Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

679 lines
24 KiB

"""
test setting *parts* of objects both positionally and label based
TODO: these should be split among the indexer tests
"""
import numpy as np
import pytest
import pandas as pd
from pandas import (
DataFrame,
Index,
Period,
Series,
Timestamp,
date_range,
period_range,
)
import pandas._testing as tm
class TestEmptyFrameSetitemExpansion:
def test_empty_frame_setitem_index_name_retained(self):
# GH#31368 empty frame has non-None index.name -> retained
df = DataFrame({}, index=pd.RangeIndex(0, name="df_index"))
series = Series(1.23, index=pd.RangeIndex(4, name="series_index"))
df["series"] = series
expected = DataFrame(
{"series": [1.23] * 4}, index=pd.RangeIndex(4, name="df_index")
)
tm.assert_frame_equal(df, expected)
def test_empty_frame_setitem_index_name_inherited(self):
# GH#36527 empty frame has None index.name -> not retained
df = DataFrame()
series = Series(1.23, index=pd.RangeIndex(4, name="series_index"))
df["series"] = series
expected = DataFrame(
{"series": [1.23] * 4}, index=pd.RangeIndex(4, name="series_index")
)
tm.assert_frame_equal(df, expected)
def test_loc_setitem_zerolen_series_columns_align(self):
# columns will align
df = DataFrame(columns=["A", "B"])
df.loc[0] = Series(1, index=range(4))
expected = DataFrame(columns=["A", "B"], index=[0], dtype=np.float64)
tm.assert_frame_equal(df, expected)
# columns will align
df = DataFrame(columns=["A", "B"])
df.loc[0] = Series(1, index=["B"])
exp = DataFrame([[np.nan, 1]], columns=["A", "B"], index=[0], dtype="float64")
tm.assert_frame_equal(df, exp)
def test_loc_setitem_zerolen_list_length_must_match_columns(self):
# list-like must conform
df = DataFrame(columns=["A", "B"])
msg = "cannot set a row with mismatched columns"
with pytest.raises(ValueError, match=msg):
df.loc[0] = [1, 2, 3]
df = DataFrame(columns=["A", "B"])
df.loc[3] = [6, 7] # length matches len(df.columns) --> OK!
exp = DataFrame([[6, 7]], index=[3], columns=["A", "B"], dtype=np.int64)
tm.assert_frame_equal(df, exp)
def test_partial_set_empty_frame(self):
# partially set with an empty object
# frame
df = DataFrame()
msg = "cannot set a frame with no defined columns"
with pytest.raises(ValueError, match=msg):
df.loc[1] = 1
with pytest.raises(ValueError, match=msg):
df.loc[1] = Series([1], index=["foo"])
msg = "cannot set a frame with no defined index and a scalar"
with pytest.raises(ValueError, match=msg):
df.loc[:, 1] = 1
def test_partial_set_empty_frame2(self):
# these work as they don't really change
# anything but the index
# GH#5632
expected = DataFrame(columns=["foo"], index=Index([], dtype="object"))
df = DataFrame(index=Index([], dtype="object"))
df["foo"] = Series([], dtype="object")
tm.assert_frame_equal(df, expected)
df = DataFrame(index=Index([]))
df["foo"] = Series(df.index)
tm.assert_frame_equal(df, expected)
df = DataFrame(index=Index([]))
df["foo"] = df.index
tm.assert_frame_equal(df, expected)
def test_partial_set_empty_frame3(self):
expected = DataFrame(columns=["foo"], index=Index([], dtype="int64"))
expected["foo"] = expected["foo"].astype("float64")
df = DataFrame(index=Index([], dtype="int64"))
df["foo"] = []
tm.assert_frame_equal(df, expected)
df = DataFrame(index=Index([], dtype="int64"))
