You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
414 lines
11 KiB
414 lines
11 KiB
import importlib
|
|
import logging
|
|
import unicodedata
|
|
from codecs import IncrementalDecoder
|
|
from encodings.aliases import aliases
|
|
from functools import lru_cache
|
|
from re import findall
|
|
from typing import Generator, List, Optional, Set, Tuple, Union
|
|
|
|
from _multibytecodec import MultibyteIncrementalDecoder
|
|
|
|
from .constant import (
|
|
ENCODING_MARKS,
|
|
IANA_SUPPORTED_SIMILAR,
|
|
RE_POSSIBLE_ENCODING_INDICATION,
|
|
UNICODE_RANGES_COMBINED,
|
|
UNICODE_SECONDARY_RANGE_KEYWORD,
|
|
UTF8_MAXIMAL_ALLOCATION,
|
|
)
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_accentuated(character: str) -> bool:
|
|
try:
|
|
description: str = unicodedata.name(character)
|
|
except ValueError:
|
|
return False
|
|
return (
|
|
"WITH GRAVE" in description
|
|
or "WITH ACUTE" in description
|
|
or "WITH CEDILLA" in description
|
|
or "WITH DIAERESIS" in description
|
|
or "WITH CIRCUMFLEX" in description
|
|
or "WITH TILDE" in description
|
|
)
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def remove_accent(character: str) -> str:
|
|
decomposed: str = unicodedata.decomposition(character)
|
|
if not decomposed:
|
|
return character
|
|
|
|
codes: List[str] = decomposed.split(" ")
|
|
|
|
return chr(int(codes[0], 16))
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def unicode_range(character: str) -> Optional[str]:
|
|
"""
|
|
Retrieve the Unicode range official name from a single character.
|
|
"""
|
|
character_ord: int = ord(character)
|
|
|
|
for range_name, ord_range in UNICODE_RANGES_COMBINED.items():
|
|
if character_ord in ord_range:
|
|
return range_name
|
|
|
|
return None
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_latin(character: str) -> bool:
|
|
try:
|
|
description: str = unicodedata.name(character)
|
|
except ValueError:
|
|
return False
|
|
return "LATIN" in description
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_ascii(character: str) -> bool:
|
|
try:
|
|
character.encode("ascii")
|
|
except UnicodeEncodeError:
|
|
return False
|
|
return True
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_punctuation(character: str) -> bool:
|
|
character_category: str = unicodedata.category(character)
|
|
|
|
if "P" in character_category:
|
|
return True
|
|
|
|
character_range: Optional[str] = unicode_range(character)
|
|
|
|
if character_range is None:
|
|
return False
|
|
|
|
return "Punctuation" in character_range
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_symbol(character: str) -> bool:
|
|
character_category: str = unicodedata.category(character)
|
|
|
|
if "S" in character_category or "N" in character_category:
|
|
return True
|
|
|
|
character_range: Optional[str] = unicode_range(character)
|
|
|
|
if character_range is None:
|
|
return False
|
|
|
|
return "Forms" in character_range
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_emoticon(character: str) -> bool:
|
|
character_range: Optional[str] = unicode_range(character)
|
|
|
|
if character_range is None:
|
|
return False
|
|
|
|
return "Emoticons" in character_range
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_separator(character: str) -> bool:
|
|
if character.isspace() or character in {"|", "+", "<", ">"}:
|
|
return True
|
|
|
|
character_category: str = unicodedata.category(character)
|
|
|
|
return "Z" in character_category or character_category in {"Po", "Pd", "Pc"}
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_case_variable(character: str) -> bool:
|
|
return character.islower() != character.isupper()
|
|
|
|
|
|
def is_private_use_only(character: str) -> bool:
|
|
character_category: str = unicodedata.category(character)
|
|
|
|
return character_category == "Co"
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_cjk(character: str) -> bool:
|
|
try:
|
|
character_name = unicodedata.name(character)
|
|
except ValueError:
|
|
return False
|
|
|
|
return "CJK" in character_name
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_hiragana(character: str) -> bool:
|
|
try:
|
|
character_name = unicodedata.name(character)
|
|
except ValueError:
|
|
return False
|
|
|
|
return "HIRAGANA" in character_name
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_katakana(character: str) -> bool:
|
|
try:
|
|
character_name = unicodedata.name(character)
|
|
except ValueError:
|
|
return False
|
|
|
|
return "KATAKANA" in character_name
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_hangul(character: str) -> bool:
|
|
try:
|
|
character_name = unicodedata.name(character)
|
|
except ValueError:
|
|
return False
|
|
|
|
return "HANGUL" in character_name
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_thai(character: str) -> bool:
|
|
try:
|
|
character_name = unicodedata.name(character)
|
|
except ValueError:
|
|
return False
|
|
|
|
return "THAI" in character_name
|
|
|
|
|
|
@lru_cache(maxsize=len(UNICODE_RANGES_COMBINED))
|
|
def is_unicode_range_secondary(range_name: str) -> bool:
|
|
return any(keyword in range_name for keyword in UNICODE_SECONDARY_RANGE_KEYWORD)
|
|
|
|
|
|
@lru_cache(maxsize=UTF8_MAXIMAL_ALLOCATION)
|
|
def is_unprintable(character: str) -> bool:
|
|
return (
|
|
character.isspace() is False # includes \n \t \r \v
|
|
and character.isprintable() is False
|
|
and character != "\x1A" # Why? Its the ASCII substitute character.
