Alle Dateien aus dem Pythonkurs
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 

311 lines
10 KiB

from datetime import timedelta
import numpy as np
import pytest
import pandas as pd
from pandas import Timedelta
import pandas._testing as tm
from pandas.core.arrays import (
DatetimeArray,
TimedeltaArray,
)
class TestNonNano:
@pytest.fixture(params=["s", "ms", "us"])
def unit(self, request):
return request.param
@pytest.fixture
def tda(self, unit):
arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]")
return TimedeltaArray._simple_new(arr, dtype=arr.dtype)
def test_non_nano(self, unit):
arr = np.arange(5, dtype=np.int64).view(f"m8[{unit}]")
tda = TimedeltaArray._simple_new(arr, dtype=arr.dtype)
assert tda.dtype == arr.dtype
assert tda[0].unit == unit
def test_as_unit_raises(self, tda):
# GH#50616
with pytest.raises(ValueError, match="Supported units"):
tda.as_unit("D")
tdi = pd.Index(tda)
with pytest.raises(ValueError, match="Supported units"):
tdi.as_unit("D")
@pytest.mark.parametrize("field", TimedeltaArray._field_ops)
def test_fields(self, tda, field):
as_nano = tda._ndarray.astype("m8[ns]")
tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
result = getattr(tda, field)
expected = getattr(tda_nano, field)
tm.assert_numpy_array_equal(result, expected)
def test_to_pytimedelta(self, tda):
as_nano = tda._ndarray.astype("m8[ns]")
tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
result = tda.to_pytimedelta()
expected = tda_nano.to_pytimedelta()
tm.assert_numpy_array_equal(result, expected)
def test_total_seconds(self, unit, tda):
as_nano = tda._ndarray.astype("m8[ns]")
tda_nano = TimedeltaArray._simple_new(as_nano, dtype=as_nano.dtype)
result = tda.total_seconds()
expected = tda_nano.total_seconds()
tm.assert_numpy_array_equal(result, expected)
def test_timedelta_array_total_seconds(self):
# GH34290
expected = Timedelta("2 min").total_seconds()
result = pd.array([Timedelta("2 min")]).total_seconds()[0]
assert result == expected
def test_total_seconds_nanoseconds(self):
# issue #48521
start_time = pd.Series(["2145-11-02 06:00:00"]).astype("datetime64[ns]")
end_time = pd.Series(["2145-11-02 07:06:00"]).astype("datetime64[ns]")
expected = (end_time - start_time).values / np.timedelta64(1, "s")
result = (end_time - start_time).dt.total_seconds().values
assert result == expected
@pytest.mark.parametrize(
"nat", [np.datetime64("NaT", "ns"), np.datetime64("NaT", "us")]
)
def test_add_nat_datetimelike_scalar(self, nat, tda):
result = tda + nat
assert isinstance(result, DatetimeArray)
assert result._creso == tda._creso
assert result.isna().all()
result = nat + tda
assert isinstance(result, DatetimeArray)
assert result._creso == tda._creso
assert result.isna().all()
def test_add_pdnat(self, tda):
result = tda + pd.NaT
assert isinstance(result, TimedeltaArray)
assert result._creso == tda._creso
assert result.isna().all()
result = pd.NaT + tda
assert isinstance(result, TimedeltaArray)
assert result._creso == tda._creso
assert result.isna().all()
# TODO: 2022-07-11 this is the only test that gets to DTA.tz_convert
# or tz_localize with non-nano; implement tests specific to that.
def test_add_datetimelike_scalar(self, tda, tz_naive_fixture):
ts = pd.Timestamp("2016-01-01", tz=tz_naive_fixture).as_unit("ns")
expected = tda.as_unit("ns") + ts
res = tda + ts
tm.assert_extension_array_equal(res, expected)
res = ts + tda
tm.assert_extension_array_equal(res, expected)
ts += Timedelta(1) # case where we can't cast losslessly
exp_values = tda._ndarray + ts.asm8
expected = (
DatetimeArray._simple_new(exp_values, dtype=exp_values.dtype)
.tz_localize("UTC")
.tz_convert(ts.tz)
)
result = tda + ts
tm.assert_extension_array_equal(result, expected)
result = ts + tda
tm.assert_extension_array_equal(result, expected)
def test_mul_scalar(self, tda):
other = 2
result = tda * other
expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
tm.assert_extension_array_equal(result, expected)
assert result._creso == tda._creso
def test_mul_listlike(self, tda):
other = np.arange(len(tda))
result = tda * other
expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
tm.assert_extension_array_equal(result, expected)
assert result._creso == tda._creso
def test_mul_listlike_object(self, tda):
other = np.arange(len(tda))
result = tda * other.astype(object)
expected = TimedeltaArray._simple_new(tda._ndarray * other, dtype=tda.dtype)