df["foo"] = Series(np.arange(len(df)), dtype="float64")
tm.assert_frame_equal(df, expected)
def test_partial_set_empty_frame4(self):
df = DataFrame(index=Index([], dtype="int64"))
df["foo"] = range(len(df))
expected = DataFrame(columns=["foo"], index=Index([], dtype="int64"))
# range is int-dtype-like, so we get int64 dtype
expected["foo"] = expected["foo"].astype("int64")
tm.assert_frame_equal(df, expected)
def test_partial_set_empty_frame5(self):
df = DataFrame()
tm.assert_index_equal(df.columns, pd.RangeIndex(0))
df2 = DataFrame()
df2[1] = Series([1], index=["foo"])
df.loc[:, 1] = Series([1], index=["foo"])
tm.assert_frame_equal(df, DataFrame([[1]], index=["foo"], columns=[1]))
tm.assert_frame_equal(df, df2)
def test_partial_set_empty_frame_no_index(self):
# no index to start
expected = DataFrame({0: Series(1, index=range(4))}, columns=["A", "B", 0])
df = DataFrame(columns=["A", "B"])
df[0] = Series(1, index=range(4))
df.dtypes
str(df)
tm.assert_frame_equal(df, expected)
df = DataFrame(columns=["A", "B"])
df.loc[:, 0] = Series(1, index=range(4))
df.dtypes
str(df)
tm.assert_frame_equal(df, expected)
def test_partial_set_empty_frame_row(self):
# GH#5720, GH#5744
# don't create rows when empty
expected = DataFrame(columns=["A", "B", "New"], index=Index([], dtype="int64"))
expected["A"] = expected["A"].astype("int64")
expected["B"] = expected["B"].astype("float64")
expected["New"] = expected["New"].astype("float64")
df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]})
y = df[df.A > 5]
y["New"] = np.nan
tm.assert_frame_equal(y, expected)
expected = DataFrame(columns=["a", "b", "c c", "d"])
expected["d"] = expected["d"].astype("int64")
df = DataFrame(columns=["a", "b", "c c"])
df["d"] = 3
tm.assert_frame_equal(df, expected)
tm.assert_series_equal(df["c c"], Series(name="c c", dtype=object))
# reindex columns is ok
df = DataFrame({"A": [1, 2, 3], "B": [1.2, 4.2, 5.2]})
y = df[df.A > 5]
result = y.reindex(columns=["A", "B", "C"])
expected = DataFrame(columns=["A", "B", "C"])
expected["A"] = expected["A"].astype("int64")
expected["B"] = expected["B"].astype("float64")
expected["C"] = expected["C"].astype("float64")
tm.assert_frame_equal(result, expected)
def test_partial_set_empty_frame_set_series(self):
# GH#5756
# setting with empty Series
df = DataFrame(Series(dtype=object))
expected = DataFrame({0: Series(dtype=object)})
tm.assert_frame_equal(df, expected)
df = DataFrame(Series(name="foo", dtype=object))
expected = DataFrame({"foo": Series(dtype=object)})
tm.assert_frame_equal(df, expected)
def test_partial_set_empty_frame_empty_copy_assignment(self):
# GH#5932
# copy on empty with assignment fails
df = DataFrame(index=[0])
df = df.copy()
df["a"] = 0
expected = DataFrame(0, index=[0], columns=["a"])
tm.assert_frame_equal(df, expected)
def test_partial_set_empty_frame_empty_consistencies(self):
# GH#6171
# consistency on empty frames
df = DataFrame(columns=["x", "y"])
df["x"] = [1, 2]
expected = DataFrame({"x": [1, 2], "y": [np.nan, np.nan]})
tm.assert_frame_equal(df, expected, check_dtype=False)
df = DataFrame(columns=["x", "y"])
df["x"] = ["1", "2"]
expected = DataFrame({"x": ["1", "2"], "y": [np.nan, np.nan]}, dtype=object)
tm.assert_frame_equal(df, expected)
