"):
ser.median()
with pytest.raises(TypeError, match="does not support reduction"):
df.median(numeric_only=False)
with pytest.raises(TypeError, match="does not support reduction"):
df.median()
# same thing, but with an additional non-categorical column
df["B"] = df["A"].astype(int)
with pytest.raises(TypeError, match="does not support reduction"):
df.median(numeric_only=False)
with pytest.raises(TypeError, match="does not support reduction"):
df.median()
# TODO: np.median(df, axis=0) gives np.array([2.0, 2.0]) instead
# of expected.values
@pytest.mark.parametrize("method", ["min", "max"])
def test_min_max_categorical_dtype_non_ordered_nuisance_column(self, method):
# GH#28949 DataFrame.min should behave like Series.min
cat = Categorical(["a", "b", "c", "b"], ordered=False)
ser = Series(cat)
df = ser.to_frame("A")
# Double-check the Series behavior
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(ser, method)()
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(np, method)(ser)
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(df, method)(numeric_only=False)
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(df, method)()
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(np, method)(df, axis=0)
# same thing, but with an additional non-categorical column
df["B"] = df["A"].astype(object)
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(df, method)()
with pytest.raises(TypeError, match="is not ordered for operation"):
getattr(np, method)(df, axis=0)
class TestEmptyDataFrameReductions:
@pytest.mark.parametrize(
"opname, dtype, exp_value, exp_dtype",
[
("sum", np.int8, 0, np.int64),
("prod", np.int8, 1, np.int_),
("sum", np.int64, 0, np.int64),
("prod", np.int64, 1, np.int64),
("sum", np.uint8, 0, np.uint64),
("prod", np.uint8, 1, np.uint),
("sum", np.uint64, 0, np.uint64),
("prod", np.uint64, 1, np.uint64),
("sum", np.float32, 0, np.float32),
("prod", np.float32, 1, np.float32),
("sum", np.float64, 0, np.float64),
],
)
def test_df_empty_min_count_0(self, opname, dtype, exp_value, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=0)
expected = Series([exp_value, exp_value], dtype=exp_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"opname, dtype, exp_dtype",
[
("sum", np.int8, np.float64),
("prod", np.int8, np.float64),
("sum", np.int64, np.float64),
("prod", np.int64, np.float64),
("sum", np.uint8, np.float64),
("prod", np.uint8, np.float64),
("sum", np.uint64, np.float64),
("prod", np.uint64, np.float64),
("sum", np.float32, np.float32),
("prod", np.float32, np.float32),
("sum", np.float64, np.float64),
],
)
def test_df_empty_min_count_1(self, opname, dtype, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=1)
expected = Series([np.nan, np.nan], dtype=exp_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"opname, dtype, exp_value, exp_dtype",
[
("sum", "Int8", 0, ("Int32" if is_windows_or_is32 else "Int64")),
("prod", "Int8", 1, ("Int32" if is_windows_or_is32 else "Int64")),
("prod", "Int8", 1, ("Int32" if is_windows_or_is32 else "Int64")),
("sum", "Int64", 0, "Int64"),
("prod", "Int64", 1, "Int64"),
("sum", "UInt8", 0, ("UInt32" if is_windows_or_is32 else "UInt64")),
("prod", "UInt8", 1, ("UInt32" if is_windows_or_is32 else "UInt64")),
("sum", "UInt64", 0, "UInt64"),
("prod", "UInt64", 1, "UInt64"),
("sum", "Float32", 0, "Float32"),
("prod", "Float32", 1, "Float32"),
("sum", "Float64", 0, "Float64"),
],
)
def test_df_empty_nullable_min_count_0(self, opname, dtype, exp_value, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=0)
expected = Series([exp_value, exp_value], dtype=exp_dtype)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize(
"opname, dtype, exp_dtype",
[
("sum", "Int8", ("Int32" if is_windows_or_is32 else "Int64")),
("prod", "Int8", ("Int32" if is_windows_or_is32 else "Int64")),
("sum", "Int64", "Int64"),
("prod", "Int64", "Int64"),
("sum", "UInt8", ("UInt32" if is_windows_or_is32 else "UInt64")),
("prod", "UInt8", ("UInt32" if is_windows_or_is32 else "UInt64")),
("sum", "UInt64", "UInt64"),
("prod", "UInt64", "UInt64"),
("sum", "Float32", "Float32"),
("prod", "Float32", "Float32"),
("sum", "Float64", "Float64"),
],
)
def test_df_empty_nullable_min_count_1(self, opname, dtype, exp_dtype):
df = DataFrame({0: [], 1: []}, dtype=dtype)
result = getattr(df, opname)(min_count=1)
expected = Series([pd.NA, pd.NA], dtype=exp_dtype)
tm.assert_series_equal(result, expected)
def test_sum_timedelta64_skipna_false(using_array_manager, request):
# GH#17235
if using_array_manager:
mark = pytest.mark.xfail(
reason="Incorrect type inference on NaT in reduction result"
)
request.node.add_marker(mark)
arr = np.arange(8).astype(np.int64).view("m8[s]").reshape(4, 2)
arr[-1, -1] = "Nat"
df = DataFrame(arr)
assert (df.dtypes == arr.dtype).all()
result = df.sum(skipna=False)
expected = Series([pd.Timedelta(seconds=12), pd.NaT], dtype="m8[s]")
tm.assert_series_equal(result, expected)
result = df.sum(axis=0, skipna=False)
tm.assert_series_equal(result, expected)