|
|
and character != "\ufeff" # bug discovered in Python,
|
|
# Zero Width No-Break Space located in Arabic Presentation Forms-B, Unicode 1.1 not acknowledged as space.
|
|
)
|
|
|
|
|
|
def any_specified_encoding(sequence: bytes, search_zone: int = 4096) -> Optional[str]:
|
|
"""
|
|
Extract using ASCII-only decoder any specified encoding in the first n-bytes.
|
|
"""
|
|
if not isinstance(sequence, bytes):
|
|
raise TypeError
|
|
|
|
seq_len: int = len(sequence)
|
|
|
|
results: List[str] = findall(
|
|
RE_POSSIBLE_ENCODING_INDICATION,
|
|
sequence[: min(seq_len, search_zone)].decode("ascii", errors="ignore"),
|
|
)
|
|
|
|
if len(results) == 0:
|
|
return None
|
|
|
|
for specified_encoding in results:
|
|
specified_encoding = specified_encoding.lower().replace("-", "_")
|
|
|
|
encoding_alias: str
|
|
encoding_iana: str
|
|
|
|
for encoding_alias, encoding_iana in aliases.items():
|
|
if encoding_alias == specified_encoding:
|
|
return encoding_iana
|
|
if encoding_iana == specified_encoding:
|
|
return encoding_iana
|
|
|
|
return None
|
|
|
|
|
|
@lru_cache(maxsize=128)
|
|
def is_multi_byte_encoding(name: str) -> bool:
|
|
"""
|
|
Verify is a specific encoding is a multi byte one based on it IANA name
|
|
"""
|
|
return name in {
|
|
"utf_8",
|
|
"utf_8_sig",
|
|
"utf_16",
|
|
"utf_16_be",
|
|
"utf_16_le",
|
|
"utf_32",
|
|
"utf_32_le",
|
|
"utf_32_be",
|
|
"utf_7",
|
|
} or issubclass(
|
|
importlib.import_module("encodings.{}".format(name)).IncrementalDecoder,
|
|
MultibyteIncrementalDecoder,
|
|
)
|
|
|
|
|
|
def identify_sig_or_bom(sequence: bytes) -> Tuple[Optional[str], bytes]:
|
|
"""
|
|
Identify and extract SIG/BOM in given sequence.