df = DataFrame(columns=["x", "y"])
df.loc[0, "x"] = 1
expected = DataFrame({"x": [1], "y": [np.nan]})
tm.assert_frame_equal(df, expected, check_dtype=False)
class TestPartialSetting:
def test_partial_setting(self):
# GH2578, allow ix and friends to partially set
# series
s_orig = Series([1, 2, 3])
s = s_orig.copy()
s[5] = 5
expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5])
tm.assert_series_equal(s, expected)
s = s_orig.copy()
s.loc[5] = 5
expected = Series([1, 2, 3, 5], index=[0, 1, 2, 5])
tm.assert_series_equal(s, expected)
s = s_orig.copy()
s[5] = 5.0
expected = Series([1, 2, 3, 5.0], index=[0, 1, 2, 5])
tm.assert_series_equal(s, expected)
s = s_orig.copy()
s.loc[5] = 5.0
expected = Series([1, 2, 3, 5.0], index=[0, 1, 2, 5])
tm.assert_series_equal(s, expected)
# iloc/iat raise
s = s_orig.copy()
msg = "iloc cannot enlarge its target object"
with pytest.raises(IndexError, match=msg):
s.iloc[3] = 5.0
msg = "index 3 is out of bounds for axis 0 with size 3"
with pytest.raises(IndexError, match=msg):
s.iat[3] = 5.0
def test_partial_setting_frame(self, using_array_manager):
df_orig = DataFrame(
np.arange(6).reshape(3, 2), columns=["A", "B"], dtype="int64"
)
# iloc/iat raise
df = df_orig.copy()
msg = "iloc cannot enlarge its target object"
with pytest.raises(IndexError, match=msg):
df.iloc[4, 2] = 5.0
msg = "index 2 is out of bounds for axis 0 with size 2"
if using_array_manager:
msg = "list index out of range"
with pytest.raises(IndexError, match=msg):
df.iat[4, 2] = 5.0
# row setting where it exists
expected = DataFrame({"A": [0, 4, 4], "B": [1, 5, 5]})
df = df_orig.copy()
df.iloc[1] = df.iloc[2]
tm.assert_frame_equal(df, expected)
expected = DataFrame({"A": [0, 4, 4], "B": [1, 5, 5]})
df = df_orig.copy()
df.loc[1] = df.loc[2]
tm.assert_frame_equal(df, expected)
# like 2578, partial setting with dtype preservation
expected = DataFrame({"A": [0, 2, 4, 4], "B": [1, 3, 5, 5]})
df = df_orig.copy()
df.loc[3] = df.loc[2]
tm.assert_frame_equal(df, expected)
# single dtype frame, overwrite
expected = DataFrame({"A": [0, 2, 4], "B": [0, 2, 4]})
df = df_orig.copy()
df.loc[:, "B"] = df.loc[:, "A"]
tm.assert_frame_equal(df, expected)
# mixed dtype frame, overwrite
expected = DataFrame({"A": [0, 2, 4], "B": Series([0.0, 2.0, 4.0])})
df = df_orig.copy()
df["B"] = df["B"].astype(np.float64)
# as of 2.0, df.loc[:, "B"] = ... attempts (and here succeeds) at
# setting inplace
df.loc[:, "B"] = df.loc[:, "A"]
tm.assert_frame_equal(df, expected)
# single dtype frame, partial setting
expected = df_orig.copy()
expected["C"] = df["A"]
df = df_orig.copy()
df.loc[:, "C"] = df.loc[:, "A"]
tm.assert_frame_equal(df, expected)
# mixed frame, partial setting
expected = df_orig.copy()
expected["C"] = df["A"]
df = df_orig.copy()
df.loc[:, "C"] = df.loc[:, "A"]
tm.assert_frame_equal(df, expected)
def test_partial_setting2(self):
# GH 8473
dates = date_range("1/1/2000", periods=8)
df_orig = DataFrame(
np.random.default_rng(2).standard_normal((8, 4)),
index=dates,
columns=["A", "B", "C", "D"],
)
expected = pd.concat(
[df_orig, DataFrame({"A": 7}, index=dates[-1:] + dates.freq)], sort=True
)
df = df_orig.copy()
df.loc[dates[-1] + dates.freq, "A"] = 7
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.at[dates[-1] + dates.freq, "A"] = 7