tm.assert_extension_array_equal(result, expected)
assert result._creso == tda._creso
def test_div_numeric_scalar(self, tda):
other = 2
result = tda / other
expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype)
tm.assert_extension_array_equal(result, expected)
assert result._creso == tda._creso
def test_div_td_scalar(self, tda):
other = timedelta(seconds=1)
result = tda / other
expected = tda._ndarray / np.timedelta64(1, "s")
tm.assert_numpy_array_equal(result, expected)
def test_div_numeric_array(self, tda):
other = np.arange(len(tda))
result = tda / other
expected = TimedeltaArray._simple_new(tda._ndarray / other, dtype=tda.dtype)
tm.assert_extension_array_equal(result, expected)
assert result._creso == tda._creso
def test_div_td_array(self, tda):
other = tda._ndarray + tda._ndarray[-1]
result = tda / other
expected = tda._ndarray / other
tm.assert_numpy_array_equal(result, expected)
def test_add_timedeltaarraylike(self, tda):
tda_nano = tda.astype("m8[ns]")
expected = tda_nano * 2
res = tda_nano + tda
tm.assert_extension_array_equal(res, expected)
res = tda + tda_nano
tm.assert_extension_array_equal(res, expected)
expected = tda_nano * 0
res = tda - tda_nano
tm.assert_extension_array_equal(res, expected)
res = tda_nano - tda
tm.assert_extension_array_equal(res, expected)
class TestTimedeltaArray:
@pytest.mark.parametrize("dtype", [int, np.int32, np.int64, "uint32", "uint64"])
def test_astype_int(self, dtype):
arr = TimedeltaArray._from_sequence([Timedelta("1H"), Timedelta("2H")])
if np.dtype(dtype) != np.int64:
with pytest.raises(TypeError, match=r"Do obj.astype\('int64'\)"):
arr.astype(dtype)
return
result = arr.astype(dtype)
expected = arr._ndarray.view("i8")
tm.assert_numpy_array_equal(result, expected)
def test_setitem_clears_freq(self):
a = TimedeltaArray(pd.timedelta_range("1H", periods=2, freq="H"))
a[0] = Timedelta("1H")
assert a.freq is None
@pytest.mark.parametrize(
"obj",
[
Timedelta(seconds=1),
Timedelta(seconds=1).to_timedelta64(),
Timedelta(seconds=1).to_pytimedelta(),
],
)
def test_setitem_objects(self, obj):
# make sure we accept timedelta64 and timedelta in addition to Timedelta
tdi = pd.timedelta_range("2 Days", periods=4, freq="H")
arr = TimedeltaArray(tdi, freq=tdi.freq)
arr[0] = obj
assert arr[0] == Timedelta(seconds=1)
@pytest.mark.parametrize(
"other",
[
1,
np.int64(1),
1.0,
np.datetime64("NaT"),
pd.Timestamp("2021-01-01"),
"invalid",
np.arange(10, dtype="i8") * 24 * 3600 * 10**9,
(np.arange(10) * 24 * 3600 * 10**9).view("datetime64[ns]"),
pd.Timestamp("2021-01-01").to_period("D"),
],
)
@pytest.mark.parametrize("index", [True, False])
def test_searchsorted_invalid_types(self, other, index):
data = np.arange(10, dtype="i8") * 24 * 3600 * 10**9
arr = TimedeltaArray(data, freq="D")
if index:
arr = pd.Index(arr)
msg = "|".join(
[
"searchsorted requires compatible dtype or scalar",
"value should be a 'Timedelta', 'NaT', or array of those. Got",
]
)
with pytest.raises(TypeError, match=msg):
arr.searchsorted(other)
class TestUnaryOps:
def test_abs(self):
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
arr = TimedeltaArray(vals)
evals = np.array([3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
expected = TimedeltaArray(evals)
result = abs(arr)
tm.assert_timedelta_array_equal(result, expected)
result2 = np.abs(arr)
tm.assert_timedelta_array_equal(result2, expected)
def test_pos(self):
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
arr = TimedeltaArray(vals)
result = +arr
tm.assert_timedelta_array_equal(result, arr)
assert not tm.shares_memory(result, arr)
result2 = np.positive(arr)
tm.assert_timedelta_array_equal(result2, arr)
assert not tm.shares_memory(result2, arr)
def test_neg(self):
vals = np.array([-3600 * 10**9, "NaT", 7200 * 10**9], dtype="m8[ns]")
arr = TimedeltaArray(vals)
evals = np.array([3600 * 10**9, "NaT", -7200 * 10**9], dtype="m8[ns]")
expected = TimedeltaArray(evals)
result = -arr
tm.assert_timedelta_array_equal(result, expected)
result2 = np.negative(arr)
tm.assert_timedelta_array_equal(result2, expected)
def test_neg_freq(self):
tdi = pd.timedelta_range("2 Days", periods=4, freq="H")
arr = TimedeltaArray(tdi, freq=tdi.freq)
expected = TimedeltaArray(-tdi._data, freq=-tdi.freq)
result = -arr
tm.assert_timedelta_array_equal(result, expected)
result2 = np.negative(arr)
tm.assert_timedelta_array_equal(result2, expected)