result = df.sum(axis=1, skipna=False)
expected = Series(
[
pd.Timedelta(seconds=1),
pd.Timedelta(seconds=5),
pd.Timedelta(seconds=9),
pd.NaT,
],
dtype="m8[s]",
)
tm.assert_series_equal(result, expected)
def test_mixed_frame_with_integer_sum():
# https://github.com/pandas-dev/pandas/issues/34520
df = DataFrame([["a", 1]], columns=list("ab"))
df = df.astype({"b": "Int64"})
result = df.sum()
expected = Series(["a", 1], index=["a", "b"])
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("numeric_only", [True, False, None])
@pytest.mark.parametrize("method", ["min", "max"])
def test_minmax_extensionarray(method, numeric_only):
# https://github.com/pandas-dev/pandas/issues/32651
int64_info = np.iinfo("int64")
ser = Series([int64_info.max, None, int64_info.min], dtype=pd.Int64Dtype())
df = DataFrame({"Int64": ser})
result = getattr(df, method)(numeric_only=numeric_only)
expected = Series(
[getattr(int64_info, method)],
dtype="Int64",
index=Index(["Int64"], dtype="object"),
)
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("ts_value", [Timestamp("2000-01-01"), pd.NaT])
def test_frame_mixed_numeric_object_with_timestamp(ts_value):
# GH 13912
df = DataFrame({"a": [1], "b": [1.1], "c": ["foo"], "d": [ts_value]})
with pytest.raises(TypeError, match="does not support reduction"):
df.sum()
def test_prod_sum_min_count_mixed_object():
# https://github.com/pandas-dev/pandas/issues/41074
df = DataFrame([1, "a", True])
result = df.prod(axis=0, min_count=1, numeric_only=False)
expected = Series(["a"])
tm.assert_series_equal(result, expected)
msg = re.escape("unsupported operand type(s) for +: 'int' and 'str'")
with pytest.raises(TypeError, match=msg):
df.sum(axis=0, min_count=1, numeric_only=False)
@pytest.mark.parametrize("method", ["min", "max", "mean", "median", "skew", "kurt"])
@pytest.mark.parametrize("numeric_only", [True, False])
@pytest.mark.parametrize("dtype", ["float64", "Float64"])
def test_reduction_axis_none_returns_scalar(method, numeric_only, dtype):
# GH#21597 As of 2.0, axis=None reduces over all axes.
df = DataFrame(np.random.default_rng(2).standard_normal((4, 4)), dtype=dtype)
result = getattr(df, method)(axis=None, numeric_only=numeric_only)
np_arr = df.to_numpy(dtype=np.float64)
if method in {"skew", "kurt"}:
comp_mod = pytest.importorskip("scipy.stats")
if method == "kurt":
method = "kurtosis"
expected = getattr(comp_mod, method)(np_arr, bias=False, axis=None)
tm.assert_almost_equal(result, expected)
else:
expected = getattr(np, method)(np_arr, axis=None)
assert result == expected
@pytest.mark.parametrize(
"kernel",
[
"corr",
"corrwith",
"cov",
"idxmax",
"idxmin",
"kurt",
"max",
"mean",
"median",
"min",
"prod",
"quantile",
"sem",
"skew",
"std",
"sum",
"var",
],
)
def test_fails_on_non_numeric(kernel):
# GH#46852
df = DataFrame({"a": [1, 2, 3], "b": object})
args = (df,) if kernel == "corrwith" else ()
msg = "|".join(
[
"not allowed for this dtype",
"argument must be a string or a number",
"not supported between instances of",
"unsupported operand type",
"argument must be a string or a real number",
]
)
if kernel == "median":
# slightly different message on different builds
msg1 = (
r"Cannot convert \[\[<class 'object'> <class 'object'> "
r"<class 'object'>\]\] to numeric"
)
msg2 = (
r"Cannot convert \[<class 'object'> <class 'object'> "
r"<class 'object'>\] to numeric"
)
msg = "|".join([msg1, msg2])
with pytest.raises(TypeError, match=msg):
getattr(df, kernel)(*args)
@pytest.mark.parametrize(
"method",
[
"all",
"any",
"count",
"idxmax",
"idxmin",
"kurt",
"kurtosis",
"max",
"mean",
"median",
"min",
"nunique",
"prod",
"product",
"sem",
"skew",
"std",
"sum",
"var",
],
)
@pytest.mark.parametrize("min_count", [0, 2])
def test_numeric_ea_axis_1(method, skipna, min_count, any_numeric_ea_dtype):
# GH 54341
df = DataFrame(
{
"a": Series([0, 1, 2, 3], dtype=any_numeric_ea_dtype),
"b": Series([0, 1, pd.NA, 3], dtype=any_numeric_ea_dtype),
},
)
expected_df = DataFrame(
{
"a": [0.0, 1.0, 2.0, 3.0],
"b": [0.0, 1.0, np.nan, 3.0],
},
)
if method in ("count", "nunique"):
expected_dtype = "int64"
elif method in ("all", "any"):
expected_dtype = "boolean"
elif method in (
"kurt",
"kurtosis",
"mean",
"median",
"sem",
"skew",
"std",
"var",
) and not any_numeric_ea_dtype.startswith("Float"):
expected_dtype = "Float64"
else:
expected_dtype = any_numeric_ea_dtype
kwargs = {}
if method not in ("count", "nunique", "quantile"):
kwargs["skipna"] = skipna
if method in ("prod", "product", "sum"):
kwargs["min_count"] = min_count
warn = None
msg = None
if not skipna and method in ("idxmax", "idxmin"):
warn = FutureWarning
msg = f"The behavior of DataFrame.{method} with all-NA values"
with tm.assert_produces_warning(warn, match=msg):
result = getattr(df, method)(axis=1, **kwargs)
with tm.assert_produces_warning(warn, match=msg):
expected = getattr(expected_df, method)(axis=1, **kwargs)
if method not in ("idxmax", "idxmin"):
expected = expected.astype(expected_dtype)
tm.assert_series_equal(result, expected)