tm.assert_frame_equal(df, expected)
exp_other = DataFrame({0: 7}, index=dates[-1:] + dates.freq)
expected = pd.concat([df_orig, exp_other], axis=1)
df = df_orig.copy()
df.loc[dates[-1] + dates.freq, 0] = 7
tm.assert_frame_equal(df, expected)
df = df_orig.copy()
df.at[dates[-1] + dates.freq, 0] = 7
tm.assert_frame_equal(df, expected)
def test_partial_setting_mixed_dtype(self):
# in a mixed dtype environment, try to preserve dtypes
# by appending
df = DataFrame([[True, 1], [False, 2]], columns=["female", "fitness"])
s = df.loc[1].copy()
s.name = 2
expected = pd.concat([df, DataFrame(s).T.infer_objects()])
df.loc[2] = df.loc[1]
tm.assert_frame_equal(df, expected)
def test_series_partial_set(self):
# partial set with new index
# Regression from GH4825
ser = Series([0.1, 0.2], index=[1, 2])
# loc equiv to .reindex
expected = Series([np.nan, 0.2, np.nan], index=[3, 2, 3])
with pytest.raises(KeyError, match=r"not in index"):
ser.loc[[3, 2, 3]]
result = ser.reindex([3, 2, 3])
tm.assert_series_equal(result, expected, check_index_type=True)
expected = Series([np.nan, 0.2, np.nan, np.nan], index=[3, 2, 3, "x"])
with pytest.raises(KeyError, match="not in index"):
ser.loc[[3, 2, 3, "x"]]
result = ser.reindex([3, 2, 3, "x"])
tm.assert_series_equal(result, expected, check_index_type=True)
expected = Series([0.2, 0.2, 0.1], index=[2, 2, 1])
result = ser.loc[[2, 2, 1]]
tm.assert_series_equal(result, expected, check_index_type=True)
expected = Series([0.2, 0.2, np.nan, 0.1], index=[2, 2, "x", 1])
with pytest.raises(KeyError, match="not in index"):
ser.loc[[2, 2, "x", 1]]
result = ser.reindex([2, 2, "x", 1])
tm.assert_series_equal(result, expected, check_index_type=True)
# raises as nothing is in the index
msg = (
rf"\"None of \[Index\(\[3, 3, 3\], dtype='{np.int_().dtype}'\)\] "
r"are in the \[index\]\""
)
with pytest.raises(KeyError, match=msg):
ser.loc[[3, 3, 3]]
expected = Series([0.2, 0.2, np.nan], index=[2, 2, 3])
with pytest.raises(KeyError, match="not in index"):
ser.loc[[2, 2, 3]]
result = ser.reindex([2, 2, 3])
tm.assert_series_equal(result, expected, check_index_type=True)
s = Series([0.1, 0.2, 0.3], index=[1, 2, 3])
expected = Series([0.3, np.nan, np.nan], index=[3, 4, 4])
with pytest.raises(KeyError, match="not in index"):
s.loc[[3, 4, 4]]
result = s.reindex([3, 4, 4])
tm.assert_series_equal(result, expected, check_index_type=True)
s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4])
expected = Series([np.nan, 0.3, 0.3], index=[5, 3, 3])
with pytest.raises(KeyError, match="not in index"):
s.loc[[5, 3, 3]]
result = s.reindex([5, 3, 3])
tm.assert_series_equal(result, expected, check_index_type=True)
s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4])
expected = Series([np.nan, 0.4, 0.4], index=[5, 4, 4])
with pytest.raises(KeyError, match="not in index"):
s.loc[[5, 4, 4]]
result = s.reindex([5, 4, 4])
tm.assert_series_equal(result, expected, check_index_type=True)
s = Series([0.1, 0.2, 0.3, 0.4], index=[4, 5, 6, 7])
expected = Series([0.4, np.nan, np.nan], index=[7, 2, 2])
with pytest.raises(KeyError, match="not in index"):
s.loc[[7, 2, 2]]
result = s.reindex([7, 2, 2])
tm.assert_series_equal(result, expected, check_index_type=True)
s = Series([0.1, 0.2, 0.3, 0.4], index=[1, 2, 3, 4])
