You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
2.9 KiB
125 lines
2.9 KiB
cimport cython
|
|
from cpython.mem cimport (
|
|
PyMem_Free,
|
|
PyMem_Malloc,
|
|
)
|
|
from cpython.ref cimport (
|
|
Py_INCREF,
|
|
PyObject,
|
|
)
|
|
from libc.stdlib cimport (
|
|
free,
|
|
malloc,
|
|
)
|
|
|
|
import numpy as np
|
|
|
|
cimport numpy as cnp
|
|
from numpy cimport ndarray
|
|
|
|
cnp.import_array()
|
|
|
|
|
|
from pandas._libs cimport util
|
|
from pandas._libs.dtypes cimport numeric_object_t
|
|
from pandas._libs.khash cimport (
|
|
KHASH_TRACE_DOMAIN,
|
|
are_equivalent_float32_t,
|
|
are_equivalent_float64_t,
|
|
are_equivalent_khcomplex64_t,
|
|
are_equivalent_khcomplex128_t,
|
|
kh_needed_n_buckets,
|
|
kh_python_hash_equal,
|
|
kh_python_hash_func,
|
|
khiter_t,
|
|
)
|
|
from pandas._libs.missing cimport checknull
|
|
|
|
|
|
def get_hashtable_trace_domain():
|
|
return KHASH_TRACE_DOMAIN
|
|
|
|
|
|
def object_hash(obj):
|
|
return kh_python_hash_func(obj)
|
|
|
|
|
|
def objects_are_equal(a, b):
|
|
return kh_python_hash_equal(a, b)
|
|
|
|
|
|
cdef int64_t NPY_NAT = util.get_nat()
|
|
SIZE_HINT_LIMIT = (1 << 20) + 7
|
|
|
|
|
|
cdef Py_ssize_t _INIT_VEC_CAP = 128
|
|
|
|
include "hashtable_class_helper.pxi"
|
|
include "hashtable_func_helper.pxi"
|
|
|
|
|
|
# map derived hash-map types onto basic hash-map types:
|
|
if np.dtype(np.intp) == np.dtype(np.int64):
|
|
IntpHashTable = Int64HashTable
|
|
unique_label_indices = _unique_label_indices_int64
|
|
elif np.dtype(np.intp) == np.dtype(np.int32):
|
|
IntpHashTable = Int32HashTable
|
|
unique_label_indices = _unique_label_indices_int32
|
|
else:
|
|
raise ValueError(np.dtype(np.intp))
|
|
|
|
|
|
cdef class Factorizer:
|
|
cdef readonly:
|
|
Py_ssize_t count
|
|
|
|
def __cinit__(self, size_hint: int):
|
|
self.count = 0
|
|
|
|
def get_count(self) -> int:
|
|
return self.count
|
|
|
|
def factorize(self, values, na_sentinel=-1, na_value=None, mask=None) -> np.ndarray:
|
|
raise NotImplementedError
|
|
|
|
|
|
cdef class ObjectFactorizer(Factorizer):
|
|
cdef public:
|
|
PyObjectHashTable table
|
|
ObjectVector uniques
|
|
|
|
def __cinit__(self, size_hint: int):
|
|
self.table = PyObjectHashTable(size_hint)
|
|
self.uniques = ObjectVector()
|
|
|
|
def factorize(
|
|
self, ndarray[object] values, na_sentinel=-1, na_value=None, mask=None
|
|
) -> np.ndarray:
|
|
"""
|
|
|
|
Returns
|
|
-------
|
|
np.ndarray[np.intp]
|
|
|
|
Examples
|
|
--------
|
|
Factorize values with nans replaced by na_sentinel
|
|
|
|
>>> fac = ObjectFactorizer(3)
|
|
>>> fac.factorize(np.array([1,2,np.nan], dtype='O'), na_sentinel=20)
|
|
array([ 0, 1, 20])
|
|
"""
|
|
cdef:
|
|
ndarray[intp_t] labels
|
|
|
|
if mask is not None:
|
|
raise NotImplementedError("mask not supported for ObjectFactorizer.")
|
|
|
|
if self.uniques.external_view_exists:
|
|
uniques = ObjectVector()
|
|
uniques.extend(self.uniques.to_array())
|
|
self.uniques = uniques
|
|
labels = self.table.get_labels(values, self.uniques,
|
|
self.count, na_sentinel, na_value)
|
|
self.count = len(self.uniques)
|
|
return labels
|
|
|