|
|
"""
|
|
|
|
for iana_encoding in ENCODING_MARKS:
|
|
marks: Union[bytes, List[bytes]] = ENCODING_MARKS[iana_encoding]
|
|
|
|
if isinstance(marks, bytes):
|
|
marks = [marks]
|
|
|
|
for mark in marks:
|
|
if sequence.startswith(mark):
|
|
return iana_encoding, mark
|
|
|
|
return None, b""
|
|
|
|
|
|
def should_strip_sig_or_bom(iana_encoding: str) -> bool:
|
|
return iana_encoding not in {"utf_16", "utf_32"}
|
|
|
|
|
|
def iana_name(cp_name: str, strict: bool = True) -> str:
|
|
cp_name = cp_name.lower().replace("-", "_")
|
|
|
|
encoding_alias: str
|
|
encoding_iana: str
|
|
|
|
for encoding_alias, encoding_iana in aliases.items():
|
|
if cp_name in [encoding_alias, encoding_iana]:
|
|
return encoding_iana
|
|
|
|
if strict:
|
|
raise ValueError("Unable to retrieve IANA for '{}'".format(cp_name))
|
|
|
|
return cp_name
|
|
|
|
|
|
def range_scan(decoded_sequence: str) -> List[str]:
|
|
ranges: Set[str] = set()
|
|
|
|
for character in decoded_sequence:
|
|
character_range: Optional[str] = unicode_range(character)
|
|
|
|
if character_range is None:
|
|
continue
|
|
|
|
ranges.add(character_range)
|
|
|
|
return list(ranges)
|
|
|
|
|
|
def cp_similarity(iana_name_a: str, iana_name_b: str) -> float:
|
|
if is_multi_byte_encoding(iana_name_a) or is_multi_byte_encoding(iana_name_b):
|
|
return 0.0
|
|
|
|
decoder_a = importlib.import_module(
|
|
"encodings.{}".format(iana_name_a)
|
|
).IncrementalDecoder
|
|
decoder_b = importlib.import_module(
|
|
"encodings.{}".format(iana_name_b)
|
|
).IncrementalDecoder
|
|
|
|
id_a: IncrementalDecoder = decoder_a(errors="ignore")
|
|
id_b: IncrementalDecoder = decoder_b(errors="ignore")
|
|
|
|
character_match_count: int = 0
|
|
|
|
for i in range(255):
|
|
to_be_decoded: bytes = bytes([i])
|
|
if id_a.decode(to_be_decoded) == id_b.decode(to_be_decoded):
|
|
character_match_count += 1
|
|
|
|
return character_match_count / 254
|
|
|
|
|
|
def is_cp_similar(iana_name_a: str, iana_name_b: str) -> bool:
|
|
"""
|
|
Determine if two code page are at least 80% similar. IANA_SUPPORTED_SIMILAR dict was generated using
|
|
the function cp_similarity.
|
|
"""
|
|
return (
|
|
iana_name_a in IANA_SUPPORTED_SIMILAR
|
|
and iana_name_b in IANA_SUPPORTED_SIMILAR[iana_name_a]
|
|
)
|
|
|
|
|
|
def set_logging_handler(
|
|
name: str = "charset_normalizer",
|
|
level: int = logging.INFO,
|
|
format_string: str = "%(asctime)s | %(levelname)s | %(message)s",
|
|
) -> None:
|
|
logger = logging.getLogger(name)
|
|
logger.setLevel(level)
|
|
|
|
handler = logging.StreamHandler()
|
|
handler.setFormatter(logging.Formatter(format_string))
|
|
logger.addHandler(handler)
|
|
|
|
|
|
def cut_sequence_chunks(
|
|
sequences: bytes,
|
|
encoding_iana: str,
|
|
offsets: range,
|
|
chunk_size: int,
|
|
bom_or_sig_available: bool,
|
|
strip_sig_or_bom: bool,
|
|
sig_payload: bytes,
|
|
is_multi_byte_decoder: bool,
|
|
decoded_payload: Optional[str] = None,
|
|
) -> Generator[str, None, None]:
|
|
if decoded_payload and is_multi_byte_decoder is False:
|
|
for i in offsets:
|
|
chunk = decoded_payload[i : i + chunk_size]
|
|
if not chunk:
|
|
break
|
|
yield chunk
|
|
else:
|
|
for i in offsets:
|
|
chunk_end = i + chunk_size
|
|
if chunk_end > len(sequences) + 8:
|
|
continue
|
|
|
|
cut_sequence = sequences[i : i + chunk_size]
|
|
|
|
if bom_or_sig_available and strip_sig_or_bom is False:
|
|
cut_sequence = sig_payload + cut_sequence
|
|
|
|
chunk = cut_sequence.decode(
|
|
encoding_iana,
|
|
errors="ignore" if is_multi_byte_decoder else "strict",
|
|
)
|
|
|
|
# multi-byte bad cutting detector and adjustment
|
|
# not the cleanest way to perform that fix but clever enough for now.
|
|
if is_multi_byte_decoder and i > 0:
|
|
chunk_partial_size_chk: int = min(chunk_size, 16)
|
|
|
|
if (
|
|
decoded_payload
|
|
and chunk[:chunk_partial_size_chk] not in decoded_payload
|
|
):
|
|
for j in range(i, i - 4, -1):
|
|
cut_sequence = sequences[j:chunk_end]
|
|
|
|
if bom_or_sig_available and strip_sig_or_bom is False:
|
|
cut_sequence = sig_payload + cut_sequence
|
|
|
|
chunk = cut_sequence.decode(encoding_iana, errors="ignore")
|
|
|
|
if chunk[:chunk_partial_size_chk] in decoded_payload:
|
|
break
|
|
|
|
yield chunk
|
|
|