expected = Series([0.4, np.nan, np.nan], index=[4, 5, 5])
with pytest.raises(KeyError, match="not in index"):
s.loc[[4, 5, 5]]
result = s.reindex([4, 5, 5])
tm.assert_series_equal(result, expected, check_index_type=True)
# iloc
expected = Series([0.2, 0.2, 0.1, 0.1], index=[2, 2, 1, 1])
result = ser.iloc[[1, 1, 0, 0]]
tm.assert_series_equal(result, expected, check_index_type=True)
def test_series_partial_set_with_name(self):
# GH 11497
idx = Index([1, 2], dtype="int64", name="idx")
ser = Series([0.1, 0.2], index=idx, name="s")
# loc
with pytest.raises(KeyError, match=r"\[3\] not in index"):
ser.loc[[3, 2, 3]]
with pytest.raises(KeyError, match=r"not in index"):
ser.loc[[3, 2, 3, "x"]]
exp_idx = Index([2, 2, 1], dtype="int64", name="idx")
expected = Series([0.2, 0.2, 0.1], index=exp_idx, name="s")
result = ser.loc[[2, 2, 1]]
tm.assert_series_equal(result, expected, check_index_type=True)
with pytest.raises(KeyError, match=r"\['x'\] not in index"):
ser.loc[[2, 2, "x", 1]]
# raises as nothing is in the index
msg = (
rf"\"None of \[Index\(\[3, 3, 3\], dtype='{np.int_().dtype}', "
r"name='idx'\)\] are in the \[index\]\""
)
with pytest.raises(KeyError, match=msg):
ser.loc[[3, 3, 3]]
with pytest.raises(KeyError, match="not in index"):
ser.loc[[2, 2, 3]]
idx = Index([1, 2, 3], dtype="int64", name="idx")
with pytest.raises(KeyError, match="not in index"):
Series([0.1, 0.2, 0.3], index=idx, name="s").loc[[3, 4, 4]]
idx = Index([1, 2, 3, 4], dtype="int64", name="idx")
with pytest.raises(KeyError, match="not in index"):
Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[5, 3, 3]]
idx = Index([1, 2, 3, 4], dtype="int64", name="idx")
with pytest.raises(KeyError, match="not in index"):
Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[5, 4, 4]]
idx = Index([4, 5, 6, 7], dtype="int64", name="idx")
with pytest.raises(KeyError, match="not in index"):
Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[7, 2, 2]]
idx = Index([1, 2, 3, 4], dtype="int64", name="idx")
with pytest.raises(KeyError, match="not in index"):
Series([0.1, 0.2, 0.3, 0.4], index=idx, name="s").loc[[4, 5, 5]]
# iloc
exp_idx = Index([2, 2, 1, 1], dtype="int64", name="idx")
expected = Series([0.2, 0.2, 0.1, 0.1], index=exp_idx, name="s")
result = ser.iloc[[1, 1, 0, 0]]
tm.assert_series_equal(result, expected, check_index_type=True)
@pytest.mark.parametrize("key", [100, 100.0])
def test_setitem_with_expansion_numeric_into_datetimeindex(self, key):
# GH#4940 inserting non-strings
orig = tm.makeTimeDataFrame()
df = orig.copy()
df.loc[key, :] = df.iloc[0]
ex_index = Index(list(orig.index) + [key], dtype=object, name=orig.index.name)
ex_data = np.concatenate([orig.values, df.iloc[[0]].values], axis=0)
expected = DataFrame(ex_data, index=ex_index, columns=orig.columns)
tm.assert_frame_equal(df, expected)
def test_partial_set_invalid(self):
# GH 4940
# allow only setting of 'valid' values
orig = tm.makeTimeDataFrame()
# allow object conversion here
df = orig.copy()
df.loc["a", :] = df.iloc[0]
ser = Series(df.iloc[0], name="a")
exp = pd.concat([orig, DataFrame(ser).T.infer_objects()])
tm.assert_frame_equal(df, exp)
tm.assert_index_equal(df.index, Index(orig.index.tolist() + ["a"]))
assert df.index.dtype == "object"
@pytest.mark.parametrize(
"idx,labels,expected_idx",
[
(
period_range(start="2000", periods=20, freq="D"),
["2000-01-04", "2000-01-08", "2000-01-12"],
[
Period("2000-01-04", freq="D"),
Period("2000-01-08", freq="D"),
Period("2000-01-12", freq="D"),
],
),
(
date_range(start="2000", periods=20, freq="D"),
["2000-01-04", "2000-01-08", "2000-01-12"],
[
Timestamp("2000-01-04"),
Timestamp("2000-01-08"),
Timestamp("2000-01-12"),
],
),
(
pd.timedelta_range(start="1 day", periods=20),
["4D", "8D", "12D"],
[pd.Timedelta("4 day"), pd.Timedelta("8 day"), pd.Timedelta("12 day")],
),
],
)
def test_loc_with_list_of_strings_representing_datetimes(
self, idx, labels, expected_idx, frame_or_series
):
# GH 11278
obj = frame_or_series(range(20), index=idx)
expected_value = [3, 7, 11]
expected = frame_or_series(expected_value, expected_idx)
tm.assert_equal(expected, obj.loc[labels])
if frame_or_series is Series:
tm.assert_series_equal(expected, obj[labels])
@pytest.mark.parametrize(
"idx,labels",
[
(
period_range(start="2000", periods=20, freq="D"),
["2000-01-04", "2000-01-30"],
),
(
date_range(start="2000", periods=20, freq="D"),
["2000-01-04", "2000-01-30"],
),
(pd.timedelta_range(start="1 day", periods=20), ["3 day", "30 day"]),
],
)
def test_loc_with_list_of_strings_representing_datetimes_missing_value(
self, idx, labels
):
# GH 11278
ser = Series(range(20), index=idx)
df = DataFrame(range(20), index=idx)
msg = r"not in index"
with pytest.raises(KeyError, match=msg):
ser.loc[labels]
with pytest.raises(KeyError, match=msg):
ser[labels]
with pytest.raises(KeyError, match=msg):
df.loc[labels]
@pytest.mark.parametrize(
"idx,labels,msg",
[
(
period_range(start="2000", periods=20, freq="D"),
["4D", "8D"],
(
r"None of \[Index\(\['4D', '8D'\], dtype='object'\)\] "
r"are in the \[index\]"
),
),
(
date_range(start="2000", periods=20, freq="D"),
["4D", "8D"],
(
r"None of \[Index\(\['4D', '8D'\], dtype='object'\)\] "
r"are in the \[index\]"
),
),
(
pd.timedelta_range(start="1 day", periods=20),
["2000-01-04", "2000-01-08"],
(
r"None of \[Index\(\['2000-01-04', '2000-01-08'\], "
r"dtype='object'\)\] are in the \[index\]"
),
),
],
)
def test_loc_with_list_of_strings_representing_datetimes_not_matched_type(
self, idx, labels, msg
):
# GH 11278
ser = Series(range(20), index=idx)
df = DataFrame(range(20), index=idx)
with pytest.raises(KeyError, match=msg):
ser.loc[labels]
with pytest.raises(KeyError, match=msg):
ser[labels]
with pytest.raises(KeyError, match=msg):
df.loc[labels]
class TestStringSlicing:
def test_slice_irregular_datetime_index_with_nan(self):
# GH36953
index = pd.to_datetime(["2012-01-01", "2012-01-02", "2012-01-03", None])
df = DataFrame(range(len(index)), index=index)
expected = DataFrame(range(len(index[:3])), index=index[:3])
with pytest.raises(KeyError, match="non-existing keys is not allowed"):
# Upper bound is not in index (which is unordered)
# GH53983
# GH37819
df["2012-01-01":"2012-01-04"]
# Need this precision for right bound since the right slice
# bound is "rounded" up to the largest timepoint smaller than
# the next "resolution"-step of the provided point.
# e.g. 2012-01-03 is rounded up to 2012-01-04 - 1ns
result = df["2012-01-01":"2012-01-03 00:00:00.000000000"]
tm.assert_frame_equal(result